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Visual scene decomposition into semantic entities is one of the major chal-
lenges when creating a reliable object grasping system. Recently, we in-
troduced a bottom-up hierarchical clustering approach [12] which is able to
segment objects and parts in a scene. In this paper, we introduce a trans-
form from such a segmentation into a corresponding, hierarchical saliency
function. In comprehensive experiments we demonstrate its ability to detect
salient objects in a scene. Furthermore, this hierarchical saliency defines a
most salient corresponding region (scale) for every point in an image. Based
on this, an easy-to-use pick and place manipulation system was developed
and tested exemplarily.

1 Introduction and Related Work

Intelligent robots need to comprehend the configuration of their environment in order to
interact with it. We propose to follow a biologically motivated pathway, mimicking visual
grouping mechanisms to decompose the scene and saliency to assess what the important
entities are. Instead of implementing these two abilities independently, we show how
to smartly transform the cognizance of grouping to awareness of salient structures. In
the human mind, these mechanisms both belong to the unconscious, early sensory input
processing, prior to recognition and high level semantic interpretation. On that basis,
we built a framework for assisted object grasping with a mobile platform, that means
an operator adds the high-level knowledge. Findings from research on the benefit of
human input in human-in-the-loop robotic systems for pick and place tasks [7] indicate
that overall performance is maximized when an operator specifies an approximate region
of grasping without full control of the manipulator movement. Our hierarchical salient
object detection approach facilitates a convenient way for an operator to select and

1

ar
X

iv
:1

70
1.

04
28

4v
2 

 [
cs

.C
V

] 
 1

7 
Ja

n 
20

17



Accepted for ICRA 2017 Final version will be available at ieeexplore.ieee.org

Figure 1: Mobile robot picking a cylindrical object out of a cabinet. In the top-right
corner an example of the salient object segmentation is shown, highlighting
the object before execution of the grasp.

segment an object of interest. Based on this, we created a flexible and easy-to-use
grasping framework (see Fig. 1). Ideally, a pick and place task for an object is performed
with only a single click each for selection, point of application, and target position.

For hierarchical grouping we merely employ our previous work from [12] and thus fo-
cus on saliency based object detection in this paper. There is a large body of literature
on visual saliency systems. Recently, Borji et. al. [6] conducted a comprehensive, com-
parative study. The most successful approaches all conduct a kind of clustering prior
to saliency estimation. Several ones apply a Superpixel algorithm as preprocessing on a
single [16, 22, 14] or multiple scales [11, 21], whereupon the Superpixels are embedded
in a graph structure to direct contrast based saliency computations. The approach of
Aytekin et. al. [3] is special in the way that they derive a saliency value from a Graph-
Cut like energy minimization to separate fore- and background. Most similar to our
saliency approach, there are the ones based on hierarchical clusterings [18, 15, 23]. Still,
the approach of Yan et. al. [18] differs a lot in the way that it extracts predefined planar
scale levels from the hierarchical segmentation instead of directly exploiting the parti-
tion tree structure. Zhu and Komodakis [23] make use of a hierarchical clustering for
subsequent, informed feature extraction. They trained a classifier on the ground truth
labels of a fraction of the MSRA10K benchmark dataset, which is finally applied to grade
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saliency of segments within the partition tree structure. While Liu et. al. [15] actually
utilize the hierarchical clustering for a likewise hierarchical saliency calculation as we do,
our approach differs, since we use the same similarity measure for grouping as well as
saliency. Additionally, we harness the present information about the neighborhood scale
at the time of merging for foreground/background distinction and suggest how saliency
is inherited from parent to children nodes in the partition tree. Moreover, we propose
a maximum projection in the tree structure to define a saliency map. This retains the
possibility to attribute the most salient segment’s extent as the appropriate scale of a
pixel.

The field of robotic manipulation can typically be divided into solutions for grasping of
known objects or more general approaches for manipulating unknown objects. A plethora
of well working solutions for the first category have already been proposed, for example
the MOPED framework for the robotic butler HERB [10]. When considering unknown
objects, which is still an unsolved problem for general and reliable grasping, there exist
several strategies for the segmentation. Frameworks with saliency based object detection
in a pick and place context typically focus on full autonomy by choosing the most salient
object for grasping. For instance, the approach introduced by Bao et. al. [4] provides
such level of autonomy to specify high-level instructions like ”clean up the floor” to a
mobile robot. The downside of these solutions, however, is that the operator usually
cannot adjust the salient segmentation and resulting manipulation actions. Contrary
to the automated saliency based approaches, there exist many variants of assisted pick
and place with RGB-D cameras, which solely rely on depth information for segmenting
unknown objects. Usually, these approaches typically detect a support plane and use
a threshold pattern to cluster depth points above the plane that belong to an object
selected by an operator. A prominent example for this is the work by Willow Garage
on the PR2 [9]. A comparable variant was also successfully used for competition runs
at RoboCup@Home [17]. These solutions work well for objects that are spatially well
distinguishable from each other, but fail for crowded scenes, stacked objects, or a missing
support plane. These downsides, however, can successfully be circumvented through our
hierarchical saliency based object segmentation.

2 Hierarchical Saliency from Segmentation

In our approach, the saliency computation is deeply geared with our hierarchical seg-
mentation from [12]. It is calculated solely on the information already contained in the
binary partition tree structure resulting from that clustering. However, the principle
how to transform a hierarchical clustering to a saliency function is generic and could be
applied to different approaches as well. In the following, we first give a brief summary
on our hierarchical clustering procedure and which data is important to keep track of.
Then, we show how to transform this information into a saliency value for each segment
in the partition tree. Finally, we explain how to render a single saliency map from this
hierarchical saliency function.
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Figure 2: (a) Input image. (b) Ultrametric contour map (UCM) visualizing D(P,Q)
from [12]. (c) Proposed PaTS model. (d) Partitioning and corresponding tree
for the first seven binary splits. Note how relatively smaller segments enclosed
by strong contours become salient.

2.1 Growing the Scene Partitioning Tree

Our approach follows the traditional scheme of agglomerative clustering, starting from an
atomic partitioning generated from a color-gradient based watershed transform. Then,
iteratively, those two segments P and Q neighboring in image space become merged into
a parent node, which are globally most similar with respect to a sophisticated distance
measure D(P,Q) (cf. [12], Eq. (2)). For saliency computations, we only annotate the
areas AP resp. AQ (in pixels), the length of the perimeter touching the image boundary
(where applicable), as well as their distance at the time of merging to the binary partition
tree. The agglomerative clustering stops when the last two segments are merged to
become root, representing the full scene.

2.2 Saliency Transform from Composition and Contrast

We claim that saliency and grouping are the same fundamental process, but considered
from two opposing viewpoints: in grouping, one focuses on which parts of the image are
most similar and should belong together, whereas saliency tells us which ones are most
contrasting and should stay separate. This motivated the idea to utilize the information
already gained during hierarchical clustering to express an antagonal saliency.

There are some important questions to answer when composing a contrast based
saliency term from the hierarchical grouping similarities: first of all, which of the two
opposing segments is foreground and which one is background? Second, how should
the image boundary be treated, could one model effects of human peripheral vision to
saliency? Finally, how is saliency inherited from object scale down to parts? Surprisingly,
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we found straightforward and well-performing solutions to all of these issues. Since our
approach is working purely on the graph structure created from hierarchical grouping,
we call it Partition Tree Saliency (PaTS). Figure 2 shows an example of the hierarchical
grouping and the corresponding saliency.

The figure-ground relationship is decided inverse proportionally to the size of the
segments at time of merging: the larger one is more likely to be background and therefore
less salient. This yields

Sfg(P )Q = D(P,Q) ·
AQ

AP +AQ
. (1)

Subsequently, this measure is weighted down to model the effect of peripheral vision,
assuming an expansion beyond the image boundary as

Speri(P )Q = Sfg(P )Q ·
AP

AP + (B2
P+

√
APBP )/2

, (2)

where BP denotes the length of that perimeter of segment P running along the image
boundary. This factor vanishes to 1, if there is no image boundary involved. Otherwise
it decreases with the average of squared plus linear dependence on the boundary length
relative to the segment’s surface. A different variant of such mechanism, called boundary
connectivity, was introduced in [22].
Lastly, we propagate saliency from object level down the hierarchy to parts by incor-
porating again a factor proportional to the size of the children and accumulating it
downwards according to

Shier(P ) = Shier (parent (P )) · AP
AP +AQ

+ Speri(P )Q. (3)

Here, the whole image (the root node) is initialized with no saliency at all, Shier(root) =
0. This hierarchical saliency scheme can be calculated in a single run over the binary
partition tree and is very cheap to compute.

2.3 Maximum Saliency Projection to a Planar Map

Looking at a single pixel, it belongs to a certain path π from the corresponding leaf seg-
ment to the root of the binary partition tree. We define its saliency to be the maximum
of hierarchical saliency along that path. This yields a kind of min-max optimization,
since the tree was built in a way which minimized contrast between merged nodes. The
maximum saliency can be propagated down to the leaves in a single run through the
tree and thus rendered into a single planar saliency map very quickly in linear time:

Smax(P ) = P ∈ π : max
pi∈π

(Shier (pi)) . (4)

An important property of our planar saliency is that it is deduced from the most salient
object or part a pixel belongs to. Consequently, other pixels belonging to the same
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object and parts share exactly the same saliency value and the borders are crisp.
Furthermore, one could easily deduce information about the extent of local structures:
for each pixel, what is the most salient segment it belongs to? Please note that this
attribution to pixels is more information than a planar saliency map is able to represent,
since we deal with nested segmentations. It is a unique feature of our hierarchical saliency
to provide a saliency decomposition of the image. In this paper, we demonstrate how to
employ it for assisted object grasping with a single click object segmentation.

3 Saliency Assisted Object Grasping

Assisted teleoperation can support the operator in several ways, e.g. through object
segmentation, trajectory generation, collision avoidance, or goal precision. For this work
only supervisory control of the robot’s mostly autonomous manipulation and segmen-
tation capabilities is needed. We leverage the operators high-level cognitive capabilities
without the disturbance of caring about low-level control.

3.1 Graphical User Interface

For visualizing the scene and enabling the operator to control the grasping task, we
implemented a point-and-click interface that is easy to use. It runs remotely on a separate
computer as a ROS based rqt plugin. Therefore, all communication between the interface
and the segmentation and grasping subroutines is realized via ROS topics and messages.
To reduce communication load of the network and simplify usage for the operator the
interface works solely on color images of the scene. The grasping subroutine also needs
depth information, e.g. from a RGB-D camera, but uses the sensor input only locally
on the robot. As has previously been shown in literature, such an interface operating on
2D visualization is well suited for assisted teleoperation of a manipulator [13], [20].

As seen by the operator, the interface itself consists mostly of a display of the scene.
Depending on the currently selected operation mode the shown image is either taken
from the video live stream or a rendered still image from the segmentation routine.
For interaction the operator performs single mouse clicks directly on the shown image.
Additionally needed commands, like canceling the current segmentation, are issued either
through keyboard shortcuts or buttons. The design decision to make keyboard control
optional enables to use the interface also on a touch-only device like a tablet or in
combination with some sort of head tracker as motion-impaired user. A screenshot of
the interface is shown in Figure 3.

In the following, we will give a brief overview of the workflow to grasp an unknown
object and afterwards place it at a target location. Starting with a live view of the
scene, a segmentation is initialized with the most salient segment corresponding to the
coordinates of the first click. All possible adjustments to this segmentation will be shown
rendered on the current snapshot at the time of the initial click. The operator now has
the option to eventually refine the segmentation by marking additive or subtractive parts
or by changing the size of the currently active segment via traversing the hierarchical
segmentation tree. At any time, the current segment can also be deleted to revert
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Figure 3: Screenshot of the graphical user interface with a green border marking the
active segment, the bottle in the lower cabinet section.

false clicks. Once the operator is satisfied with the shown segmentation, an approximate
grasp point on the segmented object has to be chosen and confirmed. The robot will now
autonomously try to grasp the segmented object while the operator can supervise the
execution through a live view of the scene. After a successful grasp attempt the operator
can specify a target position for placing the object. Execution of the place operation
is done autonomously again. All possibly needed interaction is available through the
interface, e.g. resetting the segmentation, republishing the current selection, or choosing
a different grasp point. Further details about the underlying grasp process will be
outlined in the following section.

3.2 Grasping Technique

The specified grasp point and object outline determined in the graphical user interface
are passed to the grasp subroutine. It estimates the remaining degrees of freedom,
including gripper orientation as well as directions and distances for the approach, lifting,
and deploying movement. Secondly, the grasp subroutine triggers the planning and
execution of corresponding manipulator motions. The input of the grasp subroutine for
object picking consists of three parts. The first is a 2-dimensional image coordinate
specifying the user’s choice of a preliminary grasp point, which will possibly be changed
later on. The second part is a binary image mask which represents the object that is to
be grasped. Lastly, there is a matching ordered point cloud of the scene. First, we filter
the pointcloud to remove calibration residues. Then, we calculate the surface normal
at the given grasp point and align the gripper orientation to it. We target to place the
tool-center-point approximately at the clicked grasp point, whereby the end-effector pose
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is already roughly defined. Additionally, we need to set the turn orientation around that
normal direction. We distinguish two cases: If the surface normal is nearly parallel to
the gravity vector, the gripper approaches from the top, planning a so called top-grasp.
Otherwise, we do a side-grasp. For that we align the gripper jaws perpendicular to
the gravity vector. Furthermore, we determine the width of the object from all points
belonging to the plane used for calculating the grasp normal and update the grasp point
to be at the center between the rightmost and leftmost points. In case of a top-grasp,
we first extract all points on the plane used for the normal estimation and calculate
their convex hull. The gripper turn orientation is then set to the angle, that results
in the minimal extent of the points, which can be calculated easily using the convex
hull. The final grasp point is determined at the center of the points corresponding to
the minimal extent. Additionally, our algorithm calculates the distance between the
grasp point and the segment’s lowest point in the direction of the gravity vector, which
is needed for placing the object later on. The approach trajectory is generated using a
straight Cartesian path of 12cm length for the gripper along the normal orientation. A
collision-free path to the starting point of the Cartesian movement is planned with the
ROS MoveIt! library.

For placing the object, our grasp subroutine needs one 3D point. It is looked up in
the current, ordered 3D pointcloud using a 2D index specified by a click within the user
interface. The subroutine then plans to place the object grasp point in the same distance
above ground, that was obtained using the initial segmentation for picking the object.
A collision-free trajectory to the pre-place position is calculated using MoveIt! again.
The motion for placing an object is almost a reversed pick operation. Starting with
holding the object above the desired location, the manipulator then lowers the object
down, before letting it go and retreating backwards along the main orientation of the
gripper.

4 Experiments and Evaluation

In this section, we present a twofold evaluation of our approach: subsection 4.1 presents
a thorough analysis of PaTS in a salient object detection and segmentation setting. In
the following subsection 4.2, we demonstrate our entire system’s capability for assisted
object grasping. Therefore, we performed a number of pick and place operations and
unpacked a cabinet to a desk with our mobile manipulator.

4.1 Salient Object Detection Capability

Since our PaT-Saliency is used to distinguish an object from the background in our
application, it is appropriate to evaluate it on salient object detection and segmentation
benchmarks. A comprehensive study in this area comparing 39 approaches was recently
published by Borji et. al. [6]. This work aggregated several previous benchmarks, namely
DUT-OMRON [19] (5166 images), ECSSD [18] (1000 images), JuddDB [5] (900 images),
MSRA10K [8] (10000 images), and SED2 [2] (100 images). These images come with
binary ground truth segmentations to tag which part of each image is occupied by
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image gt. PaTS DRFI [11] ST [15] QCUT [3] RBD [22] HS [18] CHM [14]

Figure 4: Exemplary results (saliency maps) of the compared methods. Always two
images are taken top to bottom from DUT-OMRON, ECSSD, JuddDB,
MSRA10K, and SED2 datasets.

the most salient object or the two most salient objects in some cases. Very valuable
for following evaluations, the authors of [6] share saliency maps of all participating
approaches on their webpage1. We selected the best performing and most related ones
for our qualitative comparison: CHM [14] (Contextual Hypergraph Modeling), DRFI [11]
(Discriminative Regional Feature Integration), HS [18] (Hierarchical Saliency), QCUT [3]
(Quantum Cuts), RBD [22] (Robust Background Detection), and ST [15] (Saliency Tree).

Figure 4 shows a couple of saliency maps for visual comparison of the different saliency
approaches. Our model PaTS stands out from the others in the manner that it quite
successfully assigns an object-wide saliency value due to the maximum projection of the
hierarchical saliency explained in section 2.3. Furthermore, it does not only detect the

1http://mmcheng.net/zh/salobjbenchmark/
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Figure 5: (a) Avg. F-measure (β2 = 0.3). (b) Avg. Matthews Correlation Coefficient.
Both measures are computed with optimal thresholding per image. Values in
parenthesis quantify the overall results for each particular approach.

most salient object, but quantifies the saliency of any structure in the scene, which is
important for generic object grasping. PaTS is a simple and slick model, not incorporat-
ing specific assumptions on the imaging modalities. It does not even use global statistics
of the image, but is purely based on local contrasts. Therefore, it works equally well on
images from the web as from a robot mounted camera.

There are several different measures how to rate the compliance between saliency
maps and a binary ground truth. Here, we want to focus on the question how well the
salient object could be separated from the background based on saliency. A critical step
is how to binarize a saliency map in order to determine true positives, true negatives,
false positives, and false negatives vs. the ground truth. In [6], Borji et. al. retained
three different variants: best benchmark-wide fixed threshold [8], adaptive threshold-
ing [1], and SaliencyCut [8]. The meaning of the first variant is questionable, since the
saliency maps used for evaluation had been normalized to [0 . . . 255] range and thus do
not represent absolute values anymore. Furthermore, a benchmark-wide optimal thresh-
old is artificially vague when judging the ability of saliency maps to separate the salient
object. We solved both issues by using an optimal threshold per image according to
the evaluation measure. Then, the individual image results are averaged to give the
benchmark score. Finally, an overall score is computed as the average of all benchmark
scores. The second and third binarization variants of [6] both define a content-adaptive
way of thresholding, but thereby introduce additional side-effects. Likewise, using an
oracle that tells the best threshold per image circumvents any additional dependencies
on particular binarization algorithms.

Widely used in statistical analysis of binary classification is the Fβ-measure, which is
the weighted harmonic mean of precision and recall. It equals

Fβ =
(1 + β2) · tp

(1 + β2) · tp + fp + β2fn
. (5)

The meaning of β is that one could weight recall β times more important than precision.
We chose β2 = 0.3 in accordance with most previous papers, which agreed that precision
is more important than recall in this situation.
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Figure 6: Typical error cases of PaTS. Left to right: image, ground truth, and resulting
saliency map.

Although commonly accepted, the Fβ-measure has two major drawbacks: obviously,
it disregards true negative decisions, and it does not incorporate the size of true and
false categories. In our setting, we deal with clearly smaller true examples (the salient
objects). Both these issues are tackled using Matthews Correlation Coefficient, which is
formulated

MCC =
tp · tn− fp · fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
. (6)

It returns values between −1 and 1, where 0 would be the result of random guesses and
1 a perfect match.

Figure 5 depicts the quantitative outcomes for all compared approaches gathered on
the popularly accepted datasets. They are all close together and achieved impressing
results on an absolute scale. Still, considering the large number of images in the datasets,
one may grade them into the leading group of PaTS, DRFI, ST, and QCUT, the close
contenders RBD and HS, as well as the bottom-placed CHM. From the overall tendency,
PaTS ranks third on Fβ-measure and even best on MCC. Needless to say, our PaTS
model also fails at times. Figure 6 displays some more frequent causes: in the top row
example, it merged co-aligned structures to the main object. In the second row, the
hierarchical clustering was already unreliable. The third row shows an example where
enclosed background parts became most salient due to only local decisions.

Our PaT-Saliency is very efficient to compute and therefore suited to be deployed
on a mobile platform. The hierarchical clustering of [12] takes about 88 milliseconds
for a 400 × 300 image (usual MSRA10K size) on a single core of an Intel Xeon X5680
at 3.33 GHz. Saliency calculation and rendering comes almost for free at only 2 more
milliseconds. The timings increase only linear in the number of pixels.
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Figure 7: (a) Start configurations used for the grasping trials with randomly placed set
of objects. (b) Example of a pick operation (left) and a place task (right).

4.2 Overall System Reliability

To test our saliency based strategy for segmenting unknown objects in a typical pick and
place scenario, we also ran a series of trials with a mobile manipulator from an EOD
context. The used hardware is a tEODor platform as mobile base with a 7-DOF telemax
manipulator mounted on top and a parallel gripper as endeffector. For obtaining the
needed depth information we used an ASUS Xtion RGB-D camera on a pan-tilt unit.
A laptop served as remote control station for the operator and was used to run the
graphical user interface. All other processing was done aboard the robot, equipped with
a PC with an Intel i7-2710QE CPU at 2.1 GHz. Segmentation results were available
without noticeable delay.

Our grasping experiment contained three sets of trials, trying to pick up and afterwards
place 10 objects each: a wooden cuboid, a cardboard packaging box, two pencil holders,
a metal profile, a hollow rubber cylinder, a cup, a large bottle, and two differently sized
packaging cylinders. The objects were selected to be of varying size, shape, structure,
color, and texture. The first two trial sets started with all objects being placed inside
a cabinet and the goal was to move all of them to a nearby table. The third trial set
was showcasing a tabletop scene, where all objects had to be moved from a lower shelf
to the same table as before. The three start configurations used for the trials are shown
in Figure 7a. An exemplary pick and place operation is depicted in Figure 7b.

To evaluate the effectiveness of our approach we used overall grasp success as measure.
From the three sets of trials we obtained data on 30 different grasp attempts, 27 of which
successfully worked on first try. In some of those cases though, the operator needed to
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Table 1: Results of our grasping trials.

object cabinet 1 cabinet 2 tabletop

wooden cuboid (3) 3 3

cardboard box 7 3 3

blue pen holder 3 3 3

orange pen holder 3 3 3

metal profile 3 3 3

rubber cylinder 3 3 (3)

cup 3 3 3

bottle 3 3 3

green cylinder 3 3 3

dark cylinder 3 3 3

use the interface to choose a different place position on the table, after having selected
a not suitable point at first. This behavior was mostly seen when trying to efficiently
use the available space on the table, which at times would have resulted in a collision.
In this case the grasp subroutine rejects the supplied input before even attempting to
move the manipulator and a new place point has to be selected. Of the remaining three
grasp attempts, one had to be repeated and worked on second try (rubber cylinder).
One needed a short manual intervention by the operator, moving the turret joint by a
few degrees, because the grasped object was too close to the back of the cabinet and
the planer got stuck in a collision state (wooden cuboid). The third one resulted in
a failed grasp attempt on the cardboard packaging box. This was due to the gripper
having passed the box early on while grasping a different object and due to inaccuracies
slightly colliding with the box and knocking it over. The box ended up lying flat on
the cabinet shelf with the largest side facing the front and was not graspable with the
possible gripper aperture.

Table 1 shows a detailed summary of the conducted trials and their outcome. Please
also refer to the accompanying video to see the segmentation approach and the corre-
sponding grasp attempt for several objects.

5 Conclusions and Future Work

We proposed PaTS, a very efficient transform of an image hierarchical clustering into
a likewise hierarchical saliency function, which was shown to be particularly suited for
salient object detection. Besides boasting state-of-the-art performance on web images,
it proved applicable for camera images from a mobile robot as well. Obtaining a very
accurately segmented object aids in finding a good grasp point and the proper collision
box. Therefore, using our segmentation approach in conjunction with a simple grasping
method empowers the operator to pick and place objects even in non-tabletop scenes

13

ieeexplore.ieee.org


Accepted for ICRA 2017 Final version will be available at ieeexplore.ieee.org

such as unpacking a cabinet.
In the future, we want to integrate an automatic grasp point estimation to our system

in order to further simplify the operation. Moreover, we want to transfer saliency from
single images to 3D maps, possibly built from multiple views.
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