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Obstacle Negotiation Learning for a Compliant Wheel-on-Leg Robot

Arthur Bouton1,2, Christophe Grand3 and Faı̈z Benamar1,2

Abstract— Building versatile control for wheel-on-leg robots
on various uneven terrains still constitutes a challenge. In
this paper, we propose to combine a continuous state space
Q-learning algorithm with a compliant wheeled locomotion
structure capable of measuring forces applied by the environ-
ment. These forces are used to choose a behavior from the
modulation of actuation distribution to simple configuration
adjustments. Then, the robot does not need any prior knowledge
on the ground geometry and is able to react to non-anticipated
obstacles. The learned policy proves to be generic and allows
the robot to negotiate complex obstacles that were not seen
during learning.

I. INTRODUCTION

Wheeled locomotion systems that are able of high relative
wheel displacements are designed to enable good perfor-
mances on both flat and uneven terrains. However, the control
complexity significantly raises when attempting to cover the
large variety of possible situations.

Passive structures offer native ground adaptation but do
not control posture and force distribution, so their versatility
is very limited and primarily consists in equilibrating the
load on wheels for the largest variations of configuration [1].
Mainly for stability purpose, actuation can be added along-
side passive joints while preserving the static determinacy
of the structure [2], [3], but crossing capabilities still are
entrusted to the wheel traction with no adaptation of the
load distribution.

On the other hand, fully actively articulated robots can use
their structural redundancy in order to adapt their configu-
ration and literally lift wheels over obstacles [4]. However,
active adaptation relies on prior knowledge of the ground
geometry in order to plan the motion of each wheel [5]. A
depth sensor can be used to map the environment [6], but in
addition to data noise, accurately estimating the robot’s pose
with respect to the map, without external sensors, remains
a challenging issue. Therefore, we can not guarantee that
the optimal wheel placement will match the actual ground
geometry under the robot.

Machine learning techniques have already been tested on
wheel-on-leg robots for identifying the terrain type among
very few classes in order to select whether the proper wheel
speed control [7] or the predefined gait to use [8]. However,
to our knowledge, the combination of compliant behavior
and reinforcement learning in order to produce obstacle
negotiation strategies has never been explored before.
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(a) The robot prototype
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(b) Kinematic principle of one leg

Fig. 1. The robot prototype related to this study weighs around 10 kg
and the wheelbase is 0.58m long for a 0.36m wide track. The wheel
diameter is 0.15m and initial leg height is 0.21m. All the characteristics of
the robot’s physical model used in the simulations, including the actuation
modelization, are based on the prototype’s data.

Here, we propose to take advantage of a compliant design
where the measured external forces are used to learn how
to deal with obstacles. Also, complex and computationally
heavy plannings are replaced by few simple elementary be-
haviors independent from leg placements, while the forward
movement of the robot is freely managed by the wheels. As
a result, the robot clambers without lifting a wheel, so it is
ensured to exploit every traction force, and adjusts its global
control on the fly to the incoming geometries pressuring the
structure.

Results prove that the robot is then able to cross complex
and unknown obstacles with different shapes that were not
seen at training time.

II. DESCRIPTION OF THE ROBOT
A. Four Compliant Legs

The robot stands on four wheels, each is linked to the
chassis through two pivoting segments building up a serial
kinematic chain. A set of antagonist springs, noted kh on
Fig. 1(b), aims to maintain the lower segments aligned with
the vertical direction of the main body, so these segments
tend to remain parallel. A second set of antagonist springs,
kv , connects the upper elements to an angular actuator, so
as to form a series elastic actuation (SEA) at the top of each
leg. Following the SEA principle, the actuator rotation is
here controlled according to the elastic deformation of the
kv springs, which is deduced from a simple angle difference,
in order to apply a desired torque on the joint.

Around the initial reference configuration where lower
links are vertical and upper ones are horizontal, the mecha-
nism offers a nearly orthogonal decomposition between pas-
sive and active stiffnesses, while relying robustness provided
by pivot joints. Then it is possible to distinguish horizontal



forces passively absorbed by the legs from vertical ones that
are controlled through the SEA at the end of the lever arm
embodied by the upper segments. While these last forces are
used to balance the chassis of the robot, horizontal actions
applied by the environment on the legs can still be isolated.
These actions reveal the presence of anything affecting the
forward motion of the robot, such as obstacles, and give an
image of the relative motion difficulty of each wheel. The
analysis of inverse kinematics gives the expression of the
horizontal force fx applied on the leg as a function of the
angles θc, θb and θm of respectively the lower segment, upper
segment and motor pulley :

fx =
±Lc sin θcτb + Lb cos θbτc

LbLc cos(θb − θc)
(1)

where τb = 2Rb
2kv

(
Rm

Rb
θm − θb

)
, τc = −2Rc2khθc and

the sign in front of Lc depends on whether we are consid-
ering a front or rear leg.

The balance of the chassis is regulated with a PD controller
on the roll, pitch and elevation of the main body. The torque
distribution on top joint of each leg is then given by the
pseudo-inverse of the matrix expressing the influence of these
torques on the main body dynamics. More details on this
control can be found in [9]. Relying on a vertical projected
force servoing allows the robot to balance regardless of
differences in ground height under each wheel. The ground
variations are naturally filtered by the SEA and the four
wheels are ensured to keep the contact with the soil without
the need of any prior knowledge on ground geometry.

B. Steering Pivot

As shown in Fig. 2(c), the robot is endowed with a
pivot joint at the center of the main body that allows the
symmetrical front and rear parts of the robot to rotate relative
to each other along the vertical axis. The robot is then able to
control its direction without theoretically any slipping if each
wheel speed is properly adapted in accordance with the pivot
control. With this design, the path curvature is limited, but it
avoids extra weight, complexity and weakness of a vertical
pivot over each wheel. Also, skid-steering is unpractical in
our case, as the wheelbase is not stiff.

In addition, rotation of the chassis is also of great asset
when dealing with obstacles, as shown in [10]. Two sequen-
tially performed functions can thus be achieved by a unique
strong joint.

C. Wheel Speed Adaptation

In order to assist the horizontal wheel positioning, each
wheel speed ω is modulated according to the angular de-
viation θc of the vertical segment from its rest position, as
expressed by :

ω = (1 + kωθc)
Vd
R

(2)

where Vd is the desired robot velocity, R the wheel radius and
kω a proportional gain. This control prevents persistent in-
ternal stresses due to horizontal relative wheel displacements

that can be maintained by ground friction. The measured
horizontal forces are then ensured to come from ground
elements pressuring the locomotion structure.

III. DEFINITION OF THE ACTIONS

The chassis balance control through SEA handles all
ground height variations, so its combination with an even
load distribution on wheels suffices to deal with smooth
surfaces. However, discontinuities that are sharp enough to
constitute an obstacle need a change of the applied forces on
wheels in order to be surmounted. Therefore, we can define
several adaptations relying on the same control scheme so
as to either offer convenient load distributions, or modify
the current approach configuration. In all cases, the wheel
speed control keeps focusing on the desired robot’s velocity
tracking. Then, in every situation that can be encountered,
for any obstacle layout, the robot will have to find the best
sequence of actions that will allow it to continue advancing.

The seven actions, that can be seen as high-level control
variants, are listed in the four following sections and an
overview of actions dedicated to the crossing situations is
given by Fig. 2.

A. Regular Advance Mode

The first action, which can also be seen as the default
one, consists in applying an even torque distribution on
legs while regulating the chassis balance to the upright
position, which corresponds to a center of mass (CoM) lying
midway between the supporting points. Energy consumption
and internal stresses are therefore minimal, while the robot’s
stability is ensured.

Let w a reduced dimension wrench of the three actions,
two torques and a force, having directly effect on each
independent variable to be regulated by the postural control,
i.e. the roll, pitch and elevation, and τ the vector containing
the four leg actuation torques. We can express the 3 × 4
matrix G, which depends on the geometry of the current
robot configuration, such that w = Gτ . Then, the torque
distribution τ can be computed by applying the pseudo-
inverse of G to the output of the PD controller in charge
of the roll, pitch and elevation regulation. This gives the
actuation distribution with the minimal quadratic sum of
torques that leads to the desired action w on the chassis.

As this mode is the most energy-efficient and well bal-
anced, the robot has to keep using it as much as possible, as
the default mode. So any other action should only be chosen
when the robot is likely to be blocked if it persists in this
mode.

When this mode is active, it means that the geometry of the
ground is smooth enough not to engage particular crossing
capabilities, so the central pivot of the main body is free to be
used for steering along the desired trajectory. As soon as any
other action is chosen, the priority is given to the obstacle
crossing, so the steering is interrupted. Once the difficulties
are passed and the robot comes back in the regular advance
mode, the steering pivot is free to correct the course again.



B. Modulation of the Torque Distribution

As the system relies on four supports, each one subject to
a single force control, there is one extra degree of freedom
in choosing the actuation distribution while producing the
same effect on the acceleration of the three posture variables.
Using the notation w = Gτ defined in section III-A, actions
2 and 3 can thus consist in modifying the torque distribution
τ along the kernel of G, so that w remains unchanged.
In the general case, a vector u0 of ker(G) can be found
with a singular value decomposition. Then, we look for the
greatest value of λ such that each torque of τ ′ = τ + λu0

keeps exerting a positive vertical action on legs, so wheels
with the minimal load remain in contact with the ground.
τ ′ is then the new distribution of torques to be applied.
The difference between both actions is thus defined by the
direction of u0. In practice, this direction determines which
couple of legs along the diagonal of the robot is going to
be relieved, while torques applied on the two other legs will
increase as a balance.

C. Displacement of the Center of Mass

Because of the unilateral torques generated by every wheel
while crossing an obstacle, the previous defined action cannot
lead to a full cancellation of the vertical force applied on
one of the rear wheels, according to the static equilibrium.
This is why we add the 4th and 5th actions consisting in the
displacement of the robot CoM over three supporting legs in
order to liberate the fourth one, i.e. either the rear left or rear
right leg. To do this, we modify the desired roll and pitch
of the chassis so the robot bents forward and to the opposite
side of the leg to be freed. According to the linear inverted
pendulum model described in [11], the CoM is thus displaced
above the support area of both front wheels and one of the
rear wheels. The column of G accounting for the influence
of the leg outside this area is then set to zero in order to
transfer the robot’s mass to the other legs when computing
the torque distribution. It is to note that the postural control
still regulates the roll, pitch and elevation even when the
robot is bent and relies on three legs.

D. Rotation of the Steering Pivot

The pivot joint at the center of the robot allows it to
steer, but also to change the relative spaces between the
equilibrium positions of front and rear wheels. Indeed, it can
bring left wheels closer while taking away the right ones,
or vice versa. This can be particularly useful when several
wheels are encountering a difficulty at the same time. The
reconfiguration of wheel positions can then be used in order
to help sequencing the obstacle crossing, one wheel after an
other. Thus, the central pivot provides two more actions, 6
and 7 : a constant speed rotation in each direction.

IV. LEARNING PROTOCOL

A. Reinforcement Learning Algorithm

To make the robot learn the proper action to execute
according to the situation and to allow it to develop strate-
gies for complex obstacles, we use a Q-learning algorithm.

(a) Modulation of the Torque Distribution (a = 2 or 3)

(b) Displacement of the Center of Mass (a = 4 or 5)

(c) Rotation of the Steering Pivot (a = 6 or 7)

Fig. 2. Overview of the actions dedicated to the crossing situations. Black
arrows represent displacements while leg actuation torques are depicted with
red arrows whose sizes correspond to the expected relative intensities.

Indeed, the obstacle crossing problem can be expressed as
a stochastic Markov decision process. Let s be a vector of
IR4 representing the state of the robot, i.e. the situation it
is facing according to its means of perception, as it will be
described in more detail in section IV-B. Then, let a ∈ [[1, 7]]
be the variable representing the action that can be chosen
among the seven possibilities defined in section III. The robot
has to select the action a to execute according to its state
s : this behavioral mapping is called the policy π. In Q-
learning, the decision is conducted by the so-called function
Q : IR4× [[1, 7]]→ IR, such that the action with the maximal
Q-value is picked :

π(s) = argmax
a
Q(s, a) (3)

The learning of the Q-function is directed by the reward
function R, telling at each learning step how good was the
previous choice s → a. In our case, we define the reward
function by :

R = sign(vx)× vx2 +max(0, vz)
2 (4)

where vx and vz are respectively the horizontal and vertical
absolute velocity of the wheel subject to the largest longitu-
dinal force fx that is opposite to the desired robot velocity.
So the reward function focuses on the wheel that slows down



the more the robot in order to let it deal with the current main
difficulty with a direct feedback on it. Squares in the formula
let vx and vz be considered as components of a 2D velocity
vector. The sign of vx is preserved so forward progresses
are rewarded while backward moves are penalized. The term
max(0, vz) allows the climbing movements to be rewarded,
but without penalizing downward ones, as they can occur
because of a gap in front of the wheel, e.g. after a bump
obstacle. As the velocities vary between two learning steps,
as well as the elected wheel they come from, the value of R
is averaged over this period.

In order to naturally give priority to the regular advance
mode, the suitable technique is to slow down the desired
robot velocity Vd, e.g. by 70%, when the robot is doing any
other action, reserved for crossing situations. This way, the
reward defined by (4) is only greater for these actions when
the robot is actually blocked by an obstacle and the regular
advance mode cannot enable anymore to continue. Also,
reducing the wheel speed during obstacle crossing lessen
wheel slip, as the robot is retained and cannot go to its full
speed anyway.

Then, the Q-function is iteratively built so as to tend to
the expected sum of the discounted rewards over time while
applying the policy π. This is done by updating at each
learning step the Q-value of the last state s and chosen action
a that have led to the new state s′, while providing the reward
R over the transition, as follows :

Q(s, a)← Q(s, a) + α
[
R+ γmax

a′
Q(s′, a′)−Q(s, a)

]
(5)

where α ∈]0, 1] is the learning rate and γ ∈ [0, 1[ the
discount factor that weighs the importance of distant future
rewards compared to the immediate one. As we are in
a stochastic case because of the uncertainties on action
effects and state transitions, which depend on the ground
geometry and characteristics, the learning rate α has to
decrease gradually to zero in order to let the Q-function to
converge to its probabilistic value [12], i.e. the value given
by the Bellman optimality equation. In the same time, π will
converge to the optimal policy in accordance with the defined
reward function and discount factor.

There is several ways to choose the actions to execute
during the learning. Here, we opt for an exploration strategy
based on a Boltzmann distribution, i.e. at each step the
next action is chosen randomly, but the probability Ps(a)
of choosing each action a at state s is determined by :

Ps(a) =
e

Q(s,a)
t∑7

i=1 e
Q(s,i)

t

(6)

where t is a parameter referred as the temperature : the larger
it is, the more the robot tends to try actions independently
of the current best policy.

The period between two updates of the Q-function and
choices of a new action has to be chosen wisely in order to
give enough time for the actions to have a noticeable effect

on the state and/or the reward, without entailing a penalizing
reaction time. This period is here set to 300ms.

B. Continuous State Space Representation

The action selection is guided by the horizontal force
distribution on each leg. Indeed, these forces give an internal
representation of the robot situation regarding the surround-
ing obstacles the wheels are in contact with. Let f1x , f2x , f3x
and f4x the horizontal measured forces respectively on the
front left, front right, rear left and rear right wheel. These
are evaluated according to (1). As the force average accounts
for dynamics lengthwise oscillations, whereas we are only
interested by the horizontal static balance of the robot,
we can use a three-dimensional space for depicting only
the relative force distribution while discarding the absolute
measures. There are many ways of arranging the four forces
in three dimensions with only relative relations. Among the
many tested possibilities, the representation that facilitates
the most the learning and the decision making is the one
expressing the difference of rear leg forces and both side
front and rear leg force differences, i.e. f3x − f4x , f1x − f3x
and f2x − f4x .

As the position of the steering pivot changes the leg
placements relative to the CoM and thus influences the static
equilibrium, the joint angle β is added to the state. This allow
the robot to hunt for the best configuration to adopt according
to the obstacles.

In order to make the learning more efficient, we adopt
a symmetrical representation of the state space and actions
with respect to the sagittal plane. Thus, the middle position of
the steering pivot defines the symmetry point beyond which
the role of left and right legs are reversed to match the
symmetrical equivalent with the same deviation but in the
opposite direction. With β = 0 at the middle position, i.e.
when the front and rear bodies are aligned and the robot goes
straight, the state s can then be defined by :

s =

{ [
f3x − f4x , f1x − f3x , f2x − f4x , νβ

]
if β ≥ 0[

f4x − f3x , f2x − f4x , f1x − f3x ,−νβ
]

otherwise
(7)

where ν is a dilatation coefficient used to homogenize the
scales.

So the state space is actually IR3 × IR+ rather than IR4.
The couples of symmetrical actions are also defined ac-

cording to the direction of the central pivot’s deviation. This
way, every obstacle geometry learned also prepares for the
symmetrical layout where right and left are inverted.

So we need to estimate the Q-value of each action over
a continuous state space, what can be done with a local
function approximator based on an artificial neural network.
We choose to use a normalized radial basis function (NRBF)
network because such networks, which are proven to be capa-
ble of universal approximation [13], have the particularity to
spread the nearest NRBF weight in the unfilled areas or to the
boundaries [14]. Then, we build as many NRBF networks,
i.e. as many sets of weights wi, as actions, such that the
Q-function is computed by :



Q(s, a) =

N∑
i=1

wi,a
e− ‖s−ci‖

2

σi
2∑N

j=1 e
− ‖s−cj‖2

σj
2

(8)

where N is the number of NRBF covering the state space,
σi their widths and ci the center of each one.

All the weights of the last tested action a are then updated
at each learning step according to the formula :

∀i ∈ [[1, N ]], wi, a← αε
e− ‖s−ci‖

2

σi
2∑N

j=1 e
− ‖s−cj‖2

σj
2

(9)

where ε = R+ γmaxa′ Q(s′, a′)−Q(s, a) is the temporal-
difference error as expressed in (5).

A NRBF distribution that proves to be efficient in our case
is to evenly dispose five gaussian units along each dimension
of the state space, symmetrically arranged around zero, while
σ is set to half the distance between two units. Both units
in positive area and the one at zero are enough for the last
dimension that encodes the central pivot angle, as it is always
positive. Therefore, the network is comprised of 5× 5× 5×
3 = 375 gaussian units.

C. Layout of the Training Terrain

The robot is trained on a track which consists of two
elemental obstacles, representative of most situations that can
be encountered, with the help of the robot reconfiguration
during exploration. Obstacle samples are both upright and as
tall as the wheel diameter in order to prepare the robot for
the hardest cases, so it will be ensured to pass easier ones. As
shown on Fig. 3, the first obstacle is a vertical rectangular
parallelepiped placed in front of both right wheels of the
robot. It prepares the robot for purely unilateral obstacles. It
is chosen to be thin enough to let the front wheel reach the
ground again before the rear wheel comes in contact with it,
because it represents the hardest case for the rear wheel ap-
proach according to the static equilibrium. The second one is
a vertical step subject to a random rotation around the vertical
axis, such that the deviation angle from a frontal approach of
the robot is uniformly picked between 0 and 15◦ at each new
trial. This way, right and left wheels are subject to a large
variety of relative force differences. It is assessed that no
more than a 15◦ deviation is necessary for the training, as it
would become equivalent to successive unilateral obstacles.
Some space is left between both obstacles in order to let the
robot recenter its trajectory before reaching the step. As the
learning is symmetrical, the robot is trained in the meantime
for the reverse situations where left and right are switched.

The training trails are carried by a physical simulations
based on Open Dynamics Engine (ODE), with a 1ms sim-
ulation step. We use a pyramidal approximation for the
friction model with a unfavorable coefficient of 0.5, which
corresponds to a tire on a wet road.

At each trial the robot starts at the same pose and the
learning updates begin as soon as it has reached the initial
speed of 0.3m s−1. If the robot’s CoM deviates more than
0.5m sideways, reaches the end of the track, i.e. when the

0-15°

1m

3m

Fig. 3. Track used for the robot training

four wheels are on the step, or a maximum time is exceeded,
the trial ends.

The discount factor γ is set to 0.7 and the learning rate
α starts at 0.5 to decrease gradually while being multiplied
by 0.997 between each trial. This last factor that has been
chosen to let enough time for the robot to learn the best
policy while converging quickly.

V. EVALUATION OF THE LEARNED
CAPABILITIES

After few hundreds trials on the training track described
previously and depicted on Fig. 3, the robot learns an
effective policy that allows it to reach the top of the last
obstacle for any approach angle. Fig. 4 gives an overview
of the resulting policy after 500 trials. In this example, the
rotation of the step is set to 0◦, so that the robot comes
to it frontally. In Fig.4 and 5, as well as in the associated
video, red arrows represent the angles of the motor shafts,
so the resulting torques applied by the SEA can be assessed
by the deviation between the arrows and the upper leg
segments, as both are linked by an equivalent of angular
springs. On Fig. 4, we first observe that the modulation
of torque distribution suffices to make the front wheels
cross a unilateral obstacle. However, the rear wheels need
the displacement of the CoM to counteract the effect of
wheel torques on the static equilibrium. Then, when dealing
with obstacles spread over multiple wheels, the robot has to
successively use the rotation of the steering pivot to the right
and to the left, interspersed by the other actions, in order to
sequence the wheel crossings.

The resulting policy is also tested in parallel on four other
obstacles. The first three consist of a large cylinder laid on
the ground, like a fallen tree trunk, which diameter is chosen
as large as the wheel diameter. The cylinder angle relative
to the robot’s advance direction is set to several values, so
that the robot has the different approach angles of 10, 20
and 30◦. The last obstacle is made up by a heap of three
beams with a rectangular cross section as large as the wheel
radius and heavy enough not to move on the robot passage.
This gives an example of complex obstacle requiring more
adaptation steps in order to be climbed. The resulting gaits
for every obstacle can be appreciated in the related video,
which can also be found at http://www.isir.upmc.
fr/vid/learning_obstacle_negotiation.mp4.

http://www.isir.upmc.fr/vid/learning_obstacle_negotiation.mp4
http://www.isir.upmc.fr/vid/learning_obstacle_negotiation.mp4
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Fig. 4. Crossing steps on the training track after 500 trials

(a) Crosswise cylinder (b) Beam heap

Fig. 5. Other tested obstacles
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Fig. 6. Progress of the average reward got by the robot from various
obstacle crossings. The learning trials are performed on the training track
and the resulting greedy policy, i.e. without exploration, is then applied on
every obstacles at different learning stages. Circles indicate that the robot
succeed in reaching the other side of the obstacle, while crosses stand for
failures, i.e. when the robot got stuck.

Fig. 6 shows the average reward got by the robot while it
tries to cross the different obstacles in a finite amount of time.
Even if the robot has only learned from the training track, it
becomes able to cross unseen obstacles, with wider approach
angles or requiring more complex crossing procedures. 500
trials are enough to learn an efficient policy, what correspond
to approximately 50 minutes of computation using a single
core on a modern computer.

VI. CONCLUSIONS

In this work, we described the application of Q-learning
for a compliant wheel-on-leg robot in order to produce a
generic policy for all obstacles. Results prove that the robot
can successfully negotiate complex obstacles without neither
having any prior knowledge on their geometry, nor having

encountered such shapes before. The robot is then free to roll
faster without requiring detailed map of the environment. In
future works, we will consider the application of the learned
policy on the prototype.
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