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Coupling Conditionally Independent Submaps for Large-Scale 2.5D
Mapping with Gaussian Markov Random Fields

Liye Sun, Teresa Vidal-Calleja and Jaime Valls Miro

Abstract— Building large-scale 2.5D maps when spatial cor-
relations are considered can be quite expensive, but there are
clear advantages when fusing data. While optimal submapping
strategies have been explored previously in covariance-form
using Gaussian Process for large-scale mapping, this paper
focuses on transferring such concepts into information form.
By exploiting the conditional independence property of the
Gaussian Markov Random Field (GMRF) models, we propose
a submapping approach to build a nearly optimal global 2.5D
map. In the proposed approach data is fused by first fitting
a GMRF to one sensor dataset; then conditional independent
submaps are inferred using this model and updated individually
with new data arrives. Finally, the information is propagated
from submap to submap to later recover the fully updated map.
This is efficiently achieved by exploiting the inherent structure
of the GMRF, fusion and propagation all in information form.
The key contribution of this paper is the derivation of the
algorithm to optimally propagate information through submaps
by only updating the common parts between submaps. Our
results show the proposed method reduces the computational
complexity of the full mapping process while maintaining the
accuracy. The performance is evaluated on synthetic data from
the Canadian Digital Elevation Data.

I. INTRODUCTION

2.5D maps (occupancy, elevation, etc.) are compact rep-
resentations of the environment. Although 3D maps can
represent the environment more accurately, 2.5D maps are
faster to access, require much less storage space and are suit-
able for navigation. This paper focuses on large-scale/high-
resolution 2.5D mapping. One of the main challenges is
how to fuse data at variable resolutions while incorporating
sensor noise and data correlation in a statistically sound
and computationally efficient way during both inference and
fusion process.

The inherent structure of the environment captured by
the sensor data could either be modelled in a covariance
based approach - Gaussian Process (GP), as per our previous
work [1], or an information matrix (inverse covariance) based
method - Gaussian Markov Random Fields (GMRF), as per
[2]. Spatial correlation is then encoded either in a semi-dense
covariance matrix or in a sparse information matrix.

GP [3] is a powerful non-parametric Bayesian method.
Unfortunately, its non-parametric nature causes high com-
putations for large data sets. To build high-resolution maps,
previously we split the whole map into conditionally inde-
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pendent (CI) submaps based on data correlation, as per [4].
However, some correlation needs to be thrown away.

GMRF [5] has both the excellent analytical properties of
the Gaussian distribution and the computational superiority
due to its close link with numerical methods for sparse
matrices. In [2], we combine GMRF model with Bayesian
fusion to achieve a computation gain, by using numerical
methods induced by the sparse information matrix. However,
recovery of mean estimates and variances of the full map can
incur in high computational complexity.

This paper speeds up [2] by adapting the covariance-
form CI submapping strategy of [4] to information form.
The motivation comes from that for the Gaussian distributed
variables, there is a direct mapping between the sparse
structure of the information matrix and the CI elements.
The main contribution of this paper is, therefore, the closed-
form solution to propagate information between CI submaps
after fusion, all in information form. In this way there is a
substantial reduction in computation and memory complexity
for scalability. Moreover, recovering the mean and covariance
for the whole map can be done independently per submap
without incurring in any approximation. The proposed ap-
proach is applied to the scenario of high-resolution elevation
mapping using synthetic data from Canadian Digital Eleva-
tion Data [6]. We evaluate the ability to fuse multi-resolution
noisy data and the computational advantages.

The paper is organised as follows. Section II discusses
some related works. Section III provides an overview of
the proposed approach. Section IV reviews our previous
work about GMRF for global mapping, and Section V
introduces the information-form CI submapping approach.
The experimental validation is presented in Section VI. The
conclusion and plans are discussed in Section VII.

II. RELATED WORK

The problem of estimating probabilistic 2.5D maps have
been extensively studied in the literature [7]. For example, [8]
builds elevation maps and uses a scatter matrix to represent
the local geometric uncertainty. In [9] multiple sensors’
measurements are fused by using the sum of weighted
variances of the uncorrelated data.

Instead of modelling each sample individually, GP charac-
terises the spatial correlation via the covariance function [3].
Specifically, [10] adopts GP regression for terrain mapping
and shows GP could handle the incompleteness of data by
considering the correlation. In [11], data fusion in a GP
framework is performed by considering data from differ-
ent sensors as noisy samples of a regular GP. However,



such approach scales cubically in the total amount of data.
These works show that GP could generate a multi-resolution
representation that incorporates and manages uncertainty in
a statistically sound way and handles spatial correlation
between data in an appropriate manner.

GP’s high cost, O(N3) for training and O(N2M) for test-
ing1, has hindered exact inference for large-scale data. Var-
ious approximations have been developed to accommodate
big N [12]. As an illustration, [10] uses a kd-tree to search for
nearest training data of a query position but requires to build
a new covariance matrix for each test position. Bayesian
Committee Machine (BCM) [13] improves on independent
local GPs by averaging the predictive inference of multiple
GP experts, assuming the training subsets are conditionally
independent given the test points. However BCM is a purely
predictive approximation. Meanwhile, to account for big M it
is common to use divide-and-conquer strategy. For instance,
[14] divides both the training and test sets into subsets before
applying local GPs. Some disadvantages include that the
correlations between submaps are ignored, and information
are used far more than once.

GMRF is discrete domain GP equipped with the Markov
property. When the Markov model is fully connected, it is
the Gaussian Process Random Field (GPRF) [15], which
approximates the global GP by coupling local GPs via
pairwise potential functions. But it takes in total O(N2m)
for training, with local subset of maximal size of m. In
the spatial statistic literature, [16] links the Matérn GP
with the GMRF in a stochastic partial differential equation
(SPDE) approach. The information matrix, generally used
to parametrise GMRF, could be built in such a way that
closely approximates the covariance matrix. The idea is to
model the continuous domain as a Matérn GP, while doing
all computations using the corresponding GMRF efficiently
owing to the sparse information matrix.

Bayesian fusion lies in the core of probabilistic fusion. It
computes the posterior probability distribution/density of the
state given the set of measurements and the prior distribution.
New sensor observations could be fused each time and update
the probability density of the state estimates. When using
Gaussian distributions and linear models, Bayesian fusion
has an analytical solution that is optimal. Instead of regarding
the individual variance of each sample, we show in [1] that
incorporating the data correlation within Bayesian fusion
facilitates to handle the incompleteness and inconsistency
of multi-modal data. Nevertheless, the correlated Bayesian
fusion quickly becomes intractable for large data sets, due
to factorising the dense covariance matrix. One of the known
solutions for the Simultaneous Mapping and Localisation
(SLAM) problem is based on submapping algorithms, where
in most cases independent submaps are considered. However,
independent submaps ignore the correlations between each
other producing a loose approximate solution. In [4], we
borrow the idea of CI submaps from [17] and partition the
GP predicted prior into CI submaps based on the length-scale

1N and M are the number of training and test points

hyperparameter of the GP. We then conduct the covariance-
form Bayesian fusion at the submap level. After building
all submaps, the cross-correlation propagates through all
submaps to obtain an updated global map.

Noteworthy, Bayesian fusion is ”cheap” in information
form [18]. Extensive examples in SLAM [19] and multi-
sensor data fusion [20] show that fusion in information
form is more efficient than its dual as only requires an
addition operation. However, it is often costly to recover the
state estimate (mean and variance), unless the information
matrix is sparse. In [19], the sparse information matrix is
maintained by using an undirected graph with local relative
constraints (edges) between pairs of nearby points, which is
a GMRF [21].

III. APPROACH OVERVIEW

The approach presented here considers information-form
Bayesian fusion for CI submapping. First, we learn a GMRF
model from a single source. Then to build the high-resolution
map, we use the trained GMRF model to predict submaps
that are conditionally independent, i.e., an overlapping re-
gion between consecutive submaps exists. Each submap is
represented by an information vector and an information
matrix that depicts the dependencies amongst grid locations.
The fusion step then occurs at the submap level. Finally,
cross-correlation information needs to be propagated to the
information vector and matrix.

Specifically, let Ψ1 = {(x1,y1) ,(x2,y2) , ...,(xn,yn)} be a
dataset which contains n point-referenced measurements yi ∈
Y observed at the location xi ∈ X 2. Ψ1 is taken from
a latent process yi = ξi + εi, where the underlying state
ξi = ξ (xi) ∈ ξξξ , and ξξξ is Gaussian distributed. ε = {εi}N

i=1,
and εi =N (0,σ2

ε ). GMRF is used to infer the distribution of
ξξξ from Ψ1 and we get p(ξξξ |X ,Ψ1). To handle a big amount
of X∗, we divide X∗ into CI regions {X∗si

}r
i=1. X∗s1:sr ∈ X∗,

where r is the total number of submaps. X∗s1
∩X∗s2

6= 0, i.e.
consecutive regions have an overlapping part. Note that the
size of each region is directly derived based on the blocks
of the information matrix of the GMRF. Then GMRF is
used to predict the distribution of each submap, denoted as
p
(
ξξξ si
|X∗si

)
= N −1(ηηηsi

,Qsi)
3. This prior map gives us the

ability to increase or decrease map resolution.
Given another dataset Ψ2 = {(x1,z1) ,(x2,z2) , ...,(xk,zk)},

with k sensor readings zi measured from xi ∈ X∗ locations.
zzz = Hξξξ +R, H is the observation matrix and R is a diagonal
matrix representing the iid Gaussian noise ω = N (0,σ2

z ).
Each submap density p(zzzsi |ξξξ si

,X∗si
) could be obtained via

marginalisation from the whole map.
It is then straightforward to use Ψ2 to update the prior

submap. By applying a maximum a posteriori estimator
we get the posterior submap {N −1(ηηη+

si
,Q+

si
)}r

i=1 based on
Bayes’ rule p(ξξξ si

|zsi ,X
∗
si
) ∝ p(ξξξ si

|X∗si
)p(zsi |ξξξ si

,X∗si
). This is

2We assume measurements’ global locations are known and accurate.
3 p(ξξξ si

|X∗si
) denotes p(ξξξ si

|X∗si
,Ψ1) for short. N −1 shows the Gaussian in

information form; let p(ξξξ si
|X∗si

) =N (µµµsi
,Σsi ), then Qsi = Σ−1

si
, ηηηsi

=Qsi µµµ .



correlated Bayesian fusion because by incorporating the de-
pendencies encoded in Qsi during fusion, one single measure-
ment could update all its neighbours, compared with standard
point-to-point Bayesian fusion where Qsi is diagonal.

The next step is correlation propagation, i.e., to propagate
the influence of new observations backwards to all submaps.
This method is based on the CI property between submaps.

Finally, the global estimates of the mean state vector
and the variances can be efficiently recovered within each
submap. Note that there is no need to factorise the global
information matrix for recovery.

IV. GMRF FOR FUSION IN INFORMATION FORM

A GMRF is defined on a set of discrete sites connected
by a graph G . ξξξ is a GMRF with reference to G with mean
µµµ and information matrix Q if its pdf is in the below form:

p(ξξξ ) = (2π)−n/2|Q|1/2exp
{
−1

2
(ξξξ −µµµ)>Q(ξξξ −µµµ)

}
(1)

where Q encodes the CI property: Qi j = 0 if and only if ξi
and ξ j are conditionally independent [22]. The continuously
indexed GMRF [16] closely approximates the Matérn GP [3].
Q is parameterised based on its direct link to the stochastic
partial differential equation (SPDE).

We train the GMRF model on Ψ1, and then predict the
map p(ξξξ |X∗) = N −1(ηηη ,Q) for query points X∗, where

ηηη = Q(X∗,X)yyy (2a)
Q = Q(X∗,X∗)+Qε . (2b)

Qε is a diagonal matrix with diagonal values to be (σ2
ε )
−1.

For fusion at the global level, we update the prior map
(2) with observations from Ψ2 based on Bayes rule, and the
posterior map p(ξξξ |z,X∗) = N −1(ηηη+,Q+) is

ηηη
+ = ηηη +H>Qzz (3a)

Q+ = Q+H>QzH . (3b)

H is the observation matrix, which selects part of state ξξξ

that is observed by z. Qz is a diagonal matrix with diagonal
values to be (σ2

z )
−1.

We then solve a sparse linear system Q+µµµ = ηηη+ to get µµµ .
Q+ will be re-ordered before Cholesky factorisation Q+ =
LLT . Then we solve two triangular systems. For xxxi ∈ R2, it
takes at least O(M3/2) to re-order the M×M matrix Q+, and
the re-ordered Cholesky factor at least has O(MlogM) fill-
ins [2]. Therefore, considering all the correlations within one
sparse information matrix will become impractical when we
aim at high-resolution maps. This is the reason why in this
work we up to split into submaps as explained in Section V.

V. CI SUBMAPPING

A. Global dependencies
We now explain the global dependence using the example

in Fig. 1. For i 6= j, submap si is correlated with submap
s j; accordingly, the covariance matrix is dense. By contrast,
for i 6= j, si and s j are conditionally independent given the
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Fig. 1: Bayesian networks and probabilistic depenencies. ξξξ A, . . . ,ξξξ Z repre-
sent a set of components A, . . . ,Z of the state at some positions in the 2.5D
map, respectively. za, . . . ,zz denotes the set of sensor measurements related
to these positions. s1, . . . ,sr denote submaps. Two consecutive submaps
contain two sets of components that share a common part.

rest of submaps4; hence, Qsi,s j = 0 in the information matrix
Q. Consequently, Q has most of the elements being zero.
The only non-zero elements are j = i− 1, i, i + 1, namely
Q is a block tridiagonal matrix. This shows that while the
covariance matrix models the independence of variables, the
information matrix models the conditional independence;
indeed, the CI property is naturally reflected in the sparse
pattern of the information matrix.

Fig.2(a) gives a schematic view of Q. Surely, there is
no need to store or compute elements known to be zero.
Although Q is sparse, computations involving the whole Q
can be expensive (see Section IV). Ideally, we would do all
computations at submap-level, while being able to recover
the optimal global map. However, we could not directly adapt
the approach in Section IV to submaps for two reasons: (1)
submap-level fusion confines new information zzzsi within one
submap si; (2) spatial correlations between Xsi and Xs j , where
i 6= j, are lost during GMRF prediction. These problems
also emerge in the covariance-form CI submapping method
[4], nevertheless, they can be solved via the correlation
propagation algorithm presented in the following section.

B. Local dependencies and CI submapping

Without loss of generality, we will take two submaps s1
and s2 as an illustration to explain the proposed correlation
propagation algorithm. We assume s1 and s2 together form
the full map. Let the state vector for each submap be ξξξ s1

=
[ξξξ a,ξξξ b] and ξξξ s2

= [ξξξ b,ξξξ c].
First, the prior submaps p(ξξξ s1

|X∗s1
) = N −1(ηηηs1

,Qs1) and
p(ξξξ s2

|X∗s2
) = N −1(ηηηs2

,Qs2) are predicted by the learned
GMRF model. Then, each prior submap is updated with the
observations zzzs1 = zzza and zzzs2 = [zzzb,zzzc] using the maximum
a posteriori estimator. Note that to avoid double counting
information, only the non-common part of each set of
measurements is used to update each submap, except for last
submap where both are incorporated. We denote the posterior
submaps p(ξξξ s1

|zs1 ,X
∗
s1
) and p(ξξξ s2

|zs1 ,X
∗
s2
) as5

p(ξξξ A,ξξξ B|zzzs1) = N −1
([

η̂ηη
a
A

η̂ηη
a
B

]
,

[
Qa

AA Qa
AB

Qa
BA Qa

BB

])
(4)

p(ξξξ B,ξξξC|zzzs2) = N −1

([
η̂ηη

bc
B

η̂ηη
bc
C

]
,

[
Qbc

BB Qbc
BC

Qbc
CB Qbc

CC

])
, (5)

4This is precisely the same independence as the pairwise Markov inde-
pendence [22].

5 p(ξξξ A,ξξξ B|zs1 ) denotes p(ξξξ A,ξξξ B|X∗s1
,zs1 ) for short; and so on.
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Fig. 2: Schematic representation of the entries of the (a) information matrix
and (b) covariance matrix during CI submapping [4]. The blue areas show
the non-zeros entries in our information matrix. The yellow areas are the
extra non-zero entries that need to be computed during [4].

where the superscript indicates the set of observations that
have been incorporated after Bayesian fusion, and the sub-
script represents the state components in submaps.

Now our goal is to recover the optimal joint distribution6:

p(ξξξ A,ξξξ B,ξξξC|zzzs1 ,zzzs2)

=N −1


η̂ηη

abc
A

η̂ηη
abc
B

η̂ηη
abc
C

,
Qabc

AA Qabc
AB 0

Qabc
BA Qabc

BB Qabc
BC

0 Qabc
CB Qabc

CC


 .

(6)

Qabc
AC and Qabc

CA are zero based on local CI property:

ξξξ A,zzzA ⊥ ξξξC,zzzB,zzzC|ξξξ B. (7)

This is because the shared part ξξξ B is a separating subset for
s1 and s2. Given ξξξ B, s1 and s2 do not carry any additional
information about each other.

To couple s1 and s2 after fusion, the new information zzzs2
need to propagate to s1. The correlation propagation algo-
rithm is obtained following the deduction in the Appendix.
Basically, this algorithm is obtained using the marginalisa-
tion and conditioning operations for Gaussian distributions
and the CI property p(ξξξ A|ξξξ B,ξξξC,za,zb,zc) = p(ξξξ A|ξξξ B,za)
and p(ξξξC|ξξξ A,ξξξ B,za,zb,zc) = p(ξξξC|ξξξ B,zb,zc). Here we only
show the conclusion:

1: η̂ηη
abc
B = η̂ηη

bc
B + Qa

BA(Q
a
AA)
−1η̂ηη

a
A; Qabc

BB = Qbc
BB +

Qa
BA(Q

a
AA)
−1Qa

AB;
2: η̂ηη

abc
A = η̂ηη

a
A; Qabc

AA = Qa
AA; Qabc

AB = Qa
AB; Qabc

BC = Qbc
BC;

η̂ηη
abc
C = η̂ηη

bc
C ; Qabc

CC = Qbc
CC.

Note that only the information vector and matrix of the
common elements between consecutive submaps are required
to be re-computed. On the contrary, both the non-overlapping
and the cross-correlated parts need to be updated in its dual
form [4], which uses the estimation difference in common
components to correct the state and thus enforcing the cross-
correlation backwards. Generally, each submap could be
corrected sequentially. A schematic view is shown in Fig.2.

C. Map recovery

After correcting all submaps, one can recover the global
map in covariance form. Note that because of the global
CI dependence (see Section V-A), there is no need to solve

6Note the information matrix of local map p(ξξξ B,ξξξC|zzzs1 ,zzzs2 ) is not
identical to the corresponding block in the global map p(ξξξ A,ξξξ B,ξξξC|zzzs1 ,zzzs2 ).
Although it is true in covariance form.

for the full map, and the recovery takes place locally. This
allows opportunities for parallelisation. For each updated
submap {η̂ηη ,Q}, the mean and variance are recovered us-
ing the method proposed in [23], which requires Cholesky
factorisation. To reduce fill-ins in the Cholesky factor, we
use the bandwidth reduction method [24] to re-order Q since
we have long and thin graphs for each submap. Otherwise
nested dissection re-ordering [25] could be employed. In
2.5D mapping, band re-ordering requires O(N2) flops and
nested dissection takes O(N3/2), N is the size of ηηη . After
reordering, each local information matrix is factorised Q =
LLT , which typically consumes the most memory and time.
Nonetheless, at the submap level, we have a small and re-
ordered Q which can be factorised in O(N3/2). After that,
we obtain L which inherits the non-zero pattern from Q.
Then, we solve for µµµ using the forwards and backwards
substitutions. For bandwidth L with a few non-zero entries
far-off the diagonal, recovery is done in O(N) using the
method presented in [26].

VI. EXPERIMENT RESULTS

We evaluate the ability of three former methods and
the proposed approach to generate accurate high-resolution
elevation maps, via Bayesian fusion of synthetic terrain data
from different resolutions.

A. Benchmarking methods

CGM (optimal) - Covariance-form Global Mapping [1]:
we model Ψ1 via a Matérn GP, and then use this GP to
predict the high-resolution map, which is then fused with
Ψ2. The spatial correlation is incorporated via the covariance
matrix. We regard this method as optimal in the sense that
it considers all the cross-correlations.

IGM - Information-form Global Mapping [2]: we model
Ψ1 via the continuously indexed GMRF, and then use GMRF
to predict a high-resolution map, which is later fused with
Ψ2. The spatial correlation is incorporated in the sparse
information matrix.

CCIS - Covariance-form CI Submapping [4]: we model
Ψ1 via a Matérn GP, and then use this GP to predict each
submap. The predicted submaps are sequentially fused with
disjoint observations from Ψ2. Finally, we will propagate
information to other submaps to obtain the global map.

B. Dataset

A challenging scenario is simulated with data incomplete-
ness, high uncertainty and inconsistency. Synthetic elevation
data is generated from Canadian Digital Elevation Data
(CDED) [6] in a similar manner as in [27]. CDED consists
of the ground elevations at regularly spaced intervals. We
randomly choose one map which covers the area of −116 to
−114◦ longitude and 56 to 57◦ latitude. There are 9608×
4804 grid cells in this map, and cell coverage is 23m×23m.
The elevation values range between [450m,830m].

We first down-sample the original map into a 100× 200
grid map, which is regarded as groundtruth (GT). To get Ψ1,
we randomly sample 1476 points from the original map and



(a) Groundtruth (GT) (b) Ψ1 data points in 3D view (c) Ψ2 data points in 3D view

Fig. 3: Groundtruth and two synthetic datsets.

set noise level to be σε = 45.6m (12% of the elevation range).
To obtain Ψ2, we randomly sample 1960 points from the
original map and set the noise level to be σz = 11.4m (3% of
the elevation range). Therefore we obtain two heterogeneous,
noisy and sometimes inconsistent datasets.

2.5D and 3D plots of GT, Ψ1 and Ψ2 are shown in Fig.3.
Elevation values are shown in colour. In 2.5D plots, the
vertical axis corresponds to the latitude and horizontal axis
is the longitude. In 3D plots, we enlarge the axis ratio of the
3rd dimension to make the elevation change visible.

C. Evaluation

Experimental results are shown in Figures 4, 5, 6 and 7.
For simplicity, we ignore the axis labels. The figures show
the correlation propagation, either in covariance or infor-
mation form, correct the maps which closely approximates
the optimal global solution. Both GP and GMRF, which
are trained using only 0.0032% of the original map, could
correctly model the global trend. GP includes all correlations
resulting in a smooth map. GMRF is conservative in the
prediction, therefore the uncertainty is bigger than the GP
as shown in the figure. CGM posterior map Fig.4(c) varies
smoothly, while IGM depicts local variations. Fig.5(c) clearly
shows the bottom-right peak and mid-left valley. As expected
the proposed method approximates quite well IGM, but with
substantial gain in speed as shown in Table I.

Table I compares the computational complexity of all al-
gorithms. The proposed method shows significant advantages
over all others. It speeds up IGM by exploiting the GMRF
properties and CI submaps. It is usually faster than CCIS and
CGM which involve factorising the dense covariance matrix.

TABLE I: Computational Complexity of Each Step

Learning Prediction Bayesian
Fusion

Reordering
+ Recovery

CGM O(N3) O(N2M) O(M3) /
IGM O(N3/2) O(M) O(M) O(M2 +M)
CCIS O(N3) O(N2m) O(Mm2) /

Our method O(N3/2) O(m) O(M) O(m3/2 +m)

N, M and m are the size of training data, test data, and the submap,
receptively. m � M. For high-resolution maps, N / M. Our approach
allows for parallel computation for submaps prediction, re-ordering and
recovery. Bandwidth reduction permutation method is used in IGM.

Table II quantifies the results in terms of Root Mean
Squared Error (RMSE). The average and standard deviation
of the absolute RMSE of a 5-runs Monte Carlo Simulation
for all methods is presented in this table. The accuracy ob-
tained by our approach is comparable with IGM. Moreover,

as expected, the GP based-methods are more accurate than
both GMRFs. The table also shows clearly that the correla-
tion propagation step greatly improves the final results.

TABLE II: RMSE ± std

CGM IGM CCIS Our
method

Prior map 20.61±0.93 26.67±0.96 15.49±0.94 19.31±0.98
Final map 9.36±0.14 12.48±0.32 10.65±0.20 13.92±0.43

The unit is metre (m). RMSE for dataset Ψ1 is 46.2m; for Ψ2 is 7.7m. For
CCIS and our method, ”prior map” refers to submap-level fusion results.

VII. CONCLUSION AND FUTURE WORK

This paper proposes an efficient information-form CI
submapping method via fusing multi-modal uncertain data
in a spatially correlated and statistically sound way. GMRF,
when combined with CI property, significantly accelerates
the submapping albeit closely approximates the optimal
global solution. The new information can be propagated
to all submaps to correct the whole map without loss of
information. Almost all computations are done at a local
level (submaps) and thus efficiently.

A key finding is that in covariance form, the information
propagated from submap to submap uses the estimation dif-
ference in the overlapping areas between submaps to correct
the non-overlapping and the cross-correlated areas [4]. While
in information form, only the overlapping areas need to be
corrected thanks to the CI property.

Results on a public elevation map datasets show that, when
compared with three benchmark approaches, the presented
approach exhibits considerable computational gain while
maintaining competitive accuracy, making it appealing for
fast large-scale 2.5D mapping.

Further plans include extending this work for online in-
cremental submapping, and adapting it to situations when
non-consecutive submaps overlap.
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APPENDIX
CORRELATION PROPAGATION

This appendix deduces the proposed information-form
correlation propagation algorithm.

Given the first submap (4) and the second submap (5), the
goal is to obtain the optimal global map (6).

Based on CI property, as in (7), we get

p(ξξξ A|ξξξ B,ξξξC,zzza,zzzb,zzzc) = p(ξξξ A|ξξξ B,zzza) (8)

p(ξξξC|ξξξ A,ξξξ B,zzza,zzzb,zzzc) = p(ξξξC|ξξξ B,zzzb,zzzc) (9)

In (8), the left term can be obtained from the global map
(6) by first marginalising out ξξξC and then conditioning on
ξξξ B. First, we marginalise out ξξξC and we get

p(ξξξ A,ξξξ B|zzzs1 ,zzzs2), N −1(η̂ηη∗,abc
AB ,Q∗,abc

AB ), (10)

where

η̂ηη
∗,abc
AB =

[
η̂ηη

abc
A

η̂ηη
abc
B

]
−
[

0
Qabc

BC

]
(Qabc

CC )−1
η̂ηη

abc
C

=

[
η̂ηη

abc
A

η̂ηη
abc
B −Qabc

BC (Qabc
CC )−1η̂ηη

abc
C

]
,

(11a)

Q∗,abc
AB =

[
Qabc

AA Qabc
AB

Qabc
BA Qabc

BB

]
−
[

0
Qabc

BC

]
(Qabc

CC )−1 [0 Qabc
CB

]
=

[
Qabc

AA Qabc
AB

Qabc
BA Qabc

BB −Qabc
BC (Qabc

CC )−1Qabc
CB

]
.

(11b)

Then, when conditioning (10) on ξξξ B, we get

p(ξξξ A|ξξξ B,zzzs1 ,zzzs2) = N −1(η̂ηηabc
A −Qabc

AB ξξξ B,Q
abc
AA ). (12)

Meanwhile, the right term p(ξξξ A|ξξξ B,zzzs1) in (8) can be ob-
tained from the first submap (4) by conditioning on ξξξ B

p(ξξξ A|ξξξ B,zzzs1) = N −1(η̂ηηa
A−Qa

ABξξξ B,Q
a
AA). (13)

According to CI property (8), (12) equals to (13), thus

η̂ηη
abc
A −Qabc

AB ξξξ B = η̂ηη
a
A−Qa

ABξξξ B (14a)

Qabc
AA = Qa

AA. (14b)

Besides, since ξξξ A and zzzs2 are conditionally independent

η̂ηη
abc
A = η̂ηη

a
A. (15)

By substituting (15) into (14a), we get:

Qabc
AB = Qa

AB. (16)

In (9), the left term can be obtained from the global map
by first marginalising out ξξξ A and then conditioning on ξξξ B.
We first marginalise out ξξξ A and get

p(ξξξ B,ξξξC|zzzs1 ,zzzs2), N −1(η̂ηη∗,abc
BC ,Q∗,abc

BC ), (17)

where

η̂ηη
∗,abc
BC =

[
η̂ηη

abc
B

η̂ηη
abc
C

]
−
[

Qabc
BA
0

]
(Qabc

AA )
−1

η̂ηη
abc
A

=

[
η̂ηη

abc
B −Qabc

BA (Qabc
AA )

−1η̂ηη
abc
A

η̂ηη
abc
C

] (18a)

Q∗,abc
BC =

[
Qabc

BB Qabc
BC

Qabc
CB Qabc

CC

]
−
[

Qabc
BA
0

]
(Qabc

AA )
−1 [Qabc

AB 0
]

=

[
Qabc

BB −Qabc
BA (Qabc

AA )
−1Qabc

AB Qabc
BC

Qabc
CB Qabc

CC

] .

(18b)

When (17) is conditioned on ξξξ B,

p(ξξξC|ξξξ B,zzzs1 ,zzzs2) = N −1(η̂ηηabc
C −Qabc

CB ξξξ B,Q
abc
CC ). (19)

Meanwhile, the right term in (9) could be computed from
(5) by conditioning on ξξξ B that

p(ξξξC|ξξξ B,zzzs2) = N −1(η̂ηηbc
C −Qbc

CBξξξ B,Q
bc
CC). (20)

According to CI property (9), (19) is equal to (20), thus

η̂ηη
abc
C −Qabc

CB ξξξ B = η̂ηη
bc
C −Qbc

CBξξξ B (21a)

Qabc
CC = Qbc

CC. (21b)

In SLAM literature, (17) and (5) are equal if s2 is ini-
tialised with the common elements ξξξ B|zzza from s1. However,
we could not initialise s2 in this way because we do not have
a transition model. Therefore we make the only assumption
in this approach that they two are equal, and this assumption
makes the global map sub-optimal. Then we obtain[

η̂ηη
bc
B

η̂ηη
bc
C

]
=

[
η̂ηη

abc
B −Qabc

BA (Qabc
AA )

−1η̂ηη
abc
A

η̂ηη
abc
C

]
(22a)

[
Qbc

BB Qbc
BC

Qbc
CB Qbc

CC

]
=

[
Qabc

BB −Qabc
BA (Qabc

AA )
−1Qabc

AB Qabc
BC

Qabc
CB Qabc

CC

]
. (22b)

Then by comparing each entries in (22a) and (22b), we get

η̂ηη
abc
B = η̂ηη

bc
B +Qabc

BA (Qabc
AA )

−1
η̂ηη

abc
A (23a)

Qabc
BB = Qbc

BB +Qabc
BA (Qabc

AA )
−1Qabc

AB . (23b)

When substituting (15) and (16) into (23a) and (23b), we get

η̂ηη
abc
B = η̂ηη

bc
B +Qa

BA(Q
a
AA)
−1

η̂ηη
a
A (24a)

Qabc
BB = Qbc

BB +Qa
BA(Q

a
AA)
−1Qa

AB. (24b)

In conclusion, given the former submap, and the current
submap that is optimal in the sense that it contains all the
currently available observations, we could obtain the optimal
global map using below algorithm

η̂ηη
abc
A = η̂ηη

a
A (25a)

η̂ηη
abc
B = η̂ηη
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B +Qa

BA(Q
a
AA)
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η̂ηη
a
A (25b)

η̂ηη
abc
C = η̂ηη

bc
C (25c)

Qabc
AA = Qa

AA (25d)

Qabc
AB = Qa

AB (25e)

Qabc
BB = Qbc

BB +Qa
BA(Q

a
AA)
−1Qa

AB (25f)

Qabc
BC = Qbc

BC (25g)

Qabc
CC = Qbc

CC. (25h)




