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Path Integral Guided Policy Search

Yevgen Chebotar!  Mrinal Kalakrishnan?

Abstract— We present a policy search method for learn-
ing complex feedback control policies that map from high-
dimensional sensory inputs to motor torques, for manipulation
tasks with discontinuous contact dynamics. We build on a prior
technique called guided policy search (GPS), which iteratively
optimizes a set of local policies for specific instances of a task,
and uses these to train a complex, high-dimensional global
policy that generalizes across task instances. We extend GPS
in the following ways: (1) we propose the use of a model-free
local optimizer based on path integral stochastic optimal control
(PI?), which enables us to learn local policies for tasks with
highly discontinuous contact dynamics; and (2) we enable GPS
to train on a new set of task instances in every iteration by using
on-policy sampling: this increases the diversity of the instances
that the policy is trained on, and is crucial for achieving good
generalization. We show that these contributions enable us to
learn deep neural network policies that can directly perform
torque control from visual input. We validate the method on a
challenging door opening task and a pick-and-place task, and
we demonstrate that our approach substantially outperforms
the prior LQR-based local policy optimizer on these tasks.
Furthermore, we show that on-policy sampling significantly
increases the generalization ability of these policies.

I. INTRODUCTION

Reinforcement learning (RL) and policy search methods
have shown considerable promise for enabling robots to au-
tomatically learn a wide range of complex skills [1} [2, 3] 4],
and recent results in deep reinforcement learning suggest that
this capability can be extended to learn nonlinear policies
that integrate complex sensory information and dynamically
choose diverse and sophisticated control strategies [l [6].
However, applying direct deep reinforcement learning to
real-world robotic tasks has proven challenging due to the
high sample complexity of these methods. An alternative to
direct deep reinforcement learning is to use guided policy
search (GPS) methods, which use a set of local policies
optimized on specific instances of a task (such as different
positions of a target object) to train a global policy that
generalizes across instances [6]. In this setup, reinforcement
learning is used only to train simple local policies, while the
high-dimensional global policy, which might be represented
by a deep neural network, is only trained with simple and
scalable supervised learning methods.

The GPS framework can in principle use any learner to op-
timize the local policies. Prior implementations generally use
a model-based method with local time-varying linear models
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Fig. 1.
policy search algorithm. Door opening can handle variability in the door
pose, while the pick-and-place policy can handle various initial object poses.

Door opening and pick-and-place using our path integral guided

and a local policy optimization based on linear-quadratic
regulators (LQR) [6]. We find that this procedure fails to
optimize policies on tasks that involve complex contact
switching discontinuities, such as door opening or picking
and placing objects. In this paper, we present a method for
local policy optimization using policy improvement with path
integrals (PT?) [7], and demonstrate the integration of this
method into the GPS framework. We then enable GPS to
train on new task instances in every iteration by extending
the on-policy sampling approach proposed in recent work
on mirror descent guided policy search (MDGPS) [8]]. This
extension enables robots to continually learn and improve
policies on new task instances as they are experienced in the
world, rather than training on a fixed set of instances in every
iteration. This increases the diversity of experience and leads
to substantially improved generalization, as demonstrated in
our experimental evaluation.

We present real-world results for localizing and opening
a door, as well as localizing and grasping an object and
then placing it upright at a desired target location, shown in
Figure [I] Both tasks are initialized from demonstration and
learned with our proposed path integral guided policy search
algorithm, using deep visual features fed directly into the
neural network policy. Our experimental results demonstrate
that the use of stochastic local optimization with PI? enables
our method to handle the complex contact structure of
these tasks, and that the use of random instance sampling
from the global policy enables superior generalization, when
compared to prior guided policy search methods.

II. RELATED WORK

Policy search methods have been used in robotics for a
variety of tasks, such as manipulation [4, Ol [10], playing
table tennis [11] and ball-in-a-cup [3] games, regrasping
[12]], and locomotion [1, 2 [13]. Most of these works use
carefully designed, specialized policies that either employ
domain knowledge, or have a low number of parameters. It
has been empirically observed that training high-dimensional



policies, such as deep neural networks, becomes exceedingly
difficult with standard model-free policy search methods
[14]. Although deep reinforcement learning methods have
made considerable progress in this regard in recent years
[S, [15)], their high sample complexity has limited their
application to real-world robotic learning problems.

Guided policy search [16] (GPS) seeks to address this
challenge by decomposing policy search into trajectory
optimization and supervised learning of a general high-
dimensional policy. GPS was applied to various robotic tasks
[6, 117, [18]. However, the use of a model-based “teacher” to
supervise the policy has placed considerable limitations on
such methods. Most prior work has used LQR with fitted
local time-varying linear models as the teacher [17)], which
can handle unknown dynamics, but struggles with problems
that are inherently discontinuous, such as door opening: if the
robot misses the door handle, it is difficult for a smooth LQR-
based optimizer to understand how to improve the behavior.
We extend GPS to tasks with highly discontinuous dynamics
and non-differentiable costs by replacing the model-based
LQR supervisor with PI2, a model-free reinforcement learn-
ing algorithm based on stochastic optimal control [7].

PI?2 has been successfully used to learn parameters of
trajectory-centric policies such as dynamic movement prim-
itives [19] in grasping [20]], pick-and-place [21] and variable
impedance control tasks [22]. Compared to policy gradient
methods, PI? does not compute a gradient, which is often
sensitive to noise and large derivatives of the expected cost
[14]. In [23], PI? is used to learn force/torque profiles
for door opening and picking tasks to improve imperfect
kinesthetic demonstrations. The policy is represented as an
end-effector trajectory, and the motion is initialized from
demonstration. In contrast, we use PI? to learn feedforward
joint torque commands of time-varying linear-Gaussian con-
trollers. In [24]], the robot also learns a policy for the door
opening task initialized from demonstration. The training is
divided into analytically learning a high-dimensional pro-
jection of the policy using provided models and Bayesian
learning of a lower-dimensional projection for black-box
objectives, such as binary success outcome of the task. In
this work, we use the GPS framework to learn the high-
dimensional policies using PI? as the teacher, which can
also handle discontinuous cost functions. Furthermore, we
use the controls learned by PI? on several task instances (e.g.
several door positions) to supervise the training of a single
deep neural network policy that can succeed for various door
poses using visual input from the robot’s camera.

Stochastic policy search methods can be improved by
limiting the information loss between updates, by means of
a KL-divergence constraint [25]. In this work, we similarly
constrain the KL-divergence between PI?> updates, in a
framework similar to [26] and [27]]. In [28], the authors pro-
pose to learn high-dimensional sensor-based policies through
supervised learning using the relative entropy method to
reweight state-action samples of the policy. While the goal
of learning high-dimensional nonlinear policies is similar to
our work, we optimize the individual instance trajectories

separately, and then combine them into a single policy with
supervised learning. As shown in our simulated experimental
evaluation, this substantially improves the effectiveness of
the method and allows us to tackle more complex tasks. We
also extend guided policy search by choosing new random
instances at each iteration, based on the on-policy sampling
technique proposed in [8]], which substantially improves the
generalization of the resulting policy.

Our deep neural network policies directly use visual
features from the robot’s camera to perform the task. The
features are learned automatically on a pose detection proxy
task, using an improved version of the spatial feature points
architecture [6] based on convolutional neural networks
(CNNs) [29, 30]. In [31], visual and control layers of
a racing video game policy are learned separately using
neuroevolution. Using pre-trained visual features enables
efficient learning of smaller controllers with RL. In our
work, visual features are pre-trained based on object and
robot end-effector poses. By combining visual pre-training,
initialization from kinesthetic demonstrations, and global
policy sampling with PI?, we are able to learn complex vi-
suomotor behaviors for contact-rich tasks with discontinuous
dynamics, such as door opening and pick-and-place.

III. BACKGROUND

In this section, we provide background on guided policy
search (GPS) [17] and describe the general framework of
model-free stochastic trajectory optimization using policy
improvement with path integrals (PI?) [7], which serve as
the foundations for our algorithm.

A. Guided Policy Search

The goal of policy search methods is to optimize param-
eters 6 of a policy mp(us|xt), which defines a probability
distribution over robot actions u; conditioned on the system
state x; at each time step ¢ of a task execution. Let 7 =
(x1,u1,...,x7,ur) be a trajectory of states and actions.
Given a task cost function [(x;, u;), we define the trajectory
cost I(1) = Zthll(xt,ut). The policy optimization is
performed with respect to the expected cost of the policy:

J(0) = By, [I(7)] = / [T )pmy (),

where p.,(7) is the policy trajectory distribution given the
system dynamics p (X¢41|X¢, us):

T

Pro (T) = p(x1) Hp(xt+1|xt7ut)779(ut\xt)-

t=1
Standard policy gradient methods optimize J(6) directly
with respect to the parameters 6 by estimating the gradient
Vi J(6). The main disadvantage of this approach is that it
requires large amounts of policy samples and it is prone to
fall into poor local optima when learning high-dimensional
policies with a large number of parameters [14].

Guided policy search (GPS) introduces a two-step ap-
proach for learning high-dimensional policies by leveraging
advantages of trajectory optimization and supervised learn-
ing. Instead of directly learning the policy parameters with



reinforcement learning, a trajectory-centric algorithm is first
used to learn simple controllers p(u;|x;) for trajectories
with various initial conditions of the task. We refer to these
controllers as local policies. In this work, we employ time-
varying linear-Gaussian controllers of the form p(u:|x;) =
N(Kx; + k¢, C;) to represent these local policies.

After optimizing the local policies, the optimized controls
from these policies are used to create a training set for
learning a complex high-dimensional global policy in a
supervised manner. Hence, the final global policy generalizes
to the initial conditions of multiple local policies and can
contain thousands of parameters, which can be efficiently
learned with supervised learning. Furthermore, while trajec-
tory optimization might require the full state x; of the system
to be known, it is possible to only use the observations o
of the full state for training a global policy mp(u¢os). In
this way, the global policy can predict actions from raw
observations at test time [0].

Supervised training does not guarantee that the global
and local policies match as they might have different state
distributions. In this work, we build on MDGPS, which uses
a constrained formulation of the local policy objective [8]:

min B, [1(7)] s D (p() | mo(7)) < e

where Dy, (p(7)]| mo(7)) can be computed as:

T
Dy (p(m)| mo(7)) = Y Ep [Die (p(uelxo) | mo(uefx.))]

The MDGPS algorithm alternates between solving the con-
strained optimization with respect to the local policies p, and
minimizing the KL-divergence with respect to the parameters
of the global policy 6 by training the global policy on
samples from the local policies with supervised learning.

In prior GPS work, the local policies were learned by
iteratively fitting time-varying linear dynamics to data, and
then improving the local policies with a KL-constrained
variant of LQR. While this allows for rapid learning of
complex trajectories, the smooth LQR method performs
poorly in the presence of severe discontinuities. In this work,
we instead optimize the local policies using the model-free
P12 algorithm, which is described in the next section.

B. Policy Improvement with Path Integrals

PI? is a model-free RL algorithm based on stochastic
optimal control and statistical estimation theory. Its detailed
derivation can be found in [7]. We outline the method
below and describe its application to learning feedforward
commands of time-varying linear-Gaussian controllers.

The time-varying linear-Gaussian controllers we use to
represent the local policies are given by p(w|x;) =
N(Kix; + kq, Cy). They are parameterized by the feedback
gain matrix K, the feedforward controls k;, and the co-
variance C;. In this work, we employ PI? to learn only the
feedforward terms and covariances. After initialization, e.g.
from human demonstrations, the feedback part is kept fixed
throughout the optimization. In this manner, we can keep the
number of learned parameters relatively small and be able to
learn the local policies with a low number of policy samples.

Each iteration of PI? involves generating N samples by
running the current policy on the robot. After that, we
compute the cost-to-go S;; and probabilities P; ; for each
sample ¢ € 1... N and for each time step t:

T _LSM
Six=S(Tit) = Zl(xi,jaui,j)a Py =
=t

e n

N —15.]
dim1€ "

where [(x; j,u; ;) is the cost of sample ¢ at time j. The
probabilities follow from the Feynman-Kac theorem applied
to stochastic optimal control [7]. The intuition is that the
trajectories with lower costs receive higher probabilities, and
the policy distribution shifts towards a lower cost trajectory
region. The costs are scaled by 7, which can be interpreted
as the temperature of a soft-max distribution.

After computing the new probabilities P;;, the policy
is updated according to a weighted maximum-likelihood
estimate of the policy parameters, which are the means and
covariances of the sampled feedforward controls f{i,t:

N N
ke =Y Piikiy, Co=Y Pi(kiy—ki)(kiz —ki)"
i=1 i=1

Here, we adapt the approach described in [32] and update
the covariance matrices based on the sample probabilities.
This has the advantage of automatically determining the
exploration magnitude for each time step, instead of setting
it to a constant as in the original PI? derivation.

IV. PATH INTEGRAL GUIDED POLICY SEARCH

In this section, we first describe how to use PI? as the
local policy optimizer in guided policy search, and then
introduce global policy sampling as a way to train policies
on randomized task instances using raw observations. Finally,
we describe the neural network architecture used to represent
our visuomotor global policies and the pre-training procedure
that we use to learn visual features.

A. PP for Guided Policy Search

Using the time-varying linear-Gaussian representation of
the local policies makes it straightforward to incorporate P12
into the GPS framework from Section

In previous work [[17], the optimization of local policies
with LQR was constrained by the KL-divergence between the
old and updated trajectory distributions to ensure steady pol-
icy improvement. Similar types of constraints were proposed
in prior policy search work [25]]. When optimizing with P12,
we similarly want to limit the change of the policy and hence,
avoid sampling too far from unexplored policy regions to
gradually converge towards the optimal policy. The policy
update step can be controlled by varying the temperature
1 of the soft-max probabilities P;;. If the temperature is
too low, the policy might converge quickly to a suboptimal
solution. If 7 is too high, the policy will converge slowly and
the learning can require a large number of iterations. Prior
work set this parameter empirically [7].

In this work, we employ an approach similar to relative
entropy policy search (REPS) [25] to determine 7 based on
the bounded information loss between the old and updated
policies. For that, the optimization goal of the local policy



Algorithm 1 MDGPS with PI? and Global Policy Sampling

1: for iteration k € {1,...,K} do

2:  Generate samples D = {r;} by running noisy 7y on
each randomly sampled instance

3. Perform one step of optimization with PI? indepen-
dently on each instance:
min, E,[I(7)] s.t. Dip, (p(ug]xy)|| mo(ue|xe)) < e

4:  Train global policy with optimized controls using
supervised learning:
Ty < argming >, , Dxr (mo(ue|xi0) || p(uelxie))

5: end for

p(u¢|x;) is augmented with a KL-divergence constraint
against the old policy P (u:|x¢):

min By [I(7)] s.t. D (p (uelx) |7 (wefx)) < e,

where € is the maximum KL-divergence between the old and
new policies. The Lagrangian of this problem depends on 7:

Ly(p,n) = Epll()] + 1 [Dxw (p (wilx:) | 7 () — €]

We compute the temperatures 7, separately for each time
step by optimizing the dual function g(7,) with respect to
the cost-to-go of the policy samples:
N
1 _1g.
g(nt) = 1€ + i 10g N Zl |:€ nt Sz,t:| .

The derivation of the dual function follows [25]], but per-
formed at each time step independently as in [26].

By replacing P (us|x;) with the current global policy
mo(ut|x¢), we obtain the mirror gradient descent formulation
of GPS (MDGPS) [8]:

mpin E,[I(7)] s.t. Do (p (welxy) || mo (we]xy)) < e.

We can therefore use the same relative entropy optimization
procedure for 7 to limit deviation of the updated local policy
from the old global policy, which is also used in our global
policy sampling scheme as described in the next section.

B. Global Policy Sampling

In the standard GPS framework, the robot trajectories are
always sampled from the local policies. This has a limitation
of being constrained to a fixed set of task instances and initial
conditions for the entire learning process. However, if we use
PI? with a constraint against the previous global policy, we
in fact do not require a previous local policy for the same
instance, and can therefore sample new instances at each
iteration. This helps us to train global policies with a better
generalization to various task conditions.

The approach, summarized in Algorithm (1} is similar to
MDGPS and inherits its theoretical underpinnings. However,
unlike standard MDGPS, we sample new instances (e.g. new
poses of the door) at each iteration. We then perform a
number of rollouts for each instance using the global policy
mo(ut|os), with added noise. These samples are used to
perform a single optimization step with PI2, independently
for each instance. As we use samples from the global policy,
the optimization is now constrained against KL-divergence to
the old global policy and can be solved through optimization

of the temperature 7, as described in the previous section.
After performing one step of local policy optimization with
PI2, the updated controls are fed back into the global policy
with supervised learning. The covariance of the global policy
noise is updated by averaging the covariances of the local
policies at each iteration: Cr, =3, , Cp, +/(NT).

Our approach is different from direct policy gradient on
the parameters of the global policy. Although we sample
from a high-dimensional global policy, the optimization is
still performed in a lower-dimensional action space with a
trajectory-centric algorithm that can take advantage of the
local trajectory structure. Consequently, the global policy is
guided by this optimization with supervised learning.

C. Global Policy Initialization

It is important to note that, especially for real robot tasks,
it is often not safe or efficient to start with an uninitialized
or randomly initialized global policy, particularly when using
very general representations like neural networks. Therefore,
in our work we initialize the global policies by performing
several iterations of standard GPS with local policy sampling
using PI? on a fixed set of task instances. In this case, the
cost-to-go S; ¢ in PI? is augmented with a KL-divergence
penalty against the global policy as described in [6] (Ap-
pendix A), but the optimization is performed using the KL-
divergence constraint against the previous local policy. We
also initialize the local policies with kinesthetic teaching,
to provide the algorithm with the overall structure of the
task at the start of training. After initialization, the global
policy can already occasionally perform the task, but is often
overfitted to the initial task instances. By training further with
global policy sampling on random task instances, we can
greatly increase the generalization capability of the policy,
as demonstrated in our experimental evaluation.

D. Learning Visuomotor Policies

Our goal is to use the proposed path integral guided
policy search algorithm to learn policies for complex object
manipulation skills. Besides learning how to perform the
physical motions, these policies must also interpret visual
inputs to localize the objects of interest. To that end, we
use learned deep visual features as observations for the
policy. The visual features are produced by a convolutional
neural network, and the entire policy architecture, including
the visual features and the fully-connected motor control
layers, is shown in Figure[2] Our architecture resembles prior
work [6], with the visual features represented by feature
points produced via a spatial softmax applied to the last
convolutional response maps. Unlike prior work, our con-
volutional network includes pooling and skip connections,
which allows the visual features to incorporate information
at various scales: low-level, high-resolution, local features as
well as higher-level features with larger spatial context. This
serves to limit the amount of computation performed at high
resolutions while still generating high-resolution features,
enabling evaluation of this deep model at camera frame rates.
We train the network in two stages. First, the convolutional
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Fig. 2.

The architecture of our neural network policy. The input RGB image is passed through a 3x3 convolution with stride 2 to generate 16 features

at a lower resolution. The next 5 layers are 3x3 convolutions followed by 2x2 max-pooling, each of which output 32 features at successively reduced
resolutions and increased receptive field. The outputs of these 5 layers are recombined by passing each of them into a 1x1 convolution, converting them
to a size of 125x157 by using nearest-neighbor upscaling, and summation (similar to [33]). A final 1x1 convolution is used to generate 32 feature maps.
The spatial soft-argmax operator 6] computes the expected 2D image coordinates of each feature. A fully connected layer is used to compute the object
and robot pose from these expected 2D feature coordinates for pre-training the vision layers. The feature points for the current image are concatenated
with feature points from the image at the first timestep as well as the 33-dimensional robot state vector, before being passed through two fully connected

layers to produce the output joint torques.

layers are pre-trained with a proxy pose detection objective.
To create data for this pre-training phase, we collect camera
images while manually moving the object of interest (the
door or the bottle for the pick-and-place task) into vari-
ous poses, and automatically label each image by using
a geometry-based pose estimator based on the point pair
feature (PPF) algorithm [34]]. We also collect images of the
robot learning the task with PI? (without vision), and label
these images with the pose of the robot end-effector obtained
from forward kinematics. Each pose is represented as a 9-
DoF vector, containing the positions of three points rigidly
attached to the object (or robot), represented in the world
frame. The convolutional layers are trained using stochastic
gradient descent (SGD) with momentum to predict the end-
effector and object poses, using a standard Euclidean loss.
The fully connected layers of the network are then trained
using path integral guided policy search to produce the joint
torques, while the weights in the convolutional layers are
frozen. Since our model does not use memory, we include
the first camera image feature points in addition to the current
image to allow the policy to remember the location of the
object in case of occlusions by the arm. In future work, it
would be straightforward to also fine-tune the convolutional
layers end-to-end with guided policy search as in prior
work [6]], but we found that we could obtain satisfactory
performance on the door and pick-and-place tasks without
end-to-end training of the vision layers.

V. EXPERIMENTS

The first goal of our experiments is to compare the
performance of guided policy search with PI? to the previous
LQR-based variant on real robotic manipulation tasks with
discontinuous dynamics and non-differentiable costs. We
evaluate the algorithms on door opening and pick-and-place
tasks. The second goal is to evaluate the benefits of global
policy sampling, where new random instances (e.g. new door
poses) are chosen at each iteration. To that end, we com-

pare the generalization capabilities of policies trained with
and without resampling of new instances at each iteration.
Finally, we present simulated comparisons to evaluate the
design choices in our method, including the particular variant
of PI? proposed in this work.

A. Experimental setup

We use a lightweight 7-DoF robotic arm with a two finger
gripper, and a camera mounted behind the arm looking over
the shoulder (see Figure [3). The input to the policy consists
of monocular RGB images, with depth data used only for
ground truth pose detection during pre-training. The robot is
controlled at a frequency of 20Hz by directly sending torque
commands to all seven joints. We use different fingers for
the door opening and pick-and-place tasks.

1) Door opening: In the door opening task, the goal of
the robot is to open the door as depicted in Figure [3| on
the left. The cost is based on an IMU sensor attached to the
door handle. The desired IMU readings, which correspond to
a successfully opened door, are recorded during kinesthetic
teaching of the opening motion from human demonstration.
We additionally add joint velocity and control costs multi-
plied by a small constant to encourage smooth motions.

2) Pick-and-place: The goal of the pick-and-place task is
to pick up a bottle and place it upright at a goal position,
as shown in Figure [3] on the right. The cost is based on the
deviation of the final pose of the bottle from the goal pose.
We use object detection with PPF [34] to determine the final
pose to evaluate the cost. This pose is only used for cost
evaluation, and is not provided to the policy. The goal pose
is recorded during the human demonstration of the task. The
cost is based on the quadratic distance between three points
projected into the goal and final object pose transformations,
and we again add small joint velocity and control costs.

B. Single-instance comparisons

1) Door opening: We first evaluate how our method per-
forms on a single task instance (a single position of the door)



Fig. 3. Task setup and execution. Left: door opening task. Right: pick-and-place task. For both tasks, the pose of the object of interest (door or bottle) is
randomized, and the robot must perform the task using monocular camera images from the camera mounted over the robot’s shoulder.
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Fig. 4. Task adaptation success rates over the course of training with PI2
and LQR for single instances of door opening and pick-and-place tasks.
Each iteration consists of 10 trajectory samples.

without vision, so as to construct a controlled comparison
against prior work. After recording the door opening motion
from demonstration, the door is displaced by S5cm away from
the robot. The robot must adapt the demonstrated trajectory
to the new door position and recover the opening motion.
The linear-Gaussian policy has 100 time steps with torque
commands for each of the joints. We add control noise at
each of the time steps to start exploration around the initial
trajectory. The amount of the initial noise is set such that the
robot can touch the door handle at least 10% of the time,
since the only feedback about the success of the task comes
from the IMU readings on the door handle.

We compare the PI? variant of GPS to the more standard
LQR version [6] over 10 iterations, with 10 sampled tra-
jectories at each iteration. Figure ] shows the success rates
for opening the displaced door using LQR and PI2. In the
initial trials, the robot is able to either open the door once or
touch the door handle a few times. After the first two policy
updates, PI? could open the door in 50% of the samples, and
after three updates the door could be opened consistently.
LQR could not handle the non-linearity of the dynamics due
to the contacts with the door and discontinuity in the cost
function between moving and not moving the door handle.
This shows that the model-free PI? method is better suited for
tasks with intermittent contacts and non-differentiable costs.

2) Pick-and-place: In the pick-and-place task adaptation
experiment, the goal of the robot is to adapt the demonstrated
trajectory to a displaced and rotated object. The bottle is
displaced by Scm and rotated by 30 degrees from its demon-
strated position. The local policy consists of 200 time steps.
The initial noise is set such that the robot is able to grasp or
partially grasp the bottle at its new position at least 10% of
the time. Figure El shows performance of PI? on recovering
the pick-and-place behavior for the displaced bottle. We do
not compare this performance to LQR as our cost function
could not be modeled with a linear-quadratic approximation.

Fig. 5.

Robot RGB camera images used for controlling the robot. Top:
door opening task. Bottom: pick-and-place task.

The robot is able to achieve a 100% success rate at placing
the bottle upright at the target after 8 iterations. The learning
is slower than in the door task, and more exploration is
required to adapt the demonstration, since the robot has to
not only grasp the object but also place it into a stable
upright position to succeed. This is difficult, as the bottle
might rotate in hand during grasping, or might tip over when
the robot releases it at the target. Hence, both stages of the
task must be executed correctly in order to achieve success.
We noticed that the robot learned to grasp the bottle slightly
above its center of mass, which made stable placement easier.
Furthermore, this made the bottle rotate in the hand towards
a vertical orientation when placing it at the goal position.

3) Simulation: The goal of this experiment is to compare
the use of PI? with GPS and global policy sampling (called
PI-GPS), with an approach based on relative entropy policy
search (REPS) [25], wherein the global policy is directly
trained using the samples reweighted by their probabilities
P; 4 as in [28]), without first fitting a local policy. We also
evaluate a hybrid algorithm which uses PI? to optimize a
local policy, but reuses the per-sample probabilities P; ; as
weights for training the global policy (called PI-GPS-W). For
these evaluations, we simulate a 2-dimensional point mass
system with second order dynamics, where the task involves
moving the point mass from the start state to the goal. The
state space consists of positions and velocities (R*), and
the action space corresponds to accelerations (R?). We use
a fully connected neural network consisting of two hidden
layers of 40 units each with ReL.U activations as the global
policy. Each algorithm is tuned for optimal performance
using a grid search over hyperparameters.

The results of this experiment are shown in Figure [6] PI-
GPS achieves lower costs at convergence, and with fewer
samples. We also observe that PI-GPS-W and REPS have a
tendency to go unstable without achieving convergence when
training complex neural network policies. We found that this
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Fig. 6. Training curves for PI-GPS, PI-GPS-W, and REPS on a simulated
point mass task. Left: Runs chosen based on lowest mean cost at iteration
50; Right: Runs chosen based on lowest mean cost across all iterations.
Each iteration consists of 30 trajectory samples for a single task instance.

effect disappears when training a linear policy, which may
suggest that training a non-linear policy with higher repre-
sentation power is more stable when the training examples
are consistent (like those generated from an optimized local
policy in PI-GPS), rather than noisy reweighted samples (like
the ones used in REPS).

C. Evaluating generalization

In this section, we evaluate the generalization performance
of guided policy search with PI?> on randomized instances
(e.g. random door poses or bottle positions), so as to deter-
mine the degree to which global policy sampling improves
generalization. We learn visuomotor neural network policies
for door opening and pick-and-place tasks that map RGB
images from the camera to the torque commands.

1) Door opening: The goal of applying global policy
sampling in the door task is to teach the robot to open
the door placed at any pose inside the training area. The
variation of the door position is 16cm in xz and 8cm in y
direction. The orientation variation is 60° (£30° from the
parallel orientation of the door with respect to the table
edge). Figure [3 (top) shows examples of the images from
the robot’s camera during these tasks. Training is initialized
from 5 demonstrations, corresponding to 5 door poses. The
convolutional layers of the network are trained using 1813
images of the door in different poses, and an additional
15150 images of the robot as described in Section

We compare the performance of the global policy trained
with the standard local policy sampling method on the
demonstrated door poses (as in prior work [6]) to global
policy sampling, where new random door poses are sampled
for each iteration. We first perform two iterations of standard
GPS with local policy sampling to initialize the global policy,
since sampling from an untrained neural network would not
produce reasonable behavior. In the global policy sampling
mode, we then train for 5 iterations with random door poses
each time, and compare generalization performance against
a version that instead is trained for 5 more standard local
policy sampling iterations. In both cases, 7 total iterations
are performed, with each iteration consisting of 10 trajectory
samples for each of 5 instances (for a total of 50 samples per
iteration). PI? is used to update each instance independently
using the corresponding 10 samples. During global policy
sampling, we increase the control noise after initialization to
add enough exploration to touch the handle of a randomly
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Fig. 7. Success rates during training generalized policies with global policy
sampling for door opening (left) and pick-and-place (right). Each iteration
consists of 50 trajectory samples: 10 samples of each of the 5 random task
instances. Dashed lines: success rates after local policy sampling training.

placed door in at least 10% of the roll-outs. Figure [/| (left)
shows the average success rates during training.

To test each policy, we evaluate it on 30 random door poses
in the training area. When trained using only local policy
sampling on the same set of 5 instances at each iteration,
the robot is able to successfully open the door in 43.3% of
the test instances. When trained with global policy sampling,
with a new set of random instances at each iteration, the final
policy is able to open the door in 93.3% of the test instances.

It is important to note that, during global policy sampling,
we had to use relatively low learning rates to train the neural
network. In particular, after initialization we had to reduce
learning rate by 5 times from 5 x 1073 to 1073, Otherwise,
we faced the problem of the policy “forgetting” the old task
instances and performing poorly on them when trained on
the new random set of instances each iteration. This could
be mitigated in future work by using experience replay and
reusing old instances for training.

2) Pick-and-place: In the pick-and-place global sampling
experiments, we teach the robot to pick up a bottle placed at
any position inside a predefined rectangular training area of
the table and place it vertically at the goal position. The size
of the training area is 30x40cm and orientation variation of
the bottle is 120°. Similar to the door opening task, training
is initialized from 5 demonstrations, and the convolutional
layers are trained using 2708 images with object poses
and 14070 task execution images with end-effector poses.
Example camera images are shown in Figure [3] (bottom).

As in the door task, the policy is initialized with 2 local
sampling iterations. After that, we run 20 iterations of global
policy sampling, each consisting of 10 trajectory samples
from each of 5 random instances. During training, we
gradually increased the training area by moving away from
the demonstrated bottle poses. This continuation method was
necessary to ensure that the bottle could be grasped at least
10% of the time during the trials without excessive amounts
of added noise, since the initial policy did not generalize
effectively far outside of the demonstration region.

We evaluated the global policy on 30 random bottle poses.
After the two initialization iterations, the global policy is
able to successfully place the bottle on the goal position
with a success rate of 40%. After finishing the training with
global policy sampling, the robot succeeds 86.7% of the
time. Figure [7| (right) shows the average success rates over
the course of the training. Similar to the task adaptation



experiments, the learning of the pick-and-place behavior is
slower than on the door opening task, and requires more
iterations. Since the size of training region increased over
the course of training, the performance does not improve
continuously, since the training instances are harder (i.e.,
more widely distributed) in the later iterations.

We noticed that the final policy had less variation of the
gripper orientation during grasping than in the demonstrated
instances. The robot exploited the compliance of the gripper
to grasp the bottle with only a slight change of the orienta-
tion. In addition, the general speed of the motion decreased
over the course of learning, such that the robot could place
the object more carefully on the goal position.

During global policy sampling phase, we had to reduce
the learning rate of the SGD training even more than in the
door task by setting it to 10™* (compared to 5 x 10~3 for
local policy sampling) to avoid forgetting old task instances.

VI. CONCLUSIONS AND FUTURE WORK

We presented the path integral guided policy search
algorithm, which combines stochastic policy optimization
based on PI? with guided policy search for training high-
dimensional, nonlinear neural network policies for vision-
based robotic manipulation skills. The main contributions of
our work include a KL-constrained PI? method for local pol-
icy optimization, as well as a global policy sampling scheme
for guided policy search that allows new task instances to be
sampled at each iteration, so as to increase the diversity of
the data for training the global policy and thereby improve
generalization. We evaluated our method on two challenging
manipulation tasks characterized by intermittent and variable
contacts and discontinuous cost functions: opening a door
and picking and placing a bottle. Our experimental evaluation
shows that PI? outperforms the prior LQR-based local policy
optimization method, and that global policy sampling greatly
improves the generalization capabilities of the learned policy.

One limitation of our approach is that, since PI? performs
local improvements to the local policies based on stochastic
search, the initial structure of the behavior typically needs to
be provided through human demonstrations. However, with
global policy sampling, we can supply demonstrations for
only a few instances of the task, and still benefit from training
on a wide range of random instances. A promising avenue
for future work is to explore ways to combine the strength
of the LQR-based optimizer, which can make large changes
to the local policies based on estimated gradients, with the
capability of PI? to finely optimize the policy in the presence
of challenging cost and dynamics discontinuities.
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