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Efficient Kinematic Planning for Mobile Manipulators with
Non-holonomic Constraints Using Optimal Control
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Abstract— This work addresses the problem of kinematic tra-
jectory planning for mobile manipulators with non-holonomic
constraints, and holonomic operational-space tracking con-
straints. We obtain whole-body trajectories and time-varying
kinematic feedback controllers by solving a Constrained Se-
quential Linear Quadratic Optimal Control problem. The em-
ployed algorithm features high efficiency through a continuous-
time formulation that benefits from adaptive step-size integra-
tors and through linear complexity in the number of integration
steps. In a first application example, we solve Kkinematic
trajectory planning problems for a 26 DoF wheeled robot.
In a second example, we apply Constrained SLQ to a real-
world mobile manipulator in a receding-horizon optimal control
fashion, where we obtain optimal controllers and plans at rates
up to 100 Hz.

I. INTRODUCTION
A. Motivation

Many robotic systems feature inherent motion constraints,
such as wheels or tracks, which result in non-holonomic
constraints. Non-holonomic constraints are non-integrable and
of the form g(q, q,t) = 0, where q denotes the generalized
coordinates of the system. Informally speaking, a non-
holonomic constraint restricts instantaneous motion in certain
directions and therefore leads to limited maneuverability.

Simple non-holonomic systems, such as planar tracked
robots and car-like robots with a small number of Degrees
of Freedom (DoF) may be intuitive to steer. However, for
complex robots like the one shown in Fig. 1b, which features
a multitude of non-holonomic constraints, we need fast
computational methods to generate trajectories. Fig. 1b shows
a concept for the “In Situ Fabricator 2” (IF2), a robot for
digital fabrication and on-site building construction, which is
currently under development. Because of the broad spectrum
of requirements and the need for superior maneuverability, its
base is equipped with four legs - each with several degrees
of freedom (translational and rotary joints) plus wheels. The
depicted robot’s base, for instance, features 16 rotational
and 4 translational joints. One of the challenges that we
are facing in the development of this machine, is how to
efficiently design trajectories and feedback controllers that
are consistent with the non-holonomic constraints. Another
requirement in mobile manipulation is the ability to reposition
a robot while its end effector remains at a desired pose or
follows a desired motion, which falls in the category of
operational-space tracking [1]. In this paper, we introduce the
Constrained Sequential Linear Quadratic Optimal Control
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(a) The In Situ Fabricator 1

(b) The In Situ Fabricator 2

Fig. 1. (a) The In Situ Fabricator 1 is a 1.5 ton mobile manipulator
designed for building construction and digital fabrication. It is equipped
with a standard industrial robot arm and a hydraulically driven base.

(b) Conceptual rendering of the In Situ Fabricator 2, which is currently
under development.

algorithm (Constrained SLQ) to the field of kinematic
trajectory planning. This allows to efficiently solve non-
holonomic planning problems subject to operational-space
tracking constraints with linear time complexity and provides
time-varying kinematic feedback laws.

Although we neglect a consideration of the dynamics,
the problem posed in this paper is still relevant to a large
number of robotic systems available today: the majority
of the currently commercially available (mobile) industrial
manipulators are position/velocity-controlled. Furthermore,
any robot with joint position sensing can in principle be used
in a position/velocity controlled mode.

This paper is structured as follows. In the remainder of
Section I, we discuss related work and state the contributions
of this paper. In Section II, we introduce our version of the
Constrained SLQ Algorithm, introduce the kinematic problem
formulation and explain our receding horizon optimal control
setup. We present an example of trajectory planning for a
complex wheeled robot in Section III and apply Constrained
SLQ in receding horizon optimal control fashion to a real
tracked mobile manipulator in Section IV. In Section V, we
summarize and discuss the results. An outlook on future work
concludes this paper in Section VI

B. State of the art and related work

Kinematic planning in its different flavours has been treated
extensively and in great detail in the literature. For a broad,
general overview about planning algorithms, refer to [2].
Overviews particularly treating non-holonomic planning can
be found in [3], [4]. Well-established methods for kinematic
planning of non-holonomic systems include the different
variants of sampling-based algorithms like Rapidly-Exploring



Random Trees (RRT) or Probabilistic Road Map (PRM)
methods, Graph Search methods or Nonlinear Programming
(NLP) approaches, each of them with specific strengths
and drawbacks. NLP approaches often scale unfavourably
with the problem time horizon. SQP in its basic form, for
instance, scales with O(n?). Standard RRTs and PRMs often
perform fast, O(nlog(n)), but may require post-processing
steps like smoothing. Also, they may produce solutions that
are kinematically feasible but not guaranteed to be optimal.
Importantly, in [5] it is argued that many sample-based
planners rely on distance metrics which might not work
well when a system has differential constraints — which
can become a problematic point for robots with many non-
holonomic constraints, such as the IF2. In [6], an improved
differentially constrained search space is constructed, which
resolves that problem. A systematic analysis of the optimality
and complexity parameters for sampling-based path planning
algorithms is given in [7]. Note that extended algorithms like
RRT* and PRM* are asymptotically optimal and computa-
tionally efficient. For example, RRT* shows O(n) query time
complexity, however still has processing time complexity
O(nlog(n)). While sampling-based planners have gained
great popularity, other approaches have also been applied
successfully to non-holonomic systems. For example, in [§]
and [9], the essentials of kinematic control and planning
for the DLR’s “Rollin’ Justin” wheeled robot are presented,
which is based on feedback linearization.

Note that in this paper, we plan in the space of generalized
coordinates — however the reference trajectories to be tracked
can be given in operational space. Relevant works for opera-
tional space tracking for non-holonomic robots include [10],
where motions are computed along a given end effector path
subject to non-holonomic base constraints using a sampling-
based planner. Other methods for the planning of operational
space tracking tasks were presented in [11] and [12].

A connection between optimal control and inverse kine-
matics has been made in [13], where it is argued that inverse
kinematics can be seen as a special case of an optimal control
formulation, when the preview horizon collapses. Our work
extends these results such that we can now use optimal
control in scenarios with a non-zero preview horizon, where
one would traditionally still revert to using inverse kinematics.

The idea of equality-constrained SLQ has originally been
introduced in [14], using a formulation in discrete-time. We
present a derivation of the algorithm in continuous time
in [15], which is conceptually different. The continuous time
version allows us to use adaptive step-size integrators, which
helps to achieve shorter run-times in practice.

C. Contributions of this paper

The aim of this work is not to replace existing kinematic
planners in large planning problems with possibly cluttered
environments, since our approach is based on a convex
optimization framework. To some degree, it can handle non-
convex solution sets, however in cluttered environments,
the problem is ill-posed and other types of planners are
more suitable. In a local regime however, our approach has

favourable complexity properties, i.e. linear time complex-
ity O(n). Additionally, it computes kinematic feedback laws
that are compliant with the constraints, and the algorithm does
not suffer from the shortcomings that many algorithms which
employ inverse kinematics exhibit, i.e. when approaching
singularities. Therefore, this paper complements existing
work on kinematic planning and control of non-holonomic
mobile manipulators by introducing Constrained SLQ to the
field of kinematic planning. We show examples where we
use Constrained SLQ to efficiently plan motions for robots
with complex kinematics, non-holonomic constraints and
given end effector trajectories. Furthermore, we show the
performance of the algorithm in a receding-horizon optimal
control experiment on a real tracked mobile manipulator.

II. CONSTRAINED SLQ
A. Algorithmic overview

Constrained SLQ is based on Dynamic Programming (DP),
which designs both a feedforward plan and a feedback
controller. While conventional DP methods are effective
tools for solving optimal control problems, they do not scale
favorably with the time horizon. However, a class of DP
algorithms known as SLQ algorithms exists that scales linearly
with the optimization time horizon. Our continuous—time SLQ
algorithm can handle state and input constraints while the
complexity remains O(n).

In general, NLP-based planning algorithms require the
discretization of the infinite dimensional, continuous optimiza-
tion problem to a finite dimension NLP. This discretization is
often carried out using heuristics, which can result in numer-
ically poor or practically infeasible solutions. Our algorithm,
by contrast, is a continuous—time method which uses variable
step-size ODE solvers in its forward and backward passes.
Given the desired accuracy, it can automatically discretize the
problem using the error control mechanism of the variable
step-size ODE solver. Informally speaking, this allows the
solver to indirectly control the distance between the “nodes”
in the feedforward and feedback trajectory. In practice, this
decreases the runtime of an iteration, since the number of
calculations decreases.

Another aspect of our algorithm is that it produces feedback
plans. While a feedforward plan provides a single optimal
open-loop trajectory, a feedback scheme generalizes the plan
to the vicinity of the current solution. Our algorithm uses
linear feedback controllers for this purpose, hence we obtain
time-varying control laws of form

u(x,t) = usps(t) + K(t)x(t) . (D

We formulate the constrained optimal control problem as

min {@(x(tf)) + /tf Lix,u, t)dt}

u(-) to

subject to
% = f(x,u) x(to) = Xo
gi(x,u,t) =0  ga(x,t) =0 @



The nonlinear cost function consists of a terminal cost ®
and an intermediate cost L. f(-) is the system differential
equation. g1 (-) and go(-) are the state-input and pure state
constraints, respectively.

The constrained SLQ algorithm is an iterative method
which approximates the nonlinear optimal control problem
with a local Linear Quadratic (LQ) subproblem in each
iteration, and then solves it through a Riccati-based approach.

The first step of each iteration is a forward integration of the
system dynamics using the last approximation of the optimal
controller. Note that in the very first iteration, the algorithm
needs to be initialized with a stable control policy. Next, it
calculates a quadratic approximation of the cost function over
the nominal state and input trajectories obtained from the
forward integration. The cost’s quadratic approximation is

J=®(x(ts)) + /tf L(x,u, t)dt

to
= 1
O(x(t5)) = ai; +ai, ox + EéxTQtféx
L(x,u,t) = q(t) + q(t) "éx + r(t) "du+ ox ' P(t)du

+ %5XTQ(t)6x + %6uTR(t)6u 3)

where ¢(t), q(t), r(t), P(¢), Q(t), and R(t) are the co-
efficients of the Taylor expansion of the cost function in
Equation (2) around the nominal trajectories. éx and du are
the deviations of state and input from the nominal trajectories.
Constrained SLQ also uses linear approximations of the
system dynamics and constraints in Equation (2) around
the nominal trajectories as follows:

A(t)ox + B(t)éu

C(t)dx + D(t)du+e(t) =0

F(t)ox+h(t) =0 “)
Based on this LQ approximation, we use a generalized,
constrained LQR algorithm to find an update to the feedback-
feedforward controller. Constrained SLQ is described in

Algorithm 1. For a more detailed discussion of the algorithm’s
derivation, refer to [15].

0% =

B. Formulation of the kinematic planning and control problem

For the kinematic planning and control problems considered
in this paper, we define the state x as the robot’s generalized
coordinates q, and the input u as their time derivatives (veloc-
ities). We assume that the system’s generalized coordinates
are fully observable at any time.

The initial control law supplied to the Constrained SLQ
algorithm needs to stabilize the system. In the case of
kinematic planning, we can obtain this through a constant,
zero control input. For all presented applications, the cost
functions are of the form

/tf u(t) TRu(t)dt + (x(t5) — %) T Qs (x(ts) — %) (5)

hence the intermediate states are never penalized, only the con-
trol inputs and the deviation from the desired terminal state x..

Algorithm 1 Constrained SLQ Algorithm

Given
- The optimization problem in Equation (2)
- Initial stable control law, u(x, t)
repeat
- forward integrate the system equations using adaptive step-size integrator:
T :X(to), U(to), X(t1), u(t1) ... X(tn—1), U(tn-1), X(tn = tf)
- Quadratize cost function along the trajectory 7
- Linearize the system dynamics and constraints along the trajectory 7
- Compute the constrained LQR problem coefficients
Df =R"'D"(DR™'DT)" !, A A —-BD'C
C= ch D=D'D, e—D fe

Q:Q+CTRC PC PS)T+F'F
d=q-C'r+F'h, =(I1-D)TRI-D)
L=R !PT +BT S)
I=R '(r+B7s), . =R 'BTs,

- Solve the ﬁnal—value Riccati- hke qguatlons
-$S=ATS+STA-LTRL+Q S(ts) = Qs
7s—ATstTthq s(ty) = as
7se—ATstTﬁle+(67i)TRa se(t;) =0
—$=q-1"R]I, s(ty) =qy

- Compute the controller update
L=—-(I- DlL C
l=—-1-D)l_
le=—I-D)Il. —¢
ou =al + a.l. + Lx
- Optimize o, and « using a line search scheme
- Update the controller
K<+ L
usy < u+ al + a.l, — Lx
until convergence or maximum number of iterations

The state-input constraints take the form g;(q,q,t) = 0,
which covers all non-holonomic constraints, and the state-
only constraints take the form gs(q,t) = 0, which covers
holonomic operational-space tracking constraints.

C. Receding horizon optimal control setup

Later in this work, we use Constrained SLQ in a model
predictive control fashion. For that purpose, we split the
control framework into an outer and an inner loop.

In the outer loop, we iteratively solve the optimization
problem (2) with a constant time horizon using Constrained
SLQ and the current estimate of the system state. High update
rates can be achieved through

o “warmstarting” the algorithm with previous solutions

« adaption of the integrator tolerances for the forward and

backward pass integrations.

The inner loop implements a closed-loop controller (1)
which applies the optimal feedforward and feedback trajecto-
ries designed by the outer loop. In our setup, the inner loop
runs at higher frequency than the outer loop and ensures stable
feedback while new optimal control trajectories are designed.
For subsampling feedforward and feedback matrices between
the plan’s nodes, we apply linear interpolation.

This setup provides the advantage that small disturbances
of higher frequency can be handled directly by the feedback
controller in the inner loop, while the planner in the outer loop
reacts to perturbations of larger time-scale and magnitude
through replanning. The presented scheme of receding horizon
optimal control has previously been applied to a hexrotor
system in [16], using the unconstrained version of SLQ.

III. PLANNING FOR A LEGGED/WHEELED MOBILE ROBOT
A. System and constraint modelling

We have designed a kinematic model of the legged/wheeled
base of the In Situ Fabricator 2, featuring a total of 26 DoF.
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Fig. 2. Sketch of an ideal wheel attached to the robot’s trunk through an
arbitrary serial chain of joints and links.

Several assumptions are made to simplify the formulation of
the kinematic constraints. A generalization is possible but
beyond the scope of this paper. Fig. 2 shows a sketch of one
of the wheels connected to the robot’s base via a serial chain
of joints and links with joint positions ¢ and velocities ¢. We
assume flat ground and model the wheels as perfect, ‘infinitely
thin’ discs, where a unique ground contact point P exists.
Therefore, the distance between P and the wheel center point
C is constant and identical to the wheel’s radius r. The wheel
rotates about the z-axis of the last joint’s coordinate system
fry with angular velocity w/"’. We denote the center of the
base coordinate system B, the world and the base frame are
frw and frp, respectively.

We define the state x in terms of the robot’s generalized
coordinates: as the robot’s base orientation OQW and position
rJ,;TW in the world frame, as well as all leg- and wheel joint
angles . The control inputs u are defined as the local angular-
and translational velocities of the trunk wh®, v and all
joint velocities, ¢;.,.. In the following, we do not detail
on how to calculate all of the required kinematic quantities,
but we point out that many of them can be automatically
generated through the robotics code generator [17], which
we used in this work. Note that the procedure holds for an
arbitrarily complex serial chain of links and joints.

1) Ground contact point velocities: The angular and
translational velocities of C' in the base frame can be obtained
via the last joint frame’s Jacobian w.r.t. the base, therefore

.
A I A (O R ©)

Considering the geometry of the setup, it is simple to calculate
the position vector from C' to P in the wheel joint frame, réfg.
The local angular velocity of the wheel represented in the
wheel joint frame is w/"" = [0 0 ¢,,] " . Therefore, the contact
point’s velocity in the base frame reads as

fre
Vp fra

=P+ R{E () (w0l xxl2) @)
and its velocity in the world frame ng follows as

frw _

vl = RIWO) (VB vl ol ) L ®)

fre

2) Wheel constraints: A rigid body which rolls without
sliding fulfils the ‘rolling condition’, which links its angular
velocity with the translational velocity of its center of rotation.

TABLE I
CONSTRAINED SLQ SIMULATION EXPERIMENTS ON IF1 AND IF2

Task Time Horizon [s]  #iter Constr. ISE ~ CPU Time [s]
IF2-A 12.0 15 <104 3.35
IF2-B 12.0 17 <1073 3.92
IF1-c0 5.0 8 <104 0.091

The rolling condition requires the instantaneous velocity of
the ground contact point P in the contact plane to be zero.

Since the wheel is not supposed to lift off of the ground,
we desire the contact point’s velocity in world z-direction to
be zero, too. This results in a combined, straightforward
formulation for the non-holonomic and ground contact
constraint for the wheel, which we can directly write as
a state-input constraint for the problem introduced in (2):

gi(a,q,t) = vi" =0 ©)
For each leg, this constraint has dimension 3. For the four-
legged system, the vector of wheel constraints is therefore of
dimension 12. In our C++ implementation, we compute the
constraint derivatives 981/ox and 981/ou through automatic
differentiation with CppAD [18], [19].

B. Implementation and simulation results

For planning, we initialize the system with a given initial
state and specify a complete full body pose (except for the
wheel joint angles) as the desired terminal state x,.. Our cost
function is of the form (5), where R and Q; are diagonal'.

Table I summarizes main results for two example tasks,
IF2-A and IF2-B. In task IF2-A, the robot needs to move
1.0 m in both the x and y directions. In task IF2-B, the
system has to translate 1.0 m away from the start and rotate
its trunk about 180°. In both tasks, it needs to adjust the
wheel orientations at the maneuver start. The IF2 tasks have
a 12.0 sec time horizon, were solved within less than 20
iterations and less than 4.0 sec single core CPU-time. The
CPU-time value is an average over 20 independent runs. The
solutions show a maximum Integrated Square Constraint Error
(ISE) of less than 10~3. Fig. 3a and Fig. 3b show snapshots
from visualizations of the solutions (equidistant in time). The
reader can find the videos online?.

IV. OPTIMAL CONTROL OF A TRACKED MOBILE
MANIPULATOR

A. Modelling

The IF1, which is shown in Fig. 1a, is a 1.5 ton mobile
manipulator with 2.55 m arm reach, which is capable of
handling a 40 kg payload [20]. It is an autonomous robot with
integrated on-board control, sensing, and power system. The
IF1’s arm is a standard industrial robot arm (ABB IRB 4600).
Its base is equipped with hydraulically driven tracks. With the
IF1, we have previously shown digital fabrication tasks such
as building a dry brick wall [21]. However, a coordinated

IR is Identity except for the penalty on the translational base velocities,
which was 3.0. Q 7 is 10 - I, except for the base position states, which were

penalized with 100, and the wheel joint angles, which were not penalized.
2https://youtu.be/rvVull_tPCoM
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(a) Task IF2-A: the robot repositioning diagonally, seen from top. The trunk goes from (z,

“ ‘

(0,0) to (1,1).

(b) Task IF2-B: the robot performing a manoeuvre where it translates 1.0 meter in z and rotates 180°, seen from a slanted view from above.

(c) Visualization of a whole-body trajectory for the IF1 for an end-effector tracking problem.

(d) Whole body motion of the real IF1 with end effector constraint. The end effector stays in place while the robots base performs a motion pattern.

Fig. 3.
translational velocities of the wheel centers. (c) Motion planned for IF1 with an end effector path constraint. (d) Snapshots from a motion sequence executed
on the real IF1 using receding horizon optimal control with an end effector position constraint.

base- and end effector motion, which is important to enable
new building processes, was not yet achieved.

Since rolling and pitching of the IF1’s base can typically
be neglected, we describe the base kinematics in a 2D planar
model. The tracks are reduced to a two-wheel model [22].
The state is defined as x = [z. y. # ¢ '] and the control
as u = [&. Ye 6 ng]T, where z. and y. denote the world
position of a frame fixed to the robot base and 6 is its
heading angle. As a strong simplification, we assume that
the base’s center of rotation (CoR) remains constant w.r.t
the base frame. Hence, the non-holonomic constraint results
as y.cosf — z.sinf — 0d = 0, where d defines an offset
between the CoR and the geometric center of the two-wheel
model. We assume that no slip occurs, hence we can use the
following equations to calculate the track speeds v,., v;

Uy = T oS0 + 7, sinf + b (10)
v = T cos0 + Y. sin f — bo

which are the real-world control inputs to the robot base.
Given the world position and velocity of the base, the end-
effector position r{"" and velocity v/{I" follow immediately

via the forward kinematics of the arm and its Jacobian. We
formulate end effector tracking constraints as either

frw

gi(q,q,t): VIV =vIVi(t,q,q) or

frW _ rfTW

1D
g2 (q7 t) : Tee ee,ref (t7 q) .

(a)-(b): Snapshots of motions planned with constrained SLQ for IF2. The red cylinders show the wheels, the white arrows indicate instantaneous

The reference positions and velocities can be chosen arbitrarily
as long as their first order derivatives are well-defined.

B. An example for planning with end effector constraints

In Fig. 3c, we show an example of a motion generated
for the IF1 model, in which the end effector was constrained
to follow a given task-space trajectory. The range of the
motion was chosen such that the arm reach alone was
insufficient to perform it without moving the base. The
optimized motion satisfies the non-holonomic base constraint
and the end effector tracking constraints with less than
10~* ISE. Additional data is listed in Table I. It should
be noted that the algorithm deliberately drives the arm into a
singularity, in order to leverage the maximum reach, and also
recovers from it. While many approaches that plan in the
low dimensional task space are in the need of sophisticated
methods to avoid singularities (e.g. [9]), our approach handles
them automatically. Fig. 4 illustrates that property.

C. Fast receding horizon optimal control of IF1

In this experiment, we estimate the system state using a
visual-inertial sensor, which is rigidly mounted to the base,
in combination with the ‘Robot Centric Absolute Reference
System’ [23], which relies on fixed fiducial markers in the
environment and delivers state updates at 20 Hz rate. The
end effector pose is calculated from the base state and the
industrial arm’s joint encoder readings.
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Fig. 4. Distance § from a current robot configuration to the singularity
formed through joints 4 and 6 of the ABB IRB 4600. J is defined in terms of
the squared joint angle difference to the singularity. Our planning approach
is able to deliberately go to and recover from singular configurations in
order to fulfil the task objective and the constraints. The planned maneuver
is similar to the one in Fig. 3c, which is an operational-space tracking task.
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Fig. 5. Overhead plot of continuously computed paths for a base

repositioning/reorientation task using receding horizon optimal control. The
initially planned path is shown in red. As this motion was performed on
ground with very high friction which caused the robot’s rubber tracks to
stick, the system started to deviate from the plan despite feedback. Hence,
replanning was required. Every 100th updated plan is plotted (color gradient
from red to blue, circles denote positions at replanning start). The path that
was actually executed by the base is shown in black. The controller finally
drives the system to the desired location (1,0) with accuracy < 2 cm.

We implemented a control architecture as described in
Section II-C. As inner loop, we run a whole-body controller
at 250 Hz. The industrial arm is controlled via a commercial
interface provided by the arm manufacturer, which allows to
send joint reference positions and velocities at high rate. To
control the tracks, we have implemented a custom speed
tracking controller. Since the control feedback, which is
calculated according to Equation (1), is compliant with the
constraints, the updated track velocities can be obtained
directly via Equation (10).

Due to model uncertainty, significant slip in the tracks
during driving, and various other factors, we observed that
even closed-loop motions executed on the real system resulted
in a large amount of end-effector constraint error and deviation
of the desired final pose. Therefore, we run Constrained SLQ
as a receding horizon optimal controller, as introduced in
Section II-C. We set a moving time horizon with a fixed
length of 15 seconds for all scenarios. The cost function was

of the form of Equation (5), the weights are given below?.

The capabilities of kinematic receding horizon optimal control
for steering a tracked vehicle with significant uncertainties
to a desired target is highlighted in Fig. 5. It shows plots of
optimal paths for moving and reorienting the base from its
current- to a desired pose.

Three types of experiments were performed on IF1 using

SR=diag(l, 1, 1, 0.1, ...,0.1), Qy = diag (3, 3, 3, 0,...,0)

Measured End Effector Position Errors
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Fig. 6. Min-max errors and standard deviation of the end effector position

in world coordinates over the course of 10 identical experiments. The task
was to keep the end effector at the same position while relocating the base.
The maximum min-max end effector displacement measured was 76.4 mm.

the proposed control framework:

A base rotation about 90° while maintaining the initial end
effector position,

B base repositioning between 1.5 m and 3.0 m distance
while maintaining the initial end effector position,

C executing a V-shaped base motion while maintaining the
end effector position.

Videos of these experiments are provided?. Fig. 3d shows
snapshots of task C.

To quantify the end effector position error, we used a
Hilti ‘Total Station” measurement system. We repeated an
experiment of type B 10 times and obtained the results shown
in Fig. 6. Over the course of all 10 experiments, we measured
a maximum min-max end effector displacement of 76.4 mm
and standard deviations of 20.0 mm, 11.9 mm and 1.8 mm in
z, y and z direction. There was significantly less motion in
the z-direction, where the min-max end effector displacement
was 6.8 mm and the standard deviation was 1.8 mm.

While our planner ran on a single core of an Intel Core i7
CPU (2.30 GHz), we typically achieved replanning rates
between 50 Hz and 100 Hz. In the shown experiments,
convergence for the initial plan took up to 8 iterations. In
warm-starting mode, convergence took 1-3 iterations.

V. DISCUSSION AND CONCLUSION

A. Notes on the experiments

In the presented experiments, we demonstrated the planning
of complex repositioning maneuvers for a 26 DoF robotic base
with four wheels and a total of 12 wheel motion constraints.
Here, the computation time was less than a third of the
time horizon of the maneuver. Additionally, we showed the
application of our algorithm to a real-world non-holonomic
mobile manipulator with end effector constraints, which we
controlled in a receding horizon optimal control fashion with
a re-planning frequency of up to 100 Hz. Between the motion
plan updates, the system was governed through constraint-
compliant kinematic feedback laws designed by Constrained
SLQ. The accuracy of the end effector regularization task
was limited by a number of factors:

o we assumed the robot to have a fixed CoR w.r.t. the base,
which is a strong assumption since the base to arm weight
ratio is approximately 2.5 : 1. In reality, we observed that
the CoR varies significantly with the arm position. This
model uncertainty could partially be compensated for by
the fast update rates of the planner.



o for safety reasons, and in order to prevent abrupt arm
motion in case of a loss of communication, we had to run
all experiments with a limited gain in the arm joint control,
which was not accounted for in the controller design (we
assumed perfect position/velocity tracking).

« the out-of-the box base pose estimator would have re-
quired more modifications to increase its accuracy and
reliability, which was impossible within the timeline of
our experiments. The overall control performance suffered
from occasionally occurring jumps in the base estimate at
the order of centimeters. Those disturbances got directly
reflected in the end effector position.

B. Notes on the algorithm

In this work, we have introduced the Constrained SLQ
algorithm to the field of kinematic trajectory planning. While
it is not intended to compete with existing planners in cluttered
environments, it has favourable complexity properties in a lo-
cal regime, i.e. linear time complexity O(n). We reach a high
efficiency through a continuous-time implementation which
allows the use of adaptive time-step integrators. Additionally,
Constrained SLQ provides time-varying feedback laws in
terms of kinematic quantities, which are locally compliant
with the constraints.

We note that, complementary to formulating equality
constraints in operational space, one can also formulate
operational-space goals in terms of the cost function. For
example, this enables end-effector positioning for mobile
manipulators subject to non-holonomic constraints?.

VI. OUTLOOK AND FUTURE WORK

In this work, the algorithm was running on a single CPU
core. However, large parts can be parallelized, such as the
linear quadratic approximation at each iteration, the controller
design and the line-search. Therefore, there is potential for
further speeding up the computations, possibly enabling reced-
ing horizon optimal control with non-holonomic constraints
for even more complex systems and scenarios.

An example provided in Section IV-B shows that the
algorithm can leverage singularities for achieving task-space
goals. However, its detailed treatment is left for future work.

In [24], an extension of the discrete-time Constrained SLQ
to handle inequality constraints using an active-set approach
was introduced. In the next step, we will extend our framework
to handle inequality constraints, too, which will enable the
study of advanced scenarios, like obstacle avoidance, for
complex robots with non-holonomic constraints. Also, it
is desirable to benchmark the algorithm against efficient
implementations of other planners.
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