
Sampling-based Motion Planning for
Active Multirotor System Identification
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Abstract— This paper reports on an algorithm for planning
trajectories that allow a multirotor micro aerial vehicle (MAV)
to quickly identify a set of unknown parameters. In many
problems like self calibration or model parameter identification
some states are only observable under a specific motion. These
motions are often hard to find, especially for inexperienced
users. Therefore, we consider system model identification in
an active setting, where the vehicle autonomously decides what
actions to take in order to quickly identify the model. Our
algorithm approximates the belief dynamics of the system
around a candidate trajectory using an extended Kalman filter
(EKF). It uses sampling-based motion planning to explore the
space of possible beliefs and find a maximally informative
trajectory within a user-defined budget. We validate our method
in simulation and on a real system showing the feasibility and
repeatability of the proposed approach. Our planner creates
trajectories which reduce model parameter convergence time
and uncertainty by a factor of four.

I. INTRODUCTION

Multirotors are becoming increasingly popular in research,
industry, and consumer electronics, with applications in aerial
photography, film making, delivery, construction work, and
search and rescue operations. To achieve such complex tasks
autonomously, precise maneuvering of the MAV is required,
which in turn requires accurate state estimation, planning,
and control [1]. Those three components benefit greatly from
an accurate aircraft model. During aggressive maneuvers a
nonlinear model can help compensate for significant aero-
dynamic effects that impact the vehicle [2]. In manipulation
or transportation, where the external forces change regularly,
effective models can be used to estimate these disturbances
[3]. Furthermore, one can use a system model to create a
realistic simulation environment [4], avoiding the need to
carry out expensive real-world experiments.

Estimating the parameters of such nonlinear motion models
is a challenging task. A common approach is to carry out
specific experiments and simulations for each parameter,
for example measuring the drag coefficients in wind tunnel
experiments, or approximating the moments of inertia with es-
timates from a CAD model. These experiments, however, are
expensive, time-consuming, and require significant expertise.

A more convenient alternative consists of recording sensor
data during a flight and running a maximum-likelihood (ML)
batch optimization [5] or Kalman filtering on the data. These
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Fig. 1. A MAV calibration routine generated by our proposed planner.
The trajectory is generated by maximizing the information about the system
parameters, i.e., its moments of inertia and aerodynamic coefficients. The
planner creates safe trajectories that respect state and input constraints. The
framework enables non-expert users to perform automated calibration.

approaches are especially useful if the robot needs to be
re-calibrated often, for example when changing the hardware
setup, or the payload in a package delivery situation.

As some parameters are only observable under special
motions, ML methods require either a short, information-rich
dataset to obtain parameter estimates with a low uncertainty,
or large volumes of data which increases the computational
complexity of the identification process. Designing repeatable
experiments that excite all of the system’s dynamics is difficult
as it requires deep understanding of the model characteristics.
Transferring this knowledge into feasible teleoperated robot
trajectories is a further substantial challenge.

In this paper we present an automated trajectory generation
framework for MAV parameter estimation based on sampling-
based motion planning under uncertainty. The framework
actively designs a repeatable and persistently informative
experiment for calibration. The algorithm performs a tree
based search over various candidate trajectory segments se-
lecting the combination that minimizes parameter uncertainty.
Our planner incorporates time, space, and control feasibility
constraints. The central contributions of this work are:

• A real-time MAV motion planning framework for
parameter identification experiments which requires
minimum human interaction and a small number of
tuning variables.

• The formulation of an EKF for parameter identification
and propagation of uncertainties in rapidly-exploring
random belief trees (RRBTs).

• Computational improvements to RRBTs with the inclu-
sion of one-step propagations.
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• The adaptation of an information criterion suited for
robot system identification.

We organize the paper as follows. Section II presents related
work. Section III states the formal problem definition. We
then outline the proposed information gathering algorithm
in section IV. In section V and VI we detail two main
components of the algorithm: motion planning and belief
propagation. Finally, we validate the results in section VIII
before we close the article with concluding remarks.

II. RELATED WORK

Designing an optimal experiment for calibration requires
making several design decisions: which signals to measure,
where to position sensors, how to filter measurements, and
how to actuate the robot. These choices should be made to
maximize the observability of the modes of interest. Finding
an informative trajectory crosses both the domain of system
identification and motion planning. In order to classify a
generated trajectory as being informative, one has to make
an assessment of its quality for identification.

There exist a number of works in the literature that have
presented methods for designing informative trajectories. To
the authors’ knowledge, the work that is most similar to
ours in scope is [6]. In this work the authors optimize
polynomial trajectories to calibrate an IMU-GPS MAV model.
In contrast to our work they use a parameter information
measure based on the observability Gramian and a continuous
optimization. While their approach seems promising to
overcome discretization and linearization errors which occur
in tree-based approaches, they lack real-time capabilities and
may be prone to local minima due to the high-dimensional
non-linear space.

Another common approach to find an informative trajectory
is to evaluate and optimize the statistical properties of the
applied ML estimator. In [7] the authors generate trajectories
for end effector calibration. In a constrained non-linear opti-
mization they generate and refine a finite sum of harmonics
trajectory to perform a batch least squares estimation. In this
optimization they either minimize the regressor’s condition
number or maximize the Fisher information matrix. The same
optimization objective is used in [8], [9] to refine an arbitrary
initial input signal for a pendulum cart identification.

Instead of optimizing a subset of trajectories, one could
attempt solving the information gathering problem directly
in the whole configuration space. Solving this exactly is
non-deterministic polynomial-time (NP)-hard [10]. Conse-
quently, we need to find a trade-off between optimality and
computational feasibility.

Recent work on sampling-based information gathering has
shown to rapidly lead to near optimal solutions. Because
rapidly-exploring random trees (RRTs) are biased towards
unexplored areas, RRTs can quickly cover a large subset of
the configuration space. This makes them real-time capable
even in high dimensional spaces and due to the random nature
explore different topologies to overcome local minima.

Rapidly-exploring information gathering (RIG) [11] allows
solving general information gathering problems by sampling
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Fig. 2. Parameter belief propagation: two different polynomial segments and
the predicted moment of inertia covariance ΣJ depicted as ellipsoids. Left:
the forward movement only gives information about the pitch inertia. Right:
the maneuver excites roll, pitch, and yaw simultaneously and shrinks the
parameter covariance in all directions. Note that the smaller the covariance
matrix, the more informative the trajectory.

the configuration space. The algorithm extends previous work
to submodular cost functions for which it can guarantee
asymptotic optimality.

Belief graph search such as RRBT [12] or belief roadmap
(BRM) [13] on the other hand use random trees to efficiently
predict the EKF state covariance in a graph of motions. In [14]
they use RRBT to perform motion- and uncertainty-aware
path planning for MAVs.

We build upon this work to formulate a real-time capable
multirotor parameter estimation framework. In contrast to [14]
our work focuses on pure information gathering in a confined
space and thus omits finding a goal path. Furthermore,
we propose various algorithmic improvements to enhance
computational times of RRBTs and decrease tuning efforts.

III. PROBLEM DEFINITION

Our goal is to find a calibration trajectory that maximizes
the information about unknown MAV parameters. Equiva-
lently, we search for egomotions which will minimize our
parameter estimation’s uncertainty. We formulate the problem
of finding an optimal experiment design for MAV parameter
estimation as the following optimization problem:

P∗ =argmin
P∈P

u(P) (1)

s.t. COST(P) ≤ C,
STATES(P) ∈ X ,

where we wish to find within all possible trajectories P , a
path P which minimizes the parameter uncertainty u(P),
such that all constraints are satisfied. The cost of the path is
given by COST(P) and is required to stay within a budget C.
The robot states along the trajectory, given by STATES(P),
are constrained to remaining within the set of all feasible
states X .

A. Optimization Objective and Constraints

We describe the uncertainty of our unknown parameters Θ
through the predicted parameter covariance matrix ΣΘ of our
estimator. A small covariance matrix indicates an informative
path. Fig. 2 illustrates the effect of two different planned
egomotions on the parameter covariance.



The utility function u : Rj → R quantifies the uncertainty
and we optimize the trajectory in a D-optimal sense, i.e., we
minimize ΣΘ’s determinant. Given ΣΘ’s eigenvalues λ, the
D-optimal criterion is computed as

u(P) = exp(
1

j

j∑
i=1

log(λi)). (2)

D-optimality is proportional to the volume of the j-
dimensional ellipsoid spanned by the covariance matrix.
In contrast to A-optimality or E-optimality, D-optimality
weights each eigenvalue equally. For example a decrease
of one eigenvalue by 10% decreases the total cost by
10% independent of the eigenvalue’s parameter unit. This
reduces tuning effort as the cost function does not require
normalization.

We calculate the D-optimality in (2) in logarithmic space to
avoid round off errors in case of small eigenvalues [15]. Note
that we choose to penalize only parameter uncertainty rather
than combinations such as the uncertainty and flight time or
control effort. This decision was made as it simultaneously
simplifies the planner and reduces the difficulty of tuning the
system.

To ensure that the calibration routine finishes in a given
time frame, we define the trajectory’s cost by its total flight
time tf . Other measures such as power consumption could
also be used for the cost measure as long as the function is
strictly increasing over time.

COST(P) = tf . (3)

State constraints ensure the feasibility of the planned
path. Those can arise from actuator limits, sensor, and space
constrains. In particular, we place limits on absolute thrust
T , angular rates ω in base frame, and yaw acceleration ψ̈ in
base frame. In addition we limit the robot to stay within a
bounding box by constraining the position p in world frame.

0 ≤ Tmin ≤ T ≤ Tmax, T = ||p̈ + G||,
||ω|| ≤ ωmax, |ψ̈| ≤ ψ̈max, pmin ≤ p ≤ pmax, (4)

where G = [0 0 g]T is the gravitational acceleration in world
coordinates. Choosing conservative limits ensures that the
position controller can track the trajectory closely. This is
important since we use the nominal trajectory to propagate
the beliefs in the planner.

Note that most controllers are tuned independently of the
estimated system parameters. In case the same model is used
for the controller one could think of an iterative approach
where the controller is updated after each identification run.

B. Robot Model and EKF Parameter Uncertainty Prediction

We assume continuous-time nonlinear system dynamics
and measurements to describe our robot state x and sensor
measurements z:

d

dt
x = f(x,u,w), z = h(x,v), (5)

where u is the control input and w and v are Gaussian noise
accounting for modeling and measurement errors.

We augment our state vector with constant unknown
parameters Θ and formulate an EKF for their estimation.
During planning we sample the polynomial trajectory and
calculate the nominal states, measurements, and control inputs
along candidate trajectories. With these we propagate the EKF
covariance to predict the probabilistic state distribution.

The parameter covariance ΣΘ is then part of the full
covariance matrix Σ

Σ =

[
· ·
· ΣΘ

]
(6)

and is computed at time step k, given the prior covariance
Σk−1|k−1, as

Σk|k−1 = FkΣk−1|k−1F
T
k + Qk, (7)

Sk = HkΣk|k−1H
T
k + Rk, (8)

Kk = Σk|k−1H
T
k S−1

k , (9)
Σk|k = (I−KkHk)Σk|k−1, (10)

where we obtain the discrete state transition matrix Fk,
process noise covariance matrix Qk, observability matrix Hk,
and measurement noise covariance matrix Rk by linearizing
the system about the nominal robot trajectory. Note that we
omit state prediction and updates which are unnecessary under
the assumption that the MAV is able to follow the trajectory
closely.

IV. INFORMATION GATHERING ALGORITHM

We approximate the solution to the minimization problem
presented in (1) with a sampling-based information gathering
algorithm. Our planner generates a graph of random feasible
motions to explore the robot’s configuration space. For
every trajectory within the graph the planner computes the
probability distribution over the states and parameters. Finally,
the trajectory with the least uncertainty in parameters is
selected. We follow the ideas of RIG [11] on sampling-based
information gathering and RRBT [12] on belief space search.

In RIG the planner searches for a maximum informative
path. It samples random motions and evaluates an arbitrary
information criterion for each candidate path. In our case the
covariance measure stated in (2) describes the information
we gather about our parameter estimates. The parameter
uncertainty, however, is a function of the state covariance
Σ. This requires us to keep track of the state’s probabilistic
distribution over all sampled trajectories. RRBTs do not only
explore the configuration space, but calculate the probabilistic
distribution for each state by propagating an EKF, effectively
searching the robot’s belief space.

We adapt the original RRBT algorithm such that it does
not search for a goal connection but rather, only searches the
belief space and minimizes the parameter uncertainty. We also
introduce the budget constraint C. The planner differentiates
between open and closed trajectories. Furthermore, we do not
consider deviations of the robot from the planned path, but
assume that the controller can follow the trajectory closely.
We also interconnect all vertices in the graph rather than only
connecting neighbors as in RRBT.



Algorithm 1 shows the graph search. It consists of two
main parts: (i) building a bidirectional graph of motions and
(ii) searching the graph for the trajectory that minimizes
parameter uncertainty.

Algorithm 1 Motion planning for MAV parameter estimation
1: b.Σ := Σ0; b.c := 0; b.bp := NULL; b.vr := v
2: v.x := x0; v.Bopen := {b}; v.Bclosed := {};
3: V := {v}; E := {}; Q := {}
4: while truntime < tterminate do
5: % Phase 1: motion planning
6: xnew := SAMPLE()
7: vnearest := NEAREST(V,xnew)
8: if !∃(enew := CONNECT(xnew, vnearest.x)) then
9: CONTINUE

10: E := E ∪ enew
11: V := V ∪ v(xnew)
12: Q := Q ∪ vnearest.Bopen

13: E := E ∪ CONNECT(vnearest.x,xnew)
14: for all v ∈ V do
15: if ∃enew := CONNECT(v.x,xnew) then
16: E := E ∪ enew
17: Q := Q ∪ v.Bopen

18: E := E ∪ CONNECT(xnew, v.x)

19: % Phase 2: belief propagation
20: while Q 6= ∅ do
21: b := POP(Q)
22: for all vadj(b) do . reachable vertices
23: bnew := PROPAGATE(eadj, b)
24: if APPENDBELIEF(vadj, bnew) then
25: Q := Q ∪ bnew
26: if ISOPEN(bnew) then
27: vadj.Bopen = vadj.Bopen ∪ bnew
28: else
29: vadj.Bclosed = vadj.Bclosed ∪ bnew
30: return P := GETDOPTIMALPATH()

The motion graph consists of a set of vertices v ∈ V
which represent robot states x. These vertices are connected
by bidirectional edges e ∈ E allowing the robot to transition
between two states. There are multiple paths through the
graph to reach one vertex. This history of propagation is
stored in belief nodes b which reside at each vertex. Each
belief node describes a unique trajectory through the graph.
It contains the state covariance Σ, the cost c, its parent belief
node bp, and resides at vertex vr.

In the motion planning phase (i) the planner uniformly
samples feasible states and attempts to connect them to all
other existing vertices: forwards and backwards. In the belief
propagation phase (ii) the planner evaluates all possible new
connections. It propagates all adjacent open beliefs of a new
vertex through every new path combinations. The planner
iterates between the two phases until its runtime truntime

exceeds the termination time tterminate.

V. MOTION PLANNING

In our motion planning, the motions are represented as
4D-polynomial segments in position, yaw, and time as in [14].
This helps to reduce the high dimensional state space of the
MAV and quickly cover large sections of the configuration
space with a low number of samples. With this approach a
first feasible solution is found after a short time and from

then on the solution improves as the planner has more time
to explore the space. Due to the differential flatness property
of MAVs it is guaranteed that the MAV is able to follow
them, as long as the dynamic constraints (4) are not violated.

In our case the MAV flat state σ contains position, yaw,
and its derivatives [16]:

σ =
[
pT ṗT p̈T ...

pT ....
p T ψ ψ̇ ψ̈

]T
. (11)

The algorithm starts with SAMPLE which returns a feasible
position and yaw angle, from a uniform distribution, leaving
the derivatives free. The first CONNECT creates a minimum-
snap and minimum-angular-velocity 4D-polynomial segments
towards that state. This connection locks all state derivatives.
All other connections are then fully constrained up to snap and
yaw acceleration. For translational P th-order minimum-snap
polynomials p(t) with coefficients a = [a0, a1, . . . , aN ]T the
optimization is given by:

p(t) = t · a, t =
[
1 t t2 · · · tP−1

]
, (12)

min

∫ ts

0

∣∣∣∣∣∣∣∣d4p(t)

dt4

∣∣∣∣∣∣∣∣ dt,
s.t.

dmp(0)

dtm
=
dm(vstart.x.p)

dtm
, m = 0, . . . , 4,

p(ts) = vend.x.p,

dmp(ts)

dtm
=
dmvend.x.p

dtm
or free, m = 1, . . . , 4. (13)

Minimum-angular-velocity yaw segments can be derived
analogously. Note that the trajectories could also be optimized
with respect to other derivatives which is subject of future
investigations. We solve the minimization (13) with the
optimization presented in [17].

We enforce continuity up to snap and yaw acceleration
at the start and goal state and thus generate 10th-order
polynomial segments in position and 6th-order in yaw. This
implies continuous rotor speeds at the vertices as shown in
section VI-B. It allows smooth state and belief propagation as
it prevents further nonlinearities due to discontinuous inputs.

Furthermore, we sample the segment time ts for every new
segment uniformly. Given the Euclidean distance d, maximum
allowed absolute velocity vmax, and threshold ts,max on the
maximum segment time the sample range is:

ts ∈
[

d

vmax
,min(C −min(COST(vstart.Bopen)), ts,max)

]
.

(14)

The lower limit is the physically achievable minimum
segment time. The upper limit is either the maximum budget
left at the start vertex or a fixed maximum allowed time.
The budget constraint ensures that at least one belief can be
propagated. The time threshold constraint reduces the search
space further, i.e., we do not allow slow segments which have
shown to be uninformative.

We apply the recursive algorithm presented in [18] to check
a segment for feasibility as stated in (4). We extend this test
for maximum yaw rates and accelerations by evaluating the
roots of the appropriate polynomial. Note that these checks are
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Fig. 3. The three steps of belief prediction along a candidate polynomial
segment: (i) sample flat states, (ii) recover linearization states, (iii) propagate
the covariance along the segment using the EKF.

independent of the estimated model parameters and neglect
drag force.

VI. BELIEF PROPAGATION

Given a candidate 4D-polynomial segment and a MAV
motion and measurement model, we can predict the change of
the state covariance from an initial belief Σ0|0 to a terminate
belief ΣN |N . The PROPAGATE method shown in Algorithm
1 has three steps: (i) sample the nominal flat states along the
segment, (ii) recover and linearize the system about the full
expected states, measurements, and inputs, and (iii) propagate
the covariance using the EKF. We visualize the process in
Fig. 3 and describe the key components in the following.

A. MAV Model
We formulate the EKF for a simple multirotor dynamics

model as proposed in [19]. Our approach allows exchanging
this model for any model that needs to be calibrated, e.g., a
visual-inertial odometry model [20]. In this particular model,
the dynamic couplings of the parameters make it hard to
generate manual calibration routines [5].

The MAV state in this model consists of position p in
world frame, velocity v in base frame, attitude quaternion q
describing the rotation from inertial to base frame, angular
velocity ω in base frame and the desired physical parameters.
Aerodynamic effects are described through three coefficients
for thrust cT , drag cD, and moment cM . The moment of
inertia matrix is J = diag([jx jy jz]). We define the input
as the collection of the k rotor speeds ni, i ∈ {1 . . . k}.

x =
[
pT vT qT ωT ΘT

]T
, (15)

Θ =
[
cT cD cM jx jy jz

]T
, (16)

u = n = [n1 . . . nk]
T . (17)

The forces and moments acting on the MAV are the forces
Fi and moments Mi acting on each rotor as well as the
gravitational force such that the dynamics are given by

ṗ = CWB(q) · v (18)

v̇ =
1

m

k∑
i=1

Fi − ω × v −CT
WB(q) · G, (19)

q̇IB =
1

2

[
0
ω

]
⊗ q, (20)

ω̇ = J−1

(
k∑

i=1

(Mi + ri × Fi)− ω × Jω

)
, (21)

Θ̇ = 0, (22)

where CWB describes the rotation matrix from base to world
frame, m is the mass, ⊗ is the quaternion product, and ri is
the rotor location in the base frame with respect to the center
of gravity (CoG). The rotor force Fi is the sum of all rotor
thrusts FT,i which points upwards into Bz–direction in the
base frame. The combined rotor drag and flapping force FD,i

at rotor i counteracts the MAV’s body velocity. The rotor
moment Mi is the yaw moment induced by rotor speed ni.

FT,i = cTn
2
i Bz, (23)

FD,i = −cTn2
i

cD 0 0
0 cD 0
0 0 0

 (v + ω × ri) , (24)

Fi = FT,i + FD,i + wF , wF ∼ N (0,QF ), (25)

Mi = −εicMn2
i Bz + wM , wM ∼ N (0,QM ), (26)

where wF and wM are normally distributed white noise with
variance QF and QM to account for modeling errors.

The MAV is provided with discrete position zp,k and
attitude measurements zq,k. In this work these measurements
were provided by an external motion capture system. With this
set of measurements the EKF is able to refine the covariances.
The measurement model is given by

zp,k = pk + vp, vp ∼ N (0,Rp), (27)
zq,k = qk ⊗ vq, (28)

vq =
[
1 1

2Φ
]T
, Φ ∼ N (0,Rq), (29)

zk = [zTp,k zTq,k]
T , (30)

where vp and vq is normally distributed white noise with
variance Rp and Rq accounting for small measurement errors
in position or attitude.

B. Recovering the Nominal States and Inputs

In our formulation we assume that the MAV follows
the planned trajectories exactly. Hence evaluating position,
yaw, and its derivatives along a segment corresponds with
evaluating the nominal states. Following [16] there exists a
function f which maps the flat state σ into the full state x:

f : σ → x. (31)

Additionally, one can compute the rotor speeds given the
constant allocation matrix A, which maps rotor speeds into
torque and thrust:[

Jα+ ω × Jω
m|a + G|

]
= A · n2, (32)

where α is the angular acceleration in the base frame. This
can also be recovered from the flat state.

C. One-Step Propagation

For each time step k = 1, . . . , N the algorithm linearizes
the system equations about the maximum likelihood state. We
follow the approach presented in [21] and [22] for linearizing
the attitude dynamics. The EKF covariance propagation,
however, is computationally expensive and has to be repeated
many times for the same edge during the planners propagation



phase, e.g., if the motion generation closes a circle. In [13]
the authors introduce a method of factoring the covariance
to collapse this step by step calculation in (7 – 10) into a
single linear transfer function S0:N :[

· ΣN |N
· ·

]
=

[
I Σ0|0
0 I

]
? S0:N , (33)

where ? resembles the Redheffer star product for intercon-
necting two systems. We precompute and store S0:N for every
new edge:

S0:N = S0 ? S1 ? · · · ? SN , Sk = SCk ? SMk . (34)

The motion update SCk and measurement update SMk are

SCk =

[
Fk Qk

0 FT
k

]
, SMk =

[
I 0

−HT
k R−1

k Hk I

]
. (35)

VII. PRUNING AND OPTIMALITY

Even though we are speeding up the calculation with
polynomial segments and one-step propagations, the algorithm
still has to evaluate every new possible path combination
every time a new vertex is added to the graph. This is a
combinatorial problem, leading to an increasing growth of
beliefs and thus propagation time. In practice, the planner
soon starts spending most of its time in the exhaustive search
over all possible vertex connections.

Many of the evaluated beliefs however, are uninformative.
For example if its trajectory is slow or does not excite desired
modes. APPENDBELIEF prunes those beliefs, trading off
optimality guarantees for computational feasibility.

We consider belief ba better than belief bb if it has smaller
cost c, state uncertainty Σ, and parameter uncertainty ΣΘ.
We add the full state covariance Σ to the comparison, because
a converged state can have a positive influence on a parameter
update. We compare two matrices in a D-optimal way.

ba < bb ⇔ ba.c < bb.c ∧ ba.Σ < bb.Σ ∧ ba.ΣΘ < bb.ΣΘ

(36)

Fig. 4 shows that this pruning leads to a fraction of beliefs
and smaller uncertainty in less time. The pruning shortens
the propagation queue and allows quicker exploration of the
configuration space. The drawback of this approach is that we
lose optimality guarantees as shown for RIG by [11]. Due to
coupled terms in the state covariance, we have a submodular
utility function (2) but apply modular pruning (36).

Note that the planner was not globally optimal in the first
place, because we sample only a subspace of the configuration
space; however, as will be shown in our results, the algorithm
quickly finds a solution which sufficiently excites all modes.

VIII. RESULTS

We implemented our planner in the open motion planning
library (OMPL) [24] using C++ and evaluated it in simula-
tions and real experiments. The algorithm is tested on an
Intel Core i7-5600U CPU running at 2.60GHz with 12GB
of RAM.

Fig. 4. Median and 95%-percentile of the number of belief nodes and
the corresponding minimum uncertainty vs. the planner runtime in 100
runs. Modular pruning speeds up the convergence rate and leads to smaller
uncertainties by pruning uninformative beliefs nodes. Further the sampling-
based planner finds an informative trajectory in less than a minute which
makes it significantly faster than existing optimization-based approaches [6].
The benchmark was created with [23].

A. Simulation Based Experiments

Simulation based experiments were first conducted to allow
the extensive comparison of our method against ground truth.
We use RotorS [4] to simulate an Ascending Technology
(AscTec) Firefly hexacopter with the model given in Sec. VI-
A. An artificial Vicon motion tracking system provides noisy
position and attitude measurements with standard deviation
0.5mm and 0.1◦.

Fig. 5 shows the angular rates of a typical trajectory with
corresponding EKF parameter estimation and one sigma
bounds. Typically, the trajectories are as aggressive as possible
given the input feasibility constraints. This maximizes the
signal to noise ratio and the number of informative maneuvers
given the budget constraint. It also tends to repeat information
rich segments. Furthermore, the trajectory excites all direc-
tions to reduce uncertainty in all parameters. The planner
demonstrates a tendency to select segments that excite roll,
pitch, and yaw simultaneously to enable the observer to
distinguish between the strongly coupled parameters jz and
cM (see (21)).

In order for our approach to operate effectively, the planner
needs the ability to predict the covariance of a segment. This
can be seen in the lower part of Fig. 5 where the planner’s
predicted sigma bounds and the estimator’s sigma bounds
illustrate the quality of the belief prediction.

Next we validate the repeatability of our approach. We
plan 100 parameter estimation experiments offline, simulate
the flights, and run the proposed EKF offline to estimate
the parameters. At the beginning of each experiment we
sample the unknown physical parameters ±50% around the
ground truth values to set the planner model and initialize the
actual EKF estimation. The planner searches for only 30 s
and generates trajectories with a flight time of 30 s.

We compare our results to random trajectory calibrations.
These random trajectories are generated with the same graph
based motion planning. A trajectory with a maximum number
of different segments is then picked. This heuristic biases



Fig. 5. A typical simulated experiment: (top) angular rates vs. flight time,
(bottom) EKF parameter estimation with predicted and actual sigma bounds
vs. flight time. The planner designs an aggressive trajectory that excites all
directions. It closely predicts the estimator’s covariance. This allows the
algorithm to generate a trajectory with low parameter uncertainty. Even a
difficult to observe parameter like jz converges within less than 7 s of flight
data.

Fig. 6. Relative final estimation error (RE) vs. final sigma bounds for 100
simulated parameter estimation experiments with random initial parameter
guess. The plot shows the results for random (RAND) and optimized (DOPT-
COV) calibration trajectories. Our planner leads to smaller uncertainties and
errors in parameter estimates. In particular, the strongly coupled parameters
jz and cM are estimated with more confidence.

the random planner towards exciting all directions and fast
maneuvers.

Fig. 6 shows the final sigma bounds and estimation errors
for our optimized and random trajectories. Utilization of the
proposed planner leads to smaller final uncertainty for all
parameters. This is of particular importance for the coupled
parameters that are inherently more challenging to accurately
identify. We do not show jy since the platform is almost
symmetric. The thrust constant cT converges already at
hovering without any special calibration routine.

Finally, we show the convergence speed and repeatability
with our approach in the statistical summary in Fig. 7. Tab. I
quantifies the results of the statistical evaluation. We achieve
more than 4× faster convergence for jx with our optimized
trajectories. On average, the planner reduces the amount
of data the estimator requires by 13 s or 70% compared to
random trajectories. Furthermore, the median final uncertainty
(2) is more than 4× smaller with our proposed planner which

Fig. 7. Median and 95%-percentiles of EKF parameter estimations vs.
flight time for 100 simulated parameter estimation experiments with random
initial guess. The plot shows the results for random (RAND) and optimized
(DOPT-COV) calibration trajectories. Our planner reduces convergence time
and converges in all experiments showing repeatability of the approach.

makes our estimates more confident.
The results support our major claims: (i) the algorithm

closely predicts the EKF parameter covariance, (ii) it covers a
sufficient subspace of motions, (iii) it repeatably and quickly
generates persistently exciting trajectories, (iv) it outperforms
random trajectories, and (v) unlike random trajectories it
actively selects trajectories that excite modes that are hard to
observe.

B. Real Platform Experiments

In a second set of experiments, we validated our approach
on a real AscTec Firefly with a Vicon motion tracking system
and parameter independent nonlinear model predictive control
(MPC) [25]. An example trajectory and the MAV executing
this trajectory are shown in Fig. 1. Fig. 8 shows the actual
parameter estimate outcome for 5 optimized trajectories
starting from a fixed initial guess. Each trajectory was
executed 3 times to check the repeatability of the resulting
estimates. The planner excites roll and pitch such that jx and
jy converge quickly, in less than 10 s, towards reasonable
values. We can observe that the estimates are consistent, but
one of the trajectories, the green one, differs in the final value
for jy .

PARAMETER PLANNER
DOPT-COV RAND

CONV TIME

cT 0.05 s 0.01 s
cD 2.32 s 4.37 s
cM 6.64 s 22.06 s
jx 1.62 s 6.49 s
jy 3.17 s 5.69 s
jz 6.46 s 20.01 s

DOPT ALL 2.72× 10−10 1.21× 10−9

TABLE I

Convergence time of the median of the estimates (CONV TIME) and the
median of the final D-optimal uncertainty (DOPT) from our 100 simulated
estimates. We consider the median being converged when it reaches a ground
truth error of less than 5% and stays constant. Calibrations on our optimized
datasets require on average 70% less data and are 4× more confident than
calibrations on randomly generated data.



Fig. 8. 15 real system identification experiments with 5 different optimized
trajectories. Each trajectory is executed 3 times to show the influence of the
trajectory on the EKF parameter estimation. The values quickly converge
towards reasonable values in less than 10 s. Only for the green trajectory
the value differs significantly. We conclude that this trajectory most likely
triggers effects that were not modeled in our EKF implementation.

An important finding from this result is that our simplifica-
tions to the implemented model might be too strong for the
real system. Because the estimation bias occurs on the same
trajectory repeatably, we conclude they stem from unmodeled
aerodynamic effects and sensor delays. The EKF becomes
overconfident on a particular motion. We still think that
this trajectory is informative and we suggest either using a
different estimator, e.g., a batch optimization [5] to perform
the actual estimation on the sensor data or a more elaborate
MAV model.

IX. CONCLUSION

We have presented a motion planning algorithm for finding
maximally informative system identification experiments. The
system is fully automated and therefore no expert knowledge
about which motions to perform to achieve a good calibration
is needed. Furthermore, our planner requires minimum tuning
effort and no teleoperated flight skills. While we focus on
MAV model identification, one can easily adapt the framework
for any kind of robot configuration.

Performing the sampling in the MAVs flat space and
calculating a one-step propagation function between two
samples, the planner is able to efficiently search the robot’s
belief space. Unlike optimization based approaches our
sampling-based approach can find a good solution after a
few seconds, making it suitable for in-field calibration. Our
method also does not require any initial guess for the trajectory
which is otherwise required to avoid falling into a local
minimum.

We showed in simulation that, on average, in only 30 s
runtime our planner creates trajectories which lead to more
than 4× quicker and more confident parameter estimates than
random trajectories. Real experiments confirm the feasibility
of our approach and emphasize the importance of a good
model and calibration routine for MAV parameter estimation.
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