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Adaptive trajectory control of off-road mobile robots: A multi-model
observer approach

Mathieu Deremetz1, Roland Lenain1, Benoit Thuilot2,3, and Vincent Rousseau1

Abstract— In this paper, the problems associated with accu-
rate path tracking control in off-road conditions is addressed
with model-based adaptive control. In particular, the estimation
of grip conditions is investigated through the derivation of a new
observer and by gathering kinematic and dynamic models into
a single framework. This new reference point employs a unique
observer regardless of the velocity of the robots. Previous
approaches necessitated the switching of models depending
upon the phenomena encountered as well as robot dynamics.
The observer proposed here allows an accurate and reactive
estimation of sliding. This permits to feed relevantly a control
law based on an extended kinematic model, enabling accurate
path tracking, even in harsh conditions and when facing
significant dynamic effects such as spin around.

I. INTRODUCTION

Multiple industries, ranging from defense to agriculture,
may benefit from the development of off-road autonomous
mobile robotics. Such devices can efficiently and effectively
help men and women to achieve painful or hazardous tasks.
As a result, off-road applications are currently the object
of intensive research, especially in the field of agriculture.
These applications imply the implementation of actions
(e.g., terrain crossing, posture stabilization, path tracking)
submitted to very harsh and variable conditions. Despite
these ever-changing and difficult grip conditions, robots have
to be stable and accurate to ensure efficiency. This is not
guaranteed by classical approaches [16], since they rely on
the assumption of pure rolling without sliding conditions for
different kinds of robots based on the classification of models
introduced in [4]. These concepts are therefore appropriate
when a robot moves on an almost flat, urban ground surface
at low speed but are inaccurate on slippery ground [9].

Therefore, to increase the accuracy of path tracking in
natural environments or in harsh conditions, new kinds
of controls must be designed to account for varying grip
conditions. Several approaches have been proposed in the
framework of path following. First, sliding effects can be
considered as a perturbation [1], which can be rejected with
robust control techniques [15]. This effectively avoids the
modeling of grip conditions, but often appears conservative.
Another way to tackle sliding is to employ a model-based
adaptive approach. This can be achieved by using extended
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kinematic models at low speeds, such as in [3] for car-
like mobile robots and in [19] for a generalized scenario.
However, such models and their associated observers are
poorly suited for high speeds, since dynamic effects cannot
be neglected. As a result, dynamic models need to be intro-
duced. This has been proposed in previous work [14] using a
model based on a partial dynamic model. Nevertheless, if the
robot has to stop during its trajectory, the sliding observer
associated with these models is irrelevant. It imposes to
implement a speed threshold in algorithms to stop sliding
estimation close to zero speed. Consequently, path following
displays a lack of accuracy when the robot is forced to start
and stop. The latter observer is also a concatenation of three
estimation methods, which require more computing time to
deliver the observation of the sliding.

In this paper, a new adaptive approach is proposed. It in-
tegrates an extended kinematic model and a dynamic model,
and permits an estimation of sideslip angles independent
from the robot velocity and ground surface variations. These
estimations are then used to feed the adaptive and predictive
control law proposed in [6] to control the steering angle of
the front wheels of the robot and allow it to follow a path
with a possible desired lateral offset.

This paper is composed as follows. First, the extended
kinematic and dynamic models are recalled. The second
part details previous work concerning the observation of
lateral grip conditions, while the third section describes the
proposed observer based on a multi-model. Then, the steering
angle control is recalled from previous work. Finally, full-
scale experiments are conducted to demonstrate the results
and the efficiency of the proposed approach.

II. MODELING
A. Mobile robot modeling

The ambition of the proposed application is to allow for a
mobile robot to follow a previously defined trajectory (i.e.,
computed or previously learned). This trajectory may include
turns and ground variations such as slopes as well as grip
condition modifications. To ensure accurate tracking, it is
appropriate to use a model that takes into account the entire
kinematics and dynamics of the robot.

In this paper, the mobile robot is a two-wheel drive
vehicle. As is commonly perceived, the robot is viewed as
a bicycle, with an equivalent front steering angle δF and a
wheelbase L (Figure 1). The robot speed v is defined as the
speed of the rear axle. This kind of model is commonly used
in the field of mobile robotics, but generally supposes that the
rolling without sliding condition is satisfied. In an off-road
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context,however, the assumption of rolling without sliding
cannot be satisfied and introduces a tracking error when
a control based on such a model is utilized. To overcome
this phenomenon and consider non-ideal grip conditions in
this model, two additional variables, βF and βR, are added.
These variables, called sideslip angles, denote the front and
rear angles, respectively, between the tire orientation and the
current speed vector orientation at the contact points F and
R. Thus, to follow the previously defined trajectory Γ, state
variables of the robot are defined as follows:
� s, the robot curvilinear abscissa. It is the curvilinear

distance along Γ of point M , the point on Γ that is the
closest to R. The curvature of Γ at point M is denoted
c(s).

� y, the robot tracking error or lateral deviation. It is the
algebraic distance between R and M .

� θ̃, the robot angular error or angular deviation. It is the
angle between the absolute robot heading, denoted θ,
and the orientation of the tangent to the trajectory at
point M , denoted θtan.

Fig. 1: Extended kinematic model of the robot with respect
to reference trajectory Γ

Such a kinematic model is not sufficient in high dy-
namic conditions; it remains representative of circumstances
utilizing low- and medium-speed path tracking with large
curvature on nearly flat surfaces. However, when high speeds
are considered, dynamical phenomena cannot be neglected;
thus, this kinematic model cannot describe accurately robotic
motion. To go further and preserve model accuracy at high
speeds, an additional model, defined in Figure 2 and based
on dynamic equations, is considered. This model, which acts
as an addition to the extended kinematic model, possesses a
description of the sideslip angles βF and βR.

Integrating dynamic phenomena necessitates the location
of the center of mass G. This center of mass is positioned
along the robot centerline through two parameters, LF and
LR, which denote the front and rear wheelbases, respectively.
It is assumed that the whole load, which relies on the mass
m and the gravity g, is applied at this point G. The speed
of the center of mass is denoted vG, and the robot moment
of inertia around the vertical axis (Z) is denoted Iz .

The robot is still perceived as a bicycle; consequently,
only the two lateral contact forces FF and FR must be
defined, which represent the lateral contact forces applied to
the front and rear axles, respectively. When the robot moves

on a slope, the gravity applies a force of mg sin(α) on the
sideway, where α denotes the roll angle of the chassis. Since
only the path tracking is considered, longitudinal influences
of this force as well as longitudinal contact forces are
neglected. Thus, dynamic theorems lead to state variables
defined as follows:

� β, the global sideslip angle of the robot. It is the angle
between the orientation of the speed vector at G (vG)
and the absolute robot heading.

� θ̇, the yaw speed of the robot. It is the angular speed
of the robot chassis around the vertical axis Z.

Fig. 2: Dynamic model of the robot

To solve this dynamic model, the lateral forces FF and FR
must be estimated. For this purpose, many contact models
may be considered, such as those discussed in [17], [10]
and [11]. A common thread in all tire/road models is the
relationship between force and the sideslip angle. However,
this empirical model requires the prior knowledge of many
parameters that strongly influence the trend of the curve.
Despite this drawback, it should be noted that the global
shape is always the same. Two sections can be distinguished:
the first is a pseudo-slide zone for low sideslip angles, and the
second is a constant overload zone for high sideslip angles.

To avoid the use of many parameters, which depend on
the natural context and are difficult to identify, the following
linear model (1) is considered. Two coefficients, CF and
CR, are defined, respectively, for the front and rear cornering
stiffnesses. {

FF = CF (.)βF
FR = CR (.)βR

(1)

To obtain a coherent contact model, it is essential to
take into account the non-linear variations of the ground
conditions and the variation of properties due to vertical load
and ground modifications. Thus, each cornering stiffness is
considered to be variable so that a representative dynamic
model can be obtained. The contact then becomes represen-
tative of non-linear behaviors (even if the sideslip angles are
significant), and enables the consideration of variations in the
grip conditions. This on-line adaptation, ensuring the model
representation, is considered in section III.

Eventually, a combined model is obtained and used for the
purpose of determining the parallel kinematics and dynamics
of the robot. Details about the kinematics and dynamic
equations are mentioned in the following subsections.
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B. Location and deviation equations with respect to the
reference trajectory

According to classical kinematic analyses, such as is
presented in [12], derivatives of the robot kinematic state
variables (2) introduced above can be written as follows:



ṡ = v
cos (θ̃ + βR)

1− c(s) y

ẏ = v sin (θ̃ + βR)

˙̃
θ = θ̇ − θ̇tan = v cos (βR)

tan (δF + βF )− tan (βR)

L
− . . .

. . . v
c(s) cos (θ̃ + βR)

1− c(s) y
(2)

This model is defined if the 1−c(s) y 6= 0 condition is true,
which means that the center of curvature A should not be
superimposed with the center of the rear axle R. However, if
the robot is properly initialized, such a case is never reached
in practice.

C. Dynamic equations

Similarly, according to classical dynamic analyses, such as
is presented in [13], derivatives of the robot dynamic state
variables (3) and related variables (4) introduced above can
be written as follows:


θ̈ =

1

Iz
(LR CR βR − LF CF βF cos (δF ))

d(vG sin(β))
dt

=
(CF βF cos (δF ) + CR βR)

m
− . . .

. . . g sin(α) + v cos(βR) θ̇

(3)

In addition:


β = arctan

(
LR tan (βF+δF )+LF tan (βR)

L

)
vG =

v cos (βR)

cos (β)

(4)

The derivative of the state variable vG sin(β) is highly
recommended in its given form to avoid division by zero
(induced by a zero speed) which results in a singularity and
disrupts the continuity of the algorithms. This formula is used
in section IV to define the evolution model of the proposed
observer.

III. PREVIOUS ESTIMATION OF SIDESLIP
ANGLES AND CORNERING STIFFNESSES

To obtain accurate path tracking based on an adaptive and
predictive control law, which is detailed in section V, it is
compulsory to retrieve real-time values for the sideslip an-
gles, βF and βR, and the cornering stiffnesses, CF and CR,
regardless of the dynamic variations of the robot. However,
the direct measure of these variables is hardly feasible using
sensors. As a consequence, these values must be indirectly
estimated.
Such estimations, which have been previously developed
[14], require three observation steps to obtain suitable and re-
active values. First, the sideslip angle β is computed through

the first line of (4) using estimations of the sideslip angles
based on an extended kinematic model [12]. Subsequently,
an observer, which is based on the dynamic equations (3),
is used to compute the lateral forces FF and FR. From
these estimations, and by relying on (1) in conjunction with
the calculation method known as the MIT Rule [2], it is
then possible to obtain suitable estimations for the cornering
stiffnesses. Finally, an algorithm estimates the dynamic states
of the mobile robot to readjust the kinematic sideslip angles
into dynamic ones and improve reactivity. Nevertheless, a
singularity appears when the robot stops, and instability at
low speeds may occur because of division by the value of
the speed in the linearized models used in each observer
algorithm.

To avoid estimation issues when the speed is null or low, a
kinematic observer described in [8] is proposed. Its evolution
model is based on (2), and may be written as follows:

ξ̇ =

[
ξ̇dev
ξ̇βi

]
=

[
f(ξdev, ξβi , v, δ)

02×1

]
(5)

where ξ is split into two sub-states:
� ξdev = [y θ̃]T , which constitutes the deviations of the

robot with respect to the trajectory Γ.
� ξβi = [βF βR]T , which is composed of the sideslip

angles, to be estimated.
and where f(ξdev, ξβi , v, δ) is directly deduced from the
last two lines of model (2).

Hereafter, ξ should be considered as an effectively
measured variable, while ξ̂ should be considered as
an observed or estimated variable. ξ̃ is defined as the
observation error ξ̃ = ξ − ξ̂.

In consideration of the candidate Lyapunov function (6),
which is the norm of the state ξ, it has been shown in
[8] that the whole observer state ξ̂ converges to the actual
state ξ. Moreover, the structure of this observer does not
necessitate the linearization of the extended kinematic model
and consequently avoids singularities close to zero speed.

V =
1

2
Kβ ξ̃

T
dev ξ̃dev +

1

2
ξ̃Tβi ξ̃βi (6)

However, this observer does not take into account the
dynamic behavior of the robot. Consequently, its estimated
values are not relevant when the robot suffers important
dynamic effects such as those experienced at high speed or
on a tilted path.

It is therefore relevant to design an observer which is
able to estimate reactive values of the lateral effects with
an optimized computing time regardless of the dynamic
phenomena and that can avoid a singularity at zero speed.
Such an observer is proposed in the following section.
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IV. PROPOSED OBSERVER

In this section, a new one-step observer is proposed
and is developed based on the observer structure described
previously in [8]. The major feature of the proposed observer
is the integration of kinematic and dynamic models into a
common state vector with the ambition of instantly obtaining
suitable and reactive estimations of sideslip angles and
cornering stiffnesses. By using a relevant state space model,
this observer also permits estimations regardless of the speed
of the robot.

For this purpose, let us consider the state vector ξ defined
as follows:

ξ =


ξdev
ξdyn
ξβi
ξCi

 (7)

The state vector ξ is further split into four sub-states:
� ξdev and ξβi are the same as in (5).
� ξdyn = [θ̇ (vG sin(β))]T , which constitutes the dy-

namic variables of the robot.
� ξCi = [CF CR]T , which is composed of the cornering

stiffnesses, to be estimated.
In this state space description, only ξdev and θ̇ are sup-

posed to be measured, as highlighted in section V. Moreover,
the steering angle δF , and the velocity v are measured
and considered as variable parameters. Since the proposed
observer supplies the value of ξ̂βi , an estimation of vG sin(β)
is made possible thanks to (4) and is considered as a virtual
measure even if it is retrieved as a consequence of estimated
values. This is possible due to the choice for observer gains
defining its dynamics. Indeed, the convergence for ξ̂βi is
chosen faster than for ξ̂dyn, and can then be assumed to be
a measured value. As a result, in the following section, the
two sub-states ξdev and ξdyn are supposed to be measured.

A. Observer equations

Equations for the proposed observer are as follows:

˙̂
ξ =


˙̂
ξdev
˙̂
ξdyn
˙̂
ξβi
˙̂
ξCi

 =


f(ξdev , ξ̂βi , v, δ) + αdev(ξ̃dev)

g(ξdyn, ξ̂βi , ξ̂Ci , v, δ) + αdyn(ξ̃dyn)

αβi (ξ̃dev , ξ̃dyn)

αCi (ξ̃dyn)


(8)

The functions f(ξdev, ξ̂βi , v, δ) and g(ξdyn, ξ̂βi , ξ̂Ci , v, δ)
are directly deduced from the last two lines of models (2)
and (3). αdev , αdyn, αβi and αCi are functions that must
be judiciously chosen to ensure the convergence of ξ̃ to
zero. The ultimately estimated sub-states ξ̂βi and ξ̂Ci will
be considered as suitable estimations for the robot lateral
dynamics.

There are no available equations related to sideslip angles
and cornering stiffness evolutions, β̇F , β̇R, ĊF and ĊR.
Consequently, ξ̇βi and ξ̇Ci are each set to 02×1.

Proposition:

The choice (9) for feedback functions introduced in (8)
ensures the convergence of ξ̂→ ξ. In particular, it permits the
estimation of sideslip angles for their actual but not measured
values.



αdev(ξ̃dev) = Kdev ξ̃dev
αdyn(ξ̃dyn) = Kdyn ξ̃dyn

αβi (ξ̃dev , ξ̃dyn) =
Kβ
Kα

[
∂f
∂ξβi

(ξdev , ξ̂βi , v, δ)

]T
ξ̃dev + . . .

. . . KC
Kα

[
∂g
∂ξβi

(ξdyn, ξ̂βi , ξ̂Ci , v, δ)

]T
ξ̃dyn

αCi (ξ̃dyn) = KC

[
∂g
∂ξCi

(ξdyn, ξ̂βi , ξ̂Ci , v, δ)

]T
ξ̃dyn

(9)

such as:

� Kdev and Kdyn are each 2 × 2 positive diagonal
matrices.

� Kβ , KC and Kα
1 are positive scalars.

B. Proof

From (8), the derivative of ξ̃ can be computed as:

˙̃
ξ =


˙̃
ξdev
˙̃
ξdyn
˙̃
ξβi
˙̃
ξCi



=



f(ξdev, ξβi , v, δ)− f(ξdev, ξ̂βi , v, δ)− . . .

. . . αdev(ξ̃dev)

g(ξdyn, ξβi , ξCi , v, δ)− g(ξdyn, ξ̂βi , ξ̂Ci , v, δ)− . . .

. . . αdyn(ξ̃dyn)

−αβi(ξ̃dev, ξ̃dyn)
−αCi(ξ̃dyn)


(10)

Considering the linearization of function f(ξdev, ξβi , v, δ)
around the estimated sideslip angles ξ̂βi , f can be rewritten
as follows:

f(ξdev , ξβi , v, δ) =

f(ξdev , ξ̂βi , v, δ) +
∂f
∂ξβi

(ξdev , ξ̂βi , v, δ) ξ̃βi +O(ξ̃2βi
)

(11)

Considering the linearization of function
g(ξdyn, ξβi , ξCi , v, δ) around the estimated sideslip angles
ξ̂βi and the cornering stiffnesses ξ̂Ci , g can be rewritten as
follows:

g(ξdyn, ξβi , ξCi , v, δ) =

g(ξdyn, ξ̂βi , ξ̂Ci , v, δ) + ∂g
∂ξβi

(ξdyn, ξ̂βi , ξ̂Ci , v, δ) ξ̃βi + . . .

. . . ∂g
∂ξCi

(ξdyn, ξ̂βi , ξ̂Ci , v, δ) ξ̃Ci +O(ξ̃2βi , ξ̃
2
Ci

)

(12)
One then acquires the following observation error dynam-

ics:

1Kα allows the balancing of Kβ and KC and then balances the influence
of kinematics and dynamics on sideslip estimations
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˙̃
ξ =


˙̃
ξdev
˙̃
ξdyn
˙̃
ξβi
˙̃
ξCi



=



∂f
∂ξβi

(ξdev, ξ̂βi , v, δ) ξ̃βi − αdev(ξ̃dev)
∂g
∂ξβi

(ξdyn, ξ̂βi , ξ̂Ci , v, δ) ξ̃βi + . . .

. . . ∂g
∂ξCi

(ξdyn, ξ̂βi , ξ̂Ci , v, δ) ξ̃Ci − αdyn(ξ̃dyn)

−αβi(ξ̃dev, ξ̃dyn)
−αCi(ξ̃dyn)


(13)

Let us consider the candidate Lyapunov function, (14),
defined from the whole observation error:

V =
1

2
Kβ ξ̃

T
dev ξ̃dev +

1

2
KC ξ̃

T
dyn ξ̃dyn +

1

2
Kα ξ̃

T
βi
ξ̃βi +

1

2
ξ̃TCi ξ̃Ci

(14)

The derivative of (14) considering the solutions of system
(13) is:

V̇ = Kβ

[
∂f

∂ξβi
(ξdev , ξ̂βi , v, δ) ξ̃βi − αdev(ξ̃dev)

]T
ξ̃dev + . . .

. . .KC

[
∂g

∂ξβi
(ξdyn, ξ̂βi , ξ̂Ci , v, δ) ξ̃βi + . . .

. . .
∂g

∂ξCi
(ξdyn, ξ̂βi , ξ̂Ci , v, δ) ξ̃Ci − αdyn(ξ̃dyn)

]T
ξ̃dyn − . . .

. . .Kα ξ̃
T
βi
αβi (ξ̃dev , ξ̃dyn)− ξ̃TCi αCi (ξ̃dyn) (15)

After injecting the expressions in (9), the derivative func-
tion V̇ can be shown to be:

V̇ = −Kβ Kdev ξ̃Tdev ξ̃dev −KC Kdyn ξ̃
T
dyn ξ̃dyn (16)

which is negative, and implies that ξ̃dev and ξ̃dyn converge
to zero. Hence, by using the Krasovskii-LaSalle theorem, ξ̃βi
and ξ̃Ci also converge to zero so long as the mobile robot is
subjected to lateral effects. Then, ξ̂βi → ξβi . Finally, these
estimations can be used for robot control.

V. CONTROL ALGORITHMS

Since relevant values of β̂F and β̂R are available, model
(2) is entirely known and may be used to process path
tracking controls. To properly accomplish this objective, a
front-steering adaptive control law has been used to ensure
the convergence of lateral deviation y to zero regardless of
the speed. Moreover, to anticipate trajectory overshoots due
to the actuator settling time, a predictive curvature servoing
has been implemented. Only a few details about these control
algorithms are given in this section, since this approach has
been previously proposed in [18].

A. Adaptive control algorithm

As model (2) is structurally close to classical kinematic
models, it can be transformed into a chained form. Exact
linearization techniques can then be used, after which front
steering control law can be obtained:

δF = arctan
[
tan(β̂R) +

L

cos(β̂R)

(
c(s) cos γ

α
+
A cos3 γ

α2

)]
−β̂F

with:


γ = θ̃ + β̂R

α = 1− c(s) y
η = tan γ

A = −Kp y −Kd αη + c(s)α tan2γ
(17)

where Kp and Kd are positive gains that are homogeneous
to proportional and differential actions.

B. Predictive curvature servoing

Next, the steering law (17) can be split into two terms,
wherein predictive techniques can be applied to the first term:

δF = δPredTraj + δDeviation (18)

where,
� δPredTraj depends primarily on curvature and ensures the

equality between the trajectory and vehicle curvature.
Since the reference path curvature can be anticipated,
the term δPredTraj is designed from a model predictive
control approach, making use of the future curvature
of the reference path.

� δDeviation ensures the convergence of the lateral de-
viation to zero from the previously measured lateral
deviations and previously estimated grip conditions. It
is straightforwardly computed from (17).

Details of this approach can be found in [6].

VI. SIMULATION AND EXPERIMENTAL RESULTS

Fig. 3: Experimental platform and its simulator

TABLE I: Robot features

Weight (m) 420 kg
Wheelbase (L) 1.2m

Maximum steering angle 20◦

Steering angle response time 0.4 s
Maximum speed 8m.s−1

Making use of the proposed estimation strategy, the pre-
vious adaptive and predictive control algorithms have been
tested using a MATLAB/ADAMS co-simulator and through
full-scale experiments with the mobile robot depicted in
Figure 3. This robot is electrical, is four-wheel drive and has
a front steering axle. It is able to reach a maximum speed
of 8m.s−1 and is equipped with an IMU and a RTK-GPS
(2-centimeter accuracy at 10 Hz), which are located at the
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middle of the rear axle. It has been specifically developed for
testing algorithms dedicated to off-road low- and high-speed
motion, and has the features described in Table I.

A. Simulation Results

Controlling a robot equipped with algorithms that pos-
sess singularities can be dangerous for men and may de-
teriorate the robot. As a consequence, it is relevant to
compare the continuity of the proposed observer and the
previous dynamic observer at low- and zero speed on a
MATLAB/ADAMS co-simulator.

A trial was carried out at low speed (3m.s−1) on a flat
surface with a stopping point in the middle of the trajectory.
The results for the 3m.s−1 trial are depicted in Figures 4,
5 and 6.

Figure 4 illustrates the mobile robot trajectory in blue and
the proposed observer with respect to the reference path in
black. Figures 5 and 6 demonstrate the front and the rear
sideslip angle estimations of the robot for each observation
case.

It is apparent in Figure 4 that the path tracking is not
spoiled at low and zero speeds when the proposed observer is
used. This is not the case for the previous dynamic observer,
because a divergence of the sideslip angles can be noticed
in Figures 5 and 6 when the speed of the robot is nearly
zero (i.e., when the time is between 15 and 17 seconds).
This divergence of the sideslip angles leads to a divergence
of δF . The result of the path following with the previous
observer is not displayed in Figure 4 because the robot was
unable to accomplish path tracking after the stopping point.

Fig. 4: 3m.s−1 path tracking results with stopping point

Fig. 5: 3m.s−1 rear sideslip angle estimation with
stopping point

Fig. 6: 3m.s−1 front sideslip angle estimation
with stopping point

B. Experimental Results

1) Path definition: To generate observable phenomena,
the trajectory depicted in Figure 7 has been chosen as the
path to be followed. This trajectory is relevant because it is
composed of a set of tracking situations that test the proposed
observer in each dynamic case:
� Case 1: straight line and S-bend on a flat surface,

illustrated in Figure 8.1
� Case 2: bend on a surface with a varying slope (flat →

15-degree slope → flat), illustrated in Figure 8.2
� Case 3: straight line tracking on a 15-degree slope,

illustrated in Figure 8.3

Fig. 7: Trajectory chosen for the experiments

Fig. 8: Pictures of the robot during trials

2) Sideslip estimation and path tracking: A set of trials
have been conducted at high speeds (4 − 6m.s−1). The
results for the 5m.s−1-trial are depicted in Figures 9 and
10. For these trials, the values of the gains have been chosen
as follows: Ky = Kθ̃ = 15, Kθ̇ = Kvβ = 20, Kβ = 2 . 1012,
Kα = 5 . 1011, KC = 5 . 107.

Figure 9 shows the mobile robot trajectory with the pro-
posed observer, the previous dynamic observer and without
an observer. Figure 10 demonstrates the lateral deviations of
the robot with respect to the trajectory for each observation
case.
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It is apparent in Figures 9 and 10 that the path tracking
is not spoiled at high speeds when the proposed observer
is used instead of the previous dynamic observer. Indeed,
lateral deviations are closely similar all along the trajectory,
and do not exceed the thresholds defined by ± speed10 , which
validates the reliability of the tracking. Moreover, it can be
observed that the non-implementation of a sliding observer
harms the path tracking quality, especially when dynamic
phenomena (bends and variable slopes) appear and when the
speed increases.

Fig. 9: 5m.s−1 path tracking results

Fig. 10: 5m.s−1 lateral deviation results

VII. CONCLUSION

This paper proposes a control strategy to be utilized for
a mobile robot to follow a path in an off-road context.
Because of harsh grip conditions and ground variations,
classical models based on rolling without sliding assumptions
cannot be used with satisfactory accuracy. The dynamic
observer derived within previous research can supply ef-
ficient results but has to be stopped each time the robot
speed approaches zero, leading to transient unsatisfactory
behaviors when the robot is restarted. Here, a new model-
based adaptive approach is proposed to estimate on-line the
lateral dynamics of the robot in harsh conditions with no
singularity at zero speed. By integrating the dynamic model
in observer equations, it has been proven that an estimation
of sliding variations can be obtained for all of the range
of speeds and ground geometries. The compact observer
structure also saves computation time compared to other
dynamic observers. As shown in the experimental section,
the combination of the new observer with a predictive low
obtains a more highly accurate path tracking regardless of
the speed and the dynamic perturbations encountered in the
natural environment. Future work will be focused on the
implementation of a predictive algorithm that integrates parts
of the adapted dynamic parameters ĈF and ĈR to further
increase the accuracy of path tracking.
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