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Abstract— In robotics, it is often practically and theoretically
convenient to design motion planners for approximate low-
order (e.g., position- or velocity-controlled) robot models first,
and then adapt such reference planners to more accurate high-
order (e.g., force/torque-controlled) robot models. In this paper,
we introduce a novel provably correct approach to extend
the applicability of low-order feedback motion planners to
high-order robot models, while retaining stability and collision
avoidance properties, as well as enforcing additional constraints
that are specific to the high-order models. Our smooth extension
framework leverages the idea of reference governors to separate
the issues of stability and constraint satisfaction, affording
a bidirectionally coupled robot-governor system where the
robot ensures stability with respect to the governor and the
governor enforces state (e.g., collision avoidance) and control
(e.g., actuator limits) constraints. We demonstrate example
applications of our framework for augmenting path planners
and vector field planners to the second-order robot dynamics.

I. INTRODUCTION

A long-standing open challenge of robotics is the design of

provably correct computationally efficient feedback motion

planners that can simultaneously handle kinematic (e.g.,

collision avoidance) and dynamics (e.g., velocity and acceler-

ation saturation) constraints, and guarantee global navigation,

if possible [1]. The traditional, theoretically sound, and prac-

tically feasible approach partially addresses this problem in

two steps: first design a motion plan for an approximate low-

order robot model, and then extend this reference plan to a

more accurate high-order robot model [2]. It is the latter that

motivates the present paper. Given a feedback motion planner

that solves the collision-free global navigation problem for

a low-order (e.g., position- or velocity-controlled) system

model, we propose a new provably correct computationally

efficient approach to extend the given reference planner to

a high-order (e.g., force-controlled) system model, while

maintaining stability and invariance properties.

A. Motivation and Prior Literature

That the “natural motion” of dissipative mechanical sys-

tems causes the system energy to decay — an observation

made by Lord Kelvin [3] — motivates the idea of pro-

gramming reference dynamics in mechanical systems using

total energy [2], [4], [5], which is summarized in details in

Section II-A. In motion planning, the negated gradient field

of navigation functions that solves the collision-free (almost)

global navigation problem for the first-order (fully-actuated
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single-integrator) robot model are further extended to the

second-order (fully-actuated double-integrator) robot dynam-

ics, using the total energy of Lagrangian systems with dis-

sipative external forces, while retaining global convergence

and collision avoidance guarantees [6]. In general, smooth

extensions of rather generic vector fields, with known Lya-

punov functions, can be constructed using total energy, but

the resulting policies can only ensure local stability and offer

no assurance of collision avoidance [7]. In [8], instead of

total energy, a similar approach based on angular momentum

is utilized to design a locally stable reorientation controller

for a second-order tailed biped robot that tracks reference

dynamics constructed for a simplified kinematic model.

Although the limit behavior of its gradient field can be

exactly embedded in the second-order robot dynamics with

guaranteed collision avoidance, finding or constructing a

navigation function for an arbitrary environment is known to

be very hard. This issue of navigation functions is mitigated

in [9] by using sequential composition [10] of smooth

extensions of local feedback rules. Approximation simulation

[11] is another smooth extension method that aims to keep

the spatial distance between the low-order and the high-order

models bounded, but is too restrictive and computationally

costly. Also, backstepping is applied to extend only stability

properties of kinematic unicycles to dynamic unicycles [12].

B. Contributions and Organization of the Paper

This paper proposes a new approach to extend stability and

invariance properties of low-order feedback motion planners

to high-order robot models in a provably correct and compu-

tationally efficient way. Like the total energy based smooth

extensions [4], our construction uses sublevel sets of total

energy to ensure stability and to guard against collisions,

but, instead of simultaneously tackling stability and collision

avoidance requirements, it separates the problems of stability

and constraint enforcement via reference governors [13]. We

introduce a new concept of a bidirectionally coupled robot-

governor system, where the second-order robot asymptoti-

cally chases the governor irrespective of state and control

constraints and the first-order governor enforces constraint

satisfaction while following the flow of the reference dy-

namics as closely as possible. A significant property of our

smooth extension framework is that it only requires the local

knowledge of the environment.

This paper is organized as follows. Section II presents

a formal statement of the smooth extension problem, and

provides an overview of total energy based smooth exten-

sions of gradient fields and reference governors. Section III,



comprising the central contribution of the paper, constructs

and analyzes our reference governor based smooth extension

framework. Section IV presents example applications of the

proposed framework for augmenting path and vector field

planners to the second-order robot. Section V concludes with

a summary of our contributions and future work.

II. PROBLEM FORMULATION

For ease of exposition, we consider a disk-shaped robot,

of radius r ∈ R>0 centered at x ∈ W, moving in a closed

compact environment W in the n-dimensional Euclidean

space Rn, where n ≥ 2, possibly punctured with m ∈ N

open sets O := {O1, O2, . . . , Om}, representing obstacles.

Therefore, the free space F of the robot is given by

F :=
{
x ∈ W

∣∣∣B (x, r) ⊆ W \
⋃m

i=1
Oi

}
, (1)

where B (x, r) :=
{
q ∈ Rn

∣∣ ‖q− x‖ ≤ r
}

is the closed ball

centered at x with radius r, and ‖.‖ denotes the standard

Euclidean norm. In this paper, we assume that the free space

is path-connected to ensure that global navigation is possible.

Smooth Extensions of Vector Field Planners. Suppose v :
F → Rn is a Lipschitz continuous vector field planner for the

first-order (fully-actuated single-integrator) robot dynamics,

ẋ = v (x) , (2)

that leaves the robot’s free space F positively invariant and

asymptotically steers almost all robot configurations 1 in F

to any given goal location x∗ ∈ F.

A smooth extension of vector field v is a construction of a

Lipschitz continuous vector field planner uv : F×Rn → Rn

that embeds (the limit behavior of) v in the the second-order

(fully-actuated double-integrator) robot dynamics,

ẍ = uv (x, ẋ) , (3)

such that uv asymptotically steers almost all zero velocity 2

initial configurations 3 F×{0} to the goal location x∗ while

avoiding collisions along the way.

In brief, smooth extensions of low-order vector field plan-

ners to a high-order dynamical system aims to augment the

stability and invariance properties to the high-order system.

A. Smooth Extensions of Gradient Dynamics via Total Energy

A standard example of smooth extensions of dynamical

systems is the embedding of an artificial potential field, that

is constructed as the negated gradient of a scalar valued

function, in second-order dynamics using the total energy

1It is known both in topology [14] and dynamical systems theory [15]
that a continuous global motion planner in a configuration space X exists
if and only if X is contractible. Since the free space of a robotic system is
generally non-contractible, the domain of a continuous navigation planner
must exclude at least a set of measure zero.

2This requirement on initial configurations can be relaxed to include
configurations that can be brought to a halt before colliding with an obstacle
or configurations with bounded total energy relative to the free space
boundary, as in Definition 3 and Proposition 1, respectively.

3Here, 0 is a vector of all zeros with the appropriate size.

of the system [2], [4]. More precisely, let V : F → R be an

artificial potential function that is

i) twice differentiable on F,

ii) polar at x∗, i.e., has a unique local minimum at x∗,

iii) is a Morse function [16], i.e., has no degenerate critical

points,

iv) is admissible [16] on F, i.e., takes its maximum value

uniformly on the boundary ∂F of F.

Such a potential function is referred to as a navigation

function [6], [17], because its negated gradient field

ẋ = −∇V (x) , (4)

is asymptotically stable at x∗ whose domain of attraction

includes all F, possibly excluding a set of measure zero 1.

A natural way of embedding such first-order gradient

dynamics in second-order robot dynamics is via the total

energy of Lagrangian systems [2], [4]. For instance, define

the total energy and the Lagrangian of the robot, resp., to be

E (x, ẋ) := T (ẋ) + V (x) , (5)

L (x, ẋ) := T (ẋ)− V (x) , (6)

where T (ẋ) := 1
2 ‖ẋ‖

2
and V (x) are the robot’s kinetic and

potential energies, respectively. If the robot obeys Lagrangian

dynamics with no external input,

d

dt

(
∂L (x, ẋ)

∂ẋ

)
− ∂L (x, ẋ)

∂x
= 0 =⇒ ẍ = −∇V (x) , (7)

then one can readily verify that the total energy E is pre-

served during the motion of the robot, i.e., Ė (x, ẋ) = 0 [18].

Moreover, in the presence of a dissipative external input, we

know from Lord Kelvin [3] that such Lagrangian dynamics

decay toward and stabilize at a local minimum of E [4].

Hence, the following smooth extension of the gradient field

ẍ = −∇V (x)− ζẋ, (8)

solves the collision-free navigation problem for all zero ve-

locity initial configurations of the second-order robot model,

because Ė (x, ẋ) = −ζ ‖ẋ‖2 ≤ 0, where ζ > 0 is a fixed

artificial damping coefficient [4].

Finally, we find it useful to emphasize that the reason why

a smooth extension of an artificial potential field inherits

the invariance (i.e., collision avoidance) properties of the

original gradient dynamics is the admissibility property of

the potential function. In general, one can ensure the positive

invariance of the free space for the first-order robot dynamics

by having an inward-pointing vector field along the boundary

of the free space, and a similar approach can be used to

embed such a rather general (perhaps non-gradient) vector

field planner, with a known Lyapunov function, in second-

order systems. However, such an embedding only guarantees

the local stability of the system around the goal location, and

generally cannot ensure the invariance of the free space (i.e,

collision avoidance) [7]. Fortunately, control theory offers

a simple, yet practical approach to augment locally-stable

feedback motion planners for enforcing desired state and

control constraints via reference governors.



B. Reference Governors

Reference governors are add-on control schemes for

closed-loop dynamical systems to enforce pointwise-in-time

state and control constraints while maintaining stability prop-

erties [13], [19]–[21]. The fundamental idea of reference

governors is based on the separation of the issues of stabil-

ity and constraint satisfaction. Given a closed-loop system

that performs satisfactorily in the absence of constraints, a

reference governor modifies the desired reference command,

whenever necessary, to the closed-loop system in order to

avoid constraint violation for all future time while ensuring

system stability. To demonstrate an application of reference

governors in motion planning, we now present a reinterpre-

tation of our recently introduced provably correct reactive

robot navigation algorithm [22], for a first-order disk-shaped

robot operating in a “sphere world” [6], in the reference

governor framework.4 Later in Section IV-B, we shall also

provide its reference governor based smooth extension.

In [22], we consider the collision-free navigation problem

of a velocity-controlled disk-shaped robot, centered at x ∈ W

with radius r ∈ R, in a closed compact convex environment

W ∈ Rn populated with m ∈ N open disk-shaped obstacles,

centered at p := (p1, p2, . . . , pm) ∈ Wm with a tuple of

positive radii ρ := (ρ1, ρ2, . . . , ρm) ∈ (R>0)
n

.

Using the power diagram — a generalized Voronoi dia-

gram [25] — of the robot’s workspace W, generated by disks

representing the robot and obstacles, in [22] we define the

robot’s local workspace and local free space, respectively, as

LW (x):=
{
q∈W

∣∣∣‖q−x‖2−r2 ≤ ‖q−pi‖2−ρ2i ∀i
}
, (9)

LF (x):=
{
q ∈ LW (x)

∣∣∣B (q, r) ⊆ LW (x)
}
. (10)

Note that LW (x) and LF (x) are both nonempty closed

convex sets for any x ∈ F, and we have LF (x) ⊆ F [22].

Accordingly, for the fully-actuated single-integrator robot

dynamics in (2), we propose in [22] a simple reactive

navigation strategy, called “move-to-projected-goal” law, v :
F → Rn that drives the robot at location x ∈ F toward a

designated global goal x∗ ∈ F through a safe local goal,

x∗ := ΠLF(x) (x
∗), called “projected-goal”, as follows:

v (x) = −k

2
∇x ‖x− x∗‖2

∣∣∣∣
x∗is fixed

= −k (x− x∗) , (11)

where ΠA (q):=arg mina∈A ‖a−q‖ is the metric projection

of q ∈ Rn onto a close convex set A ⊆ Rn, and k > 0 is a

fixed control gain.

In brief, the metric projection here plays the role of a

reference governor, as depicted in Fig. 1, that continuously

modifies the target position to the closed-loop motion planner

to avoid collisions while preserving the system stability. Note

that, the closed-loop motion planner is (a positive constant

times) the negated gradient of the squared Euclidean distance

4In [23] we present a further extension of [22] to respect sensory limits,
and in [24] we design a collision-free coverage control algorithm for
heterogeneous disk-shaped multiple robots. Both of these studies have a
similar interpretation in the reference governor framework.
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Fig. 1. A reference governor interpretation of the “move-to-projected goal”
law of [22], where the reference governor ensures collision avoidance and
the feedback motion planner guarantees stability.

to the (projected) goal, and, in the absence of obstacles, it

is known to be stable around any given fixed goal location

[26]. Lastly, we find it useful to summarize some important

qualitative properties of the “move-to-projected-goal” law as:

Theorem 1 ( [22]) If obstacles are separated 5 from each

other by clearance of at least ‖pi−pj‖ > (ρi+ρj+2r) for

all i 6= j, and from the boundary ∂W of the workspace W as

minq∈∂W ‖q−pi‖ > (ρi+2r) for all i, then the piecewise

continuously differentiable “move-to-projected-goal” law in

(11) asymptotically drives almost all configurations in the

free space F to the goal x∗ with no collisions along the way.

III. SMOOTH EXTENSIONS VIA REFERENCE GOVERNORS:
GENERAL FRAMEWORK

In this section, we present a novel application of refer-

ence governors for augmenting the stability and invariable

properties of a generic first-order vector field planner to

the second-order robot dynamics. We first introduce the

concept of a robot-governor system, and then proceed with

the construction of our smooth extension algorithm and its

important qualitative properties.

A. Robot-Governor System

Definition 1 A robot-governor system is a dynamical system

that consists of a second-order robot, represented by state

(x, ẋ) ∈ F × Rn, and a first-order governor — a virtual

low-order copy of the robot —, represented by state xg ∈ F.

Accordingly, the robot-governor system is described by con-

catenated robot-governor state x := (x, ẋ, xg) ∈ F×Rn×F,

and its motion is determined by

ẍ = f (x) , and ẋg = g (x) , (12)

where f : F×Rn × F → Rn and g : F×Rn × F → Rn are

the Lipschitz continuous evolution rules for the robot and

the governor, respectively.

Definition 2 The potential energy V of the robot in a robot–

governor system, x = (x, ẋ, xg), is defined relative to the

governor as

V (x, xg) := κ ‖x− xg‖2 , (13)

where κ > 0 is the potential energy coefficient. Hence, the

total energy E of the robot-governor system is given by

E (x) := T (ẋ) + V (x, xg) , (14)

where T (ẋ) = 1
2 ‖ẋ‖

2
is the robot’s kinetic energy.

5This assumption is equivalent to the “isolated obstacle” assumption of
[6], and it guarantees that the free space obstacles do not intersect with each
other and with the free space boundary.



Definition 3 A robot-governor state (x, ẋ, xg) ∈ F×Rn×F

is collision free if and only if there exist Lipschitz continuous

control laws f and g, possibly respecting certain control

limits, such that both the robot and the governor stay in the

free space for all future times, i.e., xt, xtg ∈ F for all t ≥ 0,

where xt, xtg denote the unique solution of the robot-governor

dynamics in (12) starting at (x, ẋ, xg).

Since the exact determination of collision-free configu-

rations in such kinodynamic planning settings is hard [1],

alternatively, we introduce a conservative, but simple condi-

tion to check for collisions using total energy, which does

not require the explicit knowledge of the system trajectory.

Proposition 1 A robot-governor state x = (x, ẋ, xg) ∈ F ×
Rn × F is collision-free if

E (x) ≤ κ d (xg, ∂F)
2
, (15)

where d (xg, ∂F) := min
p∈∂F

‖p− xg‖ is the governor’s dis-

tance to the boundary ∂F of the free space F.

Proof. To bring the robot-governor system to a safe stop,

consider the following Lipschitz continuous evolution rules,

f (x) = −∇xV (x, xg)− ζẋ = −2κ (x−xg)− ζẋ, (16)

g (x) = 0, (17)

where V is the system’s potential energy, defined as in (13),

and ζ > 0 is a fixed artificial damping coefficient. Further,

denote by xt =
(
xt, ẋt, xtg

)
the unique solution of the robot-

governor dynamics in (12) starting at (x, ẋ, xg).
Since g (x) = 0, the governor remains constant, i.e., xtg =

xg, and one can readily verify that Ė (xt) = −ζ ‖ẋt‖2 ≤ 0.

Hence, we have for all t ≥ 0 that

κ d (xg, ∂F)
2 ≥ E (x) ≥ E

(
xt
)
≥ V

(
xt, xtg

)
, (18)

≥ κ
∥∥xt − xtg

∥∥2 = κ
∥∥xt − xg

∥∥2 . (19)

Thus, since ‖xt − xg‖ ≤ d (xg, ∂F), the result follows. �

Accordingly, we define the energy-safe configuration

space of the robot-governor system to be

Conf (F) :=
{
x ∈ F×Rn×F

∣∣∣E (x) ≤ κd (xg, ∂F)
2
}
. (20)

It is also convenient to define the local energy zone LE (x)
of a robot-governor configuration x=(x, ẋ, xg)∈Conf(F) as

LE(x) :=
{
q∈Rn

∣∣∣‖q−xg‖ ≤
√
△E (x) /κ

}
, (21)

where △E (x) :=κd (xg, ∂F)
2−E (x) is the amount of extra

energy that can be safely added to the system. Note that for

any x ∈ Conf (F), LE (x) is a closed spherical subset of the

free space F, because
√
△E (x) /κ ≤ d (xg, ∂F).

B. Smooth Extensions of Vector Field Planners

Given a vector field planner for the first-order (velocity-

controlled) robot model, which we shall refer to as the refer-

ence planner, we now present a construction that extends its

stability and invariance properties to the second-order (force-

controlled) robot dynamics via reference governors.

Suppose r : F → Rn is a vector field planner that

i) is Lipschitz continuous,

ii) has a unique stable point at x∗,

iii) has no degenerate critical points,

iv) is inward pointing on the boundary of free space, i.e.,

r (x) · nx > 0 for all x ∈ F, where nx is the inward

pointing normal of ∂F at x.

Such a construction has the following qualitative properties,

which can be readily verified and so the proof is omitted:

Proposition 2 The vector field planner r leaves the robot’s

free space F positive invariant, and its unique continuous

flow asymptotically reaches the goal location x∗ from almost

any configuration in F, while strictly decreasing a smooth

Lyapunov function along the way.

To embed the limit behavior of the reference planner r in

the second-order robot dynamics, we propose the following

robot-governor law: for any x ∈ Conf (F),

f (x) = −∇xV (x, xg)− ζẋ = −2κ (x− xg)− ζẋ, (22a)

g (x) = −kg
(
xg −ΠLE(x) (xg + r (xg))

)
, (22b)

= kg
r (xg)

‖r (xg)‖
min

(
‖r (xg)‖ ,

√
△E (x) /κ

)
, (22c)

where V (x, xg) (13) is the robot’s potential energy relative

to the governor, κ > 0 is the potential energy coefficient,

ζ > 0 is the artificial damping coefficient, kg > 0 is a fixed

control gain, and ΠLE(x) denotes the metric projection onto

the local energy zone LE (x) (21).

In summary, our smooth extension framework comprises

a reference motion planner, a first-order reference governor,

and a second-order closed-loop robot motion planner, as

illustrated in Fig. 2. The reference motion planner generates

a (continuously varying) reference goal r∗ := xg + r (xg)
for the reference governor to guide the governor’s (internal)

state xg toward the designated global goal x∗. The reference

governor uses both the reference goal r∗ and the robot’s state

(x, ẋ) to continuously update its internal state xg in such a

way that the robot-governor system avoids collisions in the

sense of Proposition 1 while the governor’s state xg stays as

close as possible to the reference goal r∗; and commands its

internal state xg to the closed-loop robot motion planner as

the modified target position. The closed-loop motion planner

is the dissipative smooth extension of the negated gradient of

the robot’s potential energy V (relative to the governor), and

Reference
Goal

Governor
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Robot
Position&

Velocity

Reference

Motion Planner
Reference Governor

Closed-Loop 

Motion Planner

Global Goal

Fig. 2. A reference governor interpretation of smooth extensions of
feedback motion planners, where the reference motion planner offers
a collision-free navigation solution for the first-order robot model, the
reference governor asymptotically achieves the reference dynamics while
ensuring collision avoidance for the robot-governor system, and the close-
loop motion planner stabilizes the robot around the governor.



so it asymptotically reaches a halt and stabilizes the robot at

the governor’s position if the governor is stationary. Finally,

it is important to observe that our reference governor has a

memory and it is actually equivalent to a closed-loop system

with a memoryless reference governor, as depicted in Fig. 1.

C. Qualitative Properties

Proposition 3 The robot-governor law in (22) is Lipschitz

continuous.

Proof. The result follows because metric projection onto a

(moving) convex set with piecewise differentiable boundaries

is piecewise continuously differentiable and so is Lipschitz

continuous [27]–[29], and the composition of Lipschitz con-

tinuous functions are again Lipschitz continuous [30]. �

Proposition 4 The energy-safe configuration space Conf (F)
(20) is positive invariant under the robot-governor law (22).

Proof. Let x ∈ ∂Conf (F) be a robot-governor configuration

on the boundary ∂Conf (F) of Conf (F). Since △E (x) = 0
and LE (xg) = {xg}, we have g (x) = 0, i.e., the governor

remains constant. Further, since g (x) = 0, the total energy

of the system is non-increasing, i.e., Ė (x) = −ζ ‖ẋ‖2 ≤ 0,

implying that E (x) stays bounded above by κd (xg, ∂F)
2
.

Thus, the result follows. �

Proposition 5 For any initial configuration in Conf (F), the

robot-governor law (22) has a unique continuously differen-

tiable flow in Conf (F) (20) defined for all future time.

Proof. The existence, uniqueness and continuous differentia-

bility of the flow of the robot-governor law follow from its

Lipschitz continuity in Conf (F) (Proposition 3) [31]. �

Proposition 6 The robot-governor law in (22) asymptotically

steers almost all energy-safe configurations 1 in Conf (F)
(20) to the goal configuration (x∗,0, x∗).

Proof. It is straightforward to observe from (22) that

(x∗,0, x∗) is a critical point of the robot-governor law.

Let U : F → R be a smooth Lyapunov function associated

with the reference vector field r (see Proposition 2). Recall

that r has a unique stable point at x∗, whose domain of

attraction, denoted by D, includes all F, possibly excludes a

set of measure zero. Since x∗ is the only critical point of r in

D, we have r (x) 6=0 and U(x) · r(x)<0 for all x∈D\{x∗}.

In the rest of the proof, we shall only consider robot-

governor configurations x = (x, ẋ, xg) ∈ Conf(F) with

xg ∈ D, because all other configurations in Conf (F) are

not contained in the stable manifold of (x∗,0, x∗) and has

measure zero.

If the governor is on the free space boundary, i.e., xg∈∂F,

then, by definition of Conf (F) (20), we have x = xg , ẋ = 0,

and △E (x) = 0. Hence, the robot-governor system stays

stationary on the boundary for all future time. Fortunately,

the set of such initial conditions also has a measure zero and

are also not included in the stable manifold of (x∗,0, x∗).
Otherwise, the governor is in the interior of the free space,

i.e., xg ∈ F̊, and remains in F̊ for all future time, because

the reference field r is inward pointing along the free space

boundary ∂F. Moreover, since the governor’s evaluation rule

g in (22b) is a scaled version of the reference field r with a

nonnegative factor, we have U̇ (xg) ≤ 0. Accordingly, define

S =
{
x ∈ Conf (F)

∣∣∣ xg ∈ D \ ∂F, U̇ (xg) = 0
}
. (23)

Note that U̇ (xg) = 0 if and only if g (x) = 0. Hence,

S contains only robot-governor configurations where the

governor is stationary. Further, it follows from g (x) = 0
that Ė (x) = −ζ ‖ẋ‖2 ≤ 0. Thus, the energy of the

robot-governor system asymptotically decays to zero and

the robot becomes a stop at the governor’s position. Thus,

the maximum positive invariant set in S contains robot-

governor configurations where E (x) = 0, i.e., xg = x and

ẋ = 0. Further, if xg ∈ F̊ and E (x) = 0, then we have

△E (x) > 0; and g (x) = 0 and △E (x) > 0 implies

that r (xg) = 0 and so xg = x∗. Hence, the largest positive

invariant set in S is {(x∗,0, x∗)}. Therefore, we have from

LaSalle’s Invariance Principle [31] that the robot-governor

law asymptotically reaches (x∗,0, x∗), whose domain of

attraction is
{
x ∈ Conf (F)

∣∣ xg ∈ D \ ∂F
}

and contains all

Conf (F), except a measure zero set. �

Therefore, important qualitative properties of the robot-

governor law can be summarized as:

Theorem 2 The Lipschitz continuous robot-governor law

in (22) asymptotically drives almost all configurations 1 in

its positively invariance domain Conf (F) (20) to the goal

configuration (x∗,0, x∗), with no collisions along the way.

D. Enforcing Control Constraints

In the interest of greater practicability, we now present

an extension of our smooth extension framework to respect

control constraints by limiting the total energy of the system.

Define the energy-bounded configuration space of the

robot-governor system to be

Ĉonf (F) :=
{
x ∈ Conf (F)

∣∣E (x) ≤ Emax

}
(24)

where Emax > 0 is the maximum allowable total energy of

the system, and Conf (F) is the energy-safe configuration

space in (20). Consequently, for any x ∈ Ĉonf (F), the local

energy-bounded zone of the robot-governor is constructed

from its local energy zone LE (x) as

L̂E (x) :=
{
q∈LE (x)

∣∣∣ ‖q−xg‖ ≤
√
△̂E (x) /κ

}
, (25)

where △̂E (x) :=Emax−E (x) is the maximum amount of

extra energy that can be injected to the system while ensuring

the total energy limit.

Following the same line of the proof procedure in Section

III-C, one can verify that the robot-governor law

f (x) = −2κ (x− xg)− ζẋ, (26a)

g (x) = −kg

(
xg −Π

L̂E(x)
(xg + r (xg))

)
, (26b)

ensures the positive invariance of Ĉonf (F) and its unique

flow, starting at almost any configuration 1 in Ĉonf (F),
asymptotically reaches (x∗, 0, x∗).



An important consequence of putting an explicit upper

bound on the total energy of the system is:

Proposition 7 For any x ∈ Ĉonf (F), the robot-governor

law in (26) satisfies the following control bounds

f (x) ≤ (2
√
κ+ζ

√
2)
√
E(x) ≤ (2

√
κ+ζ

√
2)
√
Emax , (27)

g (x) ≤ kg

√
△̂E (x) /κ ≤ kg

√
Emax/κ. (28)

Proof. The proof directly follows from (24), (25) (26), so it

is omitted for the sake of brevity. �

Note that one also has that ẋ ≤
√
2Emax for any x =

(x, ẋ, xg) ∈ Ĉonf (F), because T (ẋ) ≤ E (x) ≤ Emax.

IV. SMOOTH EXTENSIONS VIA REFERENCE GOVERNORS:
EXAMPLES

In this section, we provide some example applications

of our smooth lifting framework for extending low-order

reference planners to the second-order robot dynamics, and

illustrate and compare the navigation trajectories of reference

dynamics and their smooth embeddings.

A. Navigation in a Convex Workspace

Although it is very straightforward to solve, navigation

in a convex workspace W ∈ Rn with no obstacles offers

a simple setting to demonstrate the strength of our smooth

extension framework over the standard total energy based

embedding of gradient dynamics, summarized in Section

II-A. Since convex sets can be homeomorphically mapped

to Euclidean balls with certain degrees of smoothness, for

instance, see [32], for the sake of simplicity, we consider

navigation in a closed Euclidean ball W = B (pW, rW),
centered at pW ∈ Rn with radius rW > r, toward a given

goal location x∗ ∈ F̊ in the interior F̊ of the free space F

of our disk-shaped robot, centered at x ∈ F and of radius

r > 0, by using the negated gradient of the following well

established artificial potential functions

V1 (x) = ‖x− x∗‖2 , (29)

V2 (x) =
10 ‖x− x∗‖2

‖x− x∗‖2 + (rW − r)
2 − ‖x− pW‖2

. (30)

Note that while V1 fails to be admissible on F unless

x∗ = pW, V2 is admissible and so a navigation function

[6]. Nonetheless, the negated gradients of both potential

functions guarantee collision-free global navigation for the

first-order robot model in W, because they are both inward

pointing along the free space boundary and has a unique

global minimum at the goal position.

In Fig. 3, we present the resulting navigation trajectories

of both total energy based and reference governor based

smooth extensions of gradient dynamics. In our simulation

studies 6, we consider two different sets of parameters that

yield underdamped and overdamped second-order navigation

planners. Irrespective of the admissibility property of their

generating potential functions, both overdamped embeddings

of the gradient dynamics guarantee collision avoidance with

the workspace boundary for all zero velocity initial con-

ditions. However, we observe that the total energy based

underdamped embedding of the negated gradient of the non-

admissible potential function V1 does not ensure the invari-

ance of the robot’s workspace, whereas, by construction, the

6For all simulations, we set κ = k = kg = 1, and ζ = 1 for

underdamped embedding and ζ = 2
√
2 for overdamped embedding. All

simulations are obtained through the numerical simulation of the associated
robot dynamics using the ode45 function of MATLAB.

(a) (b) (c) (d) (e)

Fig. 3. Example navigation trajectories of smooth extensions of negated gradients of (top) nonadmissible and (bottom) admissible potential functions, V1

(29) and V2 (30), respectively, in a circular workspace: (a) Level curves and gradient directions of potential functions, (b) Total energy based overdamped
embedding of gradient dynamics, (c) Reference governor based overdamped embedding of gradient dynamics, (d) Total energy based underdamped
embedding of gradient dynamics, (e) Reference governor based underdamped embedding of gradient dynamics. Here, the goal is specified by the black
disk, and other colored disks show the start locations. Navigation paths in black are for the first-order robot model and all other colored paths are for the
second order robot model. Please see the accompanying video submission for the illustration of the navigation motion.



proposed reference governor based smooth extension always

guarantees constraint satisfaction (i.e., collision avoidance).

Here, to clearly observe the oscillations of underdamped

embeddings, we use energy-safe nonzero velocity initial

conditions, where the robot has a speed of 0.5 units/sec and

initially moves toward the center of the workspace.

B. Navigation in Sphere Worlds

We now consider the extension of the “move-to-projected-

goal” navigation strategy [22], summarized in Section II-B,

to the second-order robot dynamics via reference governors.

Note that such a generic (non-gradient) vector field planner

cannot be adapted to the second-order systems using the

standard total energy based extension, summarized in Section

II-A, while retaining its invariance properties. Also recall that

the original “move-to-projected-goal” law can be modeled as

a closed-loop motion planner with a memoryless reference

governor, see Fig. 1, and so its smooth extension via an

additional reference governor with memory, see Fig. 2,

has actually a cascade reference governor structure where

the outer (primary) reference governor guarantees collision

avoidance for the first-order governor (virtual robot) model

and the inner (secondary) reference governor guarantees col-

lision avoidance for the second-order (actual) robot model.

In Fig. 4, we illustrate the resulting navigation trajectories

of the original first-order and the extended second-order

“move-to-projected-goal” laws. Since the environment is

very cluttered and the total energy of the robot-governor

system is limited by the (squared) clearance between ob-

stacles, we observe a significant spatial consistency between

the navigation trajectories of the first-order and the second

order “move-to-projected-goal” laws. Remark that the origi-

nal “move-to-projected-goal” law is either tangent or inward

pointing along the boundary of free space, and to have a

inward pointing vector field along the free space boundary,

one can simply enlarge the robot body or obstacles with a

positive safety margin, as we do here.

C. Smooth Extensions of Navigation Paths

As a final example, we consider smooth extensions of

path planners of position-controlled (zero-order) robots to the

velocity-controlled (first-order) and force-controlled (second-

order) robot models via reference governors.

Fig. 4. Example navigation trajectories of the original first-order (magenta)
and the extended second-order (cyan) “move-to-projected-goal” laws [22],
which spatially overlap significantly. Please see the accompanying video for
the resultant motion.

Let W be a generic (possibly nonconvex) workspace pop-

ulated with arbitrary shaped obstacles and associated with a

path-connected free space F for a disk-shaped robot. Suppose

P : [0, 1] → F is a navigation path, for instance, obtained by

using a standard path planner [33], [34] or directly specified

by the user, that joins a given pair of initial and goal positions

x0, x∗ ∈ F̊ and lies in the interior F̊ of the free space F, i.e.,

P (0) = x0, P (1) = x∗, and P (α) ∈ F̊ for all α ∈ [0, 1].
Here, we interpret P as a high-level, flexible navigation

plan toward the goal, and accordingly construct a first-order

vector field, called the “move-to-projected-path-goal” law,

uP : DP → Rn as follows: for any x ∈ DP,

ẋ = uP (x) = −k (x− x∗P) (31)

where the domain DP of the vector field planner is defined

as the generalized Voronoi cell of the path P in F,

DP :=
{
q ∈ F

∣∣d (q,P) ≤ d (q, ∂F)
}
, (32)

and x∗
P

is the “projected path goal” determined as

α∗ := max
({
α∈ [0, 1]

∣∣P (α)∈B
(
x, d (x, ∂F)

)})
, (33)

x∗P := P (α∗) . (34)

Here, we abuse the notation and write d(q,P) :=d(q,P([0, 1])),

and B (x, d (x, ∂F)) is the largest closed ball centered at x
and contained in F. Observe that for any x ∈ DP, we have,

by construction, that P ([0, 1])∩B (x, d (x, ∂F)) 6= ∅. Thus,

the “projected path goal” x∗
P

is well defined in DP, and is

the closest point along P in B (x, d (x, ∂F)) to x∗ = P(1),
and α∗ is the associated path parameter.

Although, a comprehensive formal analysis of this new

construction is now work in progress and left to a future

paper, we still find it useful to highlight its important

qualitative properties without proof:

Proposition 8 If P is piecewise continuously differentiable

and P ([0, 1])∩B (x, d (x, ∂F)) is path-connected for all x ∈
DP, then the “move-to-project-path-goal” law uP in (31) is

piecewise continuously differentiable, and is inward pointing

along the boundary ∂DP of its positively invariant domain

DP, and asymptotically steer all configuration x ∈ DP to

x∗ while strictly decreasing (1− α∗) along the way.

Note that the requirement P ([0, 1])∩B (x, d (x, ∂F)) being

path-connected is an admissible assumption that often holds

in practice for the output of many standard path planner [33],

[34]. Further, the failure of this requirement only affects the

continuity properties of the “move-to-projected-path-goal”,

but its existence, uniqueness and stability properties are

generally retained, which will be discussed in a future paper.

In Fig. 5, we illustrate the resulting navigation trajectories

of the original first-order “move-to-projected-path-goal” law

and its smooth extension to the second-order robot dynamics

via reference governors. As expected, the resulting trajecto-

ries of the first-order and second-order navigation planners

differ around abrupt changes along the input navigation path,

otherwise they show significant spatially consistency. Finally,

we would like to emphasize that the smooth extension of the



Fig. 5. Example navigation trajectories of the original first-order (cyan)
and the extend second-order (blue) “move-to-projected-path-goal’ laws.
The domain (red/green) of the first-order “move-project-path-goal” law
are colored according the associated path color(red/green). Please see the
accompanying video for the full motion.

“move-to-projected-path-goal” also has a cascade reference-

governor structure, as the “move-to-projected-goal” law dis-

cussed in Section IV-B.

V. CONCLUSIONS

In this paper, we present a novel application of reference

governors to extend low-order feedback motion planners to

high-order robot dynamics while preserving stability and in-

variance properties. To the best of our knowledge, this is the

first time a smooth extension framework can augment global

navigation and collision avoidance properties of a generic

path planner or a vector field planner to the second-order

systems. We demonstrate the effectiveness of the proposed

smooth extension algorithm in numerical simulations.

Work now in progress targets a comprehensive analysis of

the “move-to-projected-path-goal” law, presented in Section

IV-C, and its application to smooth trajectory planning.

We are also investigating extensions of these ideas to a

generalized smooth extension theorem for Lagrangian dy-

namical systems, to nonholonomically constrained dynamical

systems, and to a more generic potential energy definition

with ellipsoidal or polygonal level sets. In the near term, we

also plan to perform empirical validation of the proposed

algorithms for safe, high-speed robot navigation.
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