
Sampling-based Algorithms for Optimal Motion Planning
Using Closed-loop Prediction

Oktay Arslan1 Karl Berntorp2 Panagiotis Tsiotras3

Abstract— Motion planning under differential constraints,
kinodynamic motion planning, is one of the canonical problems
in robotics. Currently, state-of-the-art methods evolve around
kinodynamic variants of popular sampling-based algorithms,
such as Rapidly-exploring Random Trees (RRTs). However,
there are still challenges remaining, for example, how to include
complex dynamics while guaranteeing optimality. If the open-
loop dynamics are unstable, exploration by random sampling in
control space becomes inefficient. We describe a new sampling-
based algorithm, called CL-RRT#, which leverages ideas from
the RRT# algorithm and a variant of the RRT algorithm that
generates trajectories using closed-loop prediction. The idea
of planning with closed-loop prediction allows us to handle
complex unstable dynamics and avoids the need to find com-
putationally hard steering procedures. The search technique
presented in the RRT# algorithm allows us to improve the
solution quality by searching over alternative reference tra-
jectories. Numerical simulations using a nonholonomic system
demonstrate the benefits of the proposed approach.

I. INTRODUCTION

Motion planning is ubiquitous in many applications where
different levels of autonomy is desired. Loosely speaking,
given a system that is subject to a set of differential con-
straints, an initial state, a final state, a set of obstacles, and a
goal region, the motion-planning problem is to find a control
input that drives the system from its initial state to the goal
region. This problem is computationally hard to solve [15].

One approach to solve the motion-planning problems is
to divide the problem into two subproblems: path planning
and path tracking. The main drawback of this approach is
lack of dynamic feasibility guarantees. Still, it has been
successfully applied to robotic applications in which the un-
derlying system has redundant control authority (e.g., robotic
manipulators). Another class of algorithms is randomized
planners, which solve the motion-planning problem in a
single step. Notably, the kinodynamic version of Rapidly-
Exploring Random Tree (RRT) incrementally grows a tree
of trajectories in the state space by sampling control inputs
and simulating the motion of the system with these random
control inputs over a time horizon [12], [13]. Hence, the
trajectories that are generated by RRT are dynamically

1Oktay Arslan is a Robotics, PhD Candidate with the D. Guggenheim
School of Aerospace Engineering and the Institute for Robotics and In-
telligent Machines at the Georgia Institute of Technology, Atlanta, GA
30332, USA, Email:oktay@gatech.edu. He performed this research while
at Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA.

2Karl Berntorp is with Mitsubishi Electric Research Laboratories, Cam-
bridge, MA 02139, USA, Email:karl.o.berntorp@ieee.org.

3Panagiotis Tsiotras is with the faculty of D. Guggenheim School
of Aerospace Engineering and the Institute for Robotics and Intelligent
Machines at the Georgia Institute of Technology, Atlanta, GA 30332-0150,
USA, Email: tsiotras@gatech.edu.

feasible by construction. Recently, RRT and its variants
were successfully applied to robotic systems [10], [14] and
different classes of stochastic problems [2]. Unlike standard
RRT, these variants were usually implemented to compute
a solution quickly and improve it in the remaining time until
the execution of the motion plan. However, RRT computes
suboptimal solutions [7].

One drawback with kinodynamic RRT is that exploration
via random selection of control inputs is inefficient when
the dynamics are complex and/or unstable. To remedy this,
[11] proposed CL-RRT, which uses closed-loop prediction
for trajectory generation. Instead of sampling in the control
space, the proposed approach grows a tree in the reference
space. Each path of the tree represents a reference trajectory
that acts as an input to the closed-loop system. The desired
behaviors of the system are prescribed as specifications for
a controller that is used to track a given reference trajectory.
Each edge of the tree is associated with a segment of a
reference trajectory and a state trajectory of the system,
computed by closed-loop prediction.

Several papers address the suboptimality of RRT. In [7],
an algorithm with asymptotic optimality guarantee, RRT∗,
was developed. RRT∗ has been extended to solve motion
planning problems under differential constraints [6], [8].
The proposed algorithms are asymptotically optimal when
a steering procedure that satisfies certain conditions is pro-
vided. However, developing efficient steering procedures that
solve point-to-point motion planning, essentially a two-point
boundary value problem, is generally hard [16].

Here, we propose a new asymptotically optimal motion-
planning algorithm, CL-RRT#, by leveraging ideas from
the CL-RRT [11] and the RRT# algorithms [3]–[5]. To
handle differential constraints, instead of sampling in the
control space, our approach samples in the output space
and incrementally grows a graph whose edges correspond
to segments of reference trajectories. The algorithm also
keeps another graph to store state trajectories of the closed-
loop system when it is inputed with a certain path in
the graph of reference trajectories. Hence, we avoid the
need for complicated steering procedures and the resulting
trajectory satisfies the differential constraints by construction.
To improve the solution quality, CL-RRT# searches among
alternative paths of the graph of reference trajectories. The
proposed algorithm checks different reference trajectories
and simulates the system forward in time, as needed. Finally,
the algorithm provides the segments of reference trajectories
that yield the lowest-cost state trajectory of the closed-loop
system.

ar
X

iv
:1

60
1.

06
32

6v
1

 [
cs

.R
O

]
 2

3
Ja

n
20

16

II. PROBLEM FORMULATION

Let X ⊆ Rn, Y ⊆ Rp and U ⊆ Rm be compact sets.
We assume that the system dynamics can be described by a
nonlinear differential equation of the form

ẋ(t) =f(x(t), u(t)), x(0) = x0,

y(t) =h(x(t), u(t)), (1)

where the system state x(t) ∈ X , the system output y(t) ∈
Y , the control u(t) ∈ U , for all t, x0 ∈ X , and f and h are
smooth (continuously differentiable) functions describing the
time evolution of the system dynamics. Let X denote the set
of all essentially bounded measurable functions mapped from
[0, T] to X for any T ∈ R>0 and define Y and U similarly.
The functions in X , Y , and U are called state trajectories,
output trajectories, and controls, respectively.

Let Xobs and Xgoal, called the obstacle space and the goal
region, be open subsets of X . Let Xfree, also called the free
space, denote the set defined as X \Xobs.

The smooth function h describes the output y that we wish
to control. Loosely speaking, we are particularly interested
in the class of control problems in which we wish to track a
time-varying reference trajectory r(t). called the trajectory-
generation problem. We assume that given a desired output
value y′ ∈ Y , and a current output value y ∈ Y of the
system, the control law φ : (y′, y) 7→ u ∈ U computes
a control input such that the closed-loop simulation of the
system yields a good tracking performance as time evolves.

A. Problem Statement

Given the state space X , obstacle region Xobs, goal region
Xgoal, and smooth functions f and h that describe the system
dynamics, find a reference trajectory r ∈ Y with domain
[0, T] for some T ∈ R>0 such that the corresponding unique
state trajectory x ∈ X , output trajectory y ∈ Y , and control
u ∈ U that are computed by closed-loop simulation,
• obeys the differential constraints,

ẋ(t) = f(x(t), u(t)) x(0) = x0,

y(t) = h(x(t), u(t)) for all t ∈ [0, T],

• avoids the obstacles, i.e., x(t) ∈ Xfree for all t ∈ [0, T],
• reaches the goal region, i.e., x(T) ∈ Xgoal,
• and minimizes J(x, u, r) =

∫ T
0
g(x(t), u(t), r(t)) dt

B. Primitive Procedures

Following are the definitions of the primitive procedures
used by the CL-RRT# algorithm (for details, see [7]).

Sampling: Sample : ω 7→ {Samplei(ω)}i∈N0
⊂ Yfree re-

turns independent and identically distributed (i.i.d.) samples
Samplei, i ∈ N0 from Yfree.

Nearest Neighbor: Given a graph Gy = (Vy, Ey), where
Vy ∈ Y , a point y ∈ Y , the function Nearest : (Gy, y) 7→
vy ∈ Vy returns the node in Vy that is “closest” to y in terms
of a given distance function. We use the Euclidean distance.

Near Neighbors: Given a graph Gy = (Vy, Ey), where
Vy ∈ Y , a point y ∈ Y , and a positive real number d ∈
R>0, the function Nearest : (Gy, y, d) 7→ vy ∈ V ′y ⊂ Vy

returns the nodes in Vy that are contained in a ball of radius
d centered at y.

Steering: Given two points yfrom, yto ∈ Y , the function
Steer : (yfrom, yto) 7→ y′ returns a point y′ ∈ Y such
that y′ is “closer” to yto than yfrom is. In this work, the
point y′ returned by the function Steer will be such that
y′ minimizes ‖y′− yto‖ while at the same time maintaining
‖y′ − yfrom‖ ≤ η, for a predefined η > 0.

Closed-loop Prediction: Given a state x ∈ Xfree, and
an output trajectory σy ∈ Y , the function Propagate :
(x, σy) 7→ σx ∈ X returns the state trajectory that is
computed by simulating the system dynamics forward in time
with the initial state x, and the reference trajectory σy .

Collision Test: Given two points yfrom, yto ∈ Gy , the
Boolean function ObstacleFree(yfrom, yto) returns True if
the line segment between yfrom and yto lies in Yfree and
False otherwise.

Cost-to-come Values: Given a graph Gy = (Vy, Ey), let g∗

denote the optimal cost-to-come value of the node vy ∈ Vy
that can be achieved in Gy . Each node vy ∈ Vy is associated
with two estimates of the optimal cost-to-come value (see [3],
[9]). The g-value of vy is the cost of the path to vy from
a given initial state yinit ∈ Yfree. The one step look-ahead
g-value of vy is denoted with ḡ and defined as

vy.ḡ =

0, if vy.y = yinit,

min
ey∈Ey,pred

(vy,pred.g + Cost(σ)) , otherwise,

where Ey,pred = incoming(Gy, vy), vy,pred = ey.tail, and
σ is the state trajectory that is computed via closed-loop
prediction, i.e., the dynamical system is simulated forward
in time with the initial state vy,pred.pσ.back() and the
reference trajectory ey.σ.

Heuristic Value: Given a node vy ∈ Vy , and an output
goal region Ygoal, the function ComputeHeuristic :
(vy, Ygoal) 7→ r returns an estimate r of the optimal cost
from vy to Ygoal; it return zero if vy ∈ Ygoal. In this paper,
we always assume that ComputeHeuristic computes an
admissible heuristic, that is, it never overestimates the actual
cost of reaching Ygoal.

Queue Operations: Nodes of the computed graphs are
associated with some keys and priority queues are used to
sort these nodes based on the precedence relation between
keys. The following functions are implemented to maintain
a given priority queue Q:
• Q.top key() returns the highest priority of all nodes in

the priority queue Q with the smallest key value if the
queue is not empty. If Q is empty, then Q.top key()
returns a key value of k = [∞;∞].

• Q.pop() deletes the node with the highest priority in the
priority queue Q and returns a reference to the node.

• Q.update(vy, k) sets the key value of the node vy to
k and reorders the priority queue Q.

• Q.insert(vy, k) inserts the node vy into the priority
queue Q with the key value k.

• Q.remove(vy) removes the node vy from the priority
queue Q.

Initialization: Given an initial point xinit ∈ X , a goal
region in the output space Ygoal ⊂ Y , the function
Initialize : (xinit, Ygoal) 7→ (Gy,Gσ,Q,Qgoal) returns
a graph Gy that has only node vy , whose output point is
vy.y = OutputMap(xinit), a graph Gσ that has the only
node vσ , whose trajectory is a single point vσ.σ = xinit,
and empty priority queues Q and Qgoal that are used for
ordering of nongoal and goal nodes, which represent points
in Y , respectively.

Exploration: Given a tuple of data structures S =
(Gy,Gσ,Q,Qgoal), where Gy and Gσ are graphs whose nodes
represent points in Y and trajectories in X , respectively, and
Q and Qgoal are priority queues that are used for ordering
of nongoal and goal nodes that represent points in Y , a goal
region in the output space Ygoal ⊂ Y , and a point y ∈ Y , the
function Extend : (S, Ygoal, y) 7→ S ′ = (G′y,G′σ,Q′,Q′goal)
includes a new node, multiple edges to Gy and multiple
nodes, edges to Gσ , updates the priorities of nodes in Q
and Qgoal and returns an updated tuple S ′.

Exploitation: Given a tuple of data structures S =
(Gy,Gσ,Q,Qgoal), where Gy and Gσ are graphs whose nodes
represent points in Y and trajectories in X , respectively, and
Q and Qgoal are priority queues that are used for ordering
of nongoal and goal nodes that represent points in Y , the
function Replan : S 7→ S ′ = (G′y,G′σ,Q′,Q′goal) rewires the
parent node of the nodes in Gy based on their cost-to-come
values, includes new nodes and edges in Gσ if necessary, that
is, propagating dynamics of the system for new sequence of
reference trajectories, and returns an updated tuple S ′.

Construction of Solution: Given a tuple of data structures
S = (Gy,Gσ,Q,Qgoal), the function ConstrSolution :
S 7→ Tx returns a tree whose edges and nodes represent
simulated trajectories in X and the corresponding internal
states of the nodes of Gy . These trajectories are computed
by propagating the dynamics with reference trajectories that
are encoded in a tree of Gy , which is formed by the edges
between nodes of Gy and their parent nodes.

Graph and List Operations: The following functions are
used in the CL-RRT# algorithm.
• Given a node v ∈ V in a directed graph G =

(V,E), the set-valued function succ : (G, v) 7→
V ′ ⊆ V returns the nodes in V that are the heads
of the edges emanating from v, that is, succ(G, v) :=
{v′ ∈ V : e.tail = v and e.head = v′, e ∈ E} .

• Given a node v ∈ V in a directed graph G =
(V,E), the set-valued function pred : (G, v) 7→
V ′ ⊆ V returns the nodes in V that are the tails
of the edges going into v, that is, pred(G, v) :=
{v′ ∈ V : e.tail = v′ and e.head = v, e ∈ E} .

• Given a node v ∈ V in a directed graph G = (V,E),
the set-valued function outgoing : (G, v) 7→ E′ ⊆
E returns the edges in E whose tail is v, that is,
outgoing(G, v) := {e ∈ E : e.tail = v} .

• Given a node v ∈ V in a directed graph G = (V,E),
the set-valued function incoming : (G, v) 7→ E′ ⊆
E returns the edges in E whose head is v, that is,
incoming(G, v) := {e ∈ E : e.head = v} .

TABLE I: The node (OutNode) and edge (OutEdge) data structures
for points and trajectories in output space, respectively

field type description
y vector ∈ Rp output point associated with this node
g real ∈ R cost-to-come value
ḡ real ∈ R one step look-ahead g-value
h real ∈ R heuristic value for the cost between y and

Ygoal

py OutNode reference to the parent output node
pσ TrajNode reference to the parent trajectory node
r trajectory ∈ Y output trajectory associated with this edge

tail OutNode reference to the tail output node
head OutNode reference to the head output node

• Given a list of nodes Vz , where its nodes represent
points in Z, and a point z ∈ Z, the function find :
(Vz, z) 7→ vz ∈ Vz returns the node in Vz that satisfies
vz.z = z if there exists any such node, null otherwise.

• Given a list of nodes Vz , where its nodes represent
points in Z, the function back returns a reference to the
last node in the list if it is not empty, and null otherwise.

• Given a list of nodes Vz , where its nodes represent
points in Z, the function front returns a reference
to the first node in the list if it is not empty, and null
otherwise.

III. THE CL-RRT#ALGORITHM

A. Details of Data Structures

Each node vy in the graph Gy is an OutNode data
structure, summarized in Table I. Each node vy is associated
with a reference point y ∈ Rm. It contains two estimates of
the optimal cost-to-come value between the initial reference
point and y, namely, cost-to-come value g and one step look-
ahead g-value ḡ. It also keeps a heuristic value h, which is
an underestimate of the optimal cost value between y and
Ygoal, to guide and reduce the search effort. Whenever ḡ is
updated during the replanning procedure, the reference node
that yields the corresponding minimum cost-to-come value
is stored in the parent reference node py . Lastly, pσ is the
trajectory that is computed by closed-loop prediction when
the system is simulated with the reference trajectory between
the nodes py and vy . Its terminal state represents the internal
state associated with vy .

Each edge ey in the graph Gy is an OutEdge data
structure, summarized in Table I. Each edge ey is associated
with a trajectory r ∈ Y . It also contains two output nodes,
namely, tail and head, which represent the tail and the
head output nodes of ey , respectively.

Each node vσ in the graph Gσ is a TrajNode data
structure, summarized in Table II. Each node vσ is associated
with a trajectory σ ∈ X . It contains an output edge ey , which
corresponds to the reference trajectory that yields σ as the
closed-loop prediction. It also keeps a list of outgoing output
edges outgoing, and this list is used to compute outgoing
trajectory nodes emanating from the terminal state of σ.

Each edge eσ in the graph Gσ is a TrajEdge data
structure, summarized in Table II. Each edge eσ is associated
with a trajectory σ ∈ X . It contains two trajectory nodes,

TABLE II: The node (TrajNode) and edge (TrajEdge) data struc-
tures for trajectories in state space

field type description
σ trajectory ∈ X state trajectory associated with this node
ey OutEdge reference to the output edge

outgoing OutEdge array list of outgoing output edges
σ trajectory ∈ X state trajectory associated with this edge

tail TrajNode reference to the tail trajectory node
head TrajNode reference to the head trajectory node

namely, tail and head which represent the tail and the head
trajectory nodes of eσ , respectively.

B. Details of the Procedures

Algorithm 1 gives the body of the CL-RRT# algorithm.
First, the algorithm initializes the tuple of data structures S
that is incrementally grown and updated as exploration and
exploitation are performed (Line 3). The tuple S contains the
graphs Gy and Gσ , which are used to store output nodes and
state trajectory nodes, respectively, and the priority queues
Q and Qgoal. The details of Initialize are given in
Algorithm 2. The graph Gσ is created with no edges and
vσ as its only node. This node represents a state trajectory
that contains only the initial state xinit. Then, likewise, the
graph Gy is initialized with no edges and vy as its only node
that represents yinit. The g- and ḡ-values of vy are set with
zero cost value. The parent trajectory node of vy is set with
the reference to the node vσ .

Algorithm 1: The CL-RRT# Algorithm
1 CL-RRT#(xinit, Xgoal, X)
2 Ygoal := OutputMap(Xgoal);
3 S ← Initialize(xinit,Ygoal);
4 for k = 1 to N do
5 yrand ← Sample(k);
6 S ← Extend(S,Ygoal,yrand);
7 § ← Replan(S);

8 Tx ← ConstrSolution(S);
9 return Tx;

Algorithm 2: The Initialize Procedure
1 Initialize(xinit, Ygoal)
2 σ ← {xinit};
3 vσ ← TrajNode(σ,∅,∅);
4 yinit ← OutputMap(xinit);
5 vy ← OutNode(yinit);
6 vy.g← 0; vy.ḡ← 0;
7 vy.h← ComputeHeuristic(yinit,Ygoal);
8 vy.pσ ← vσ;
9 Vy ← {vy}; Ey ← ∅;

10 Vσ ← {vσ}; Eσ ← ∅;
11 Gy ← (Vy, Ey); Gσ ← (Vσ, Eσ);
12 Q ← ∅; Qgoal ← ∅;
13 return S ← (Gy,Gσ,Q,Qgoal);

The algorithm iteratively builds a graph of collision-free
reference trajectories Gy by first sampling an output point
yrand from the obstacle-free output space Yfree (Line 5) and
then extending the graph towards this sample (Line 6), at
each iteration. The cost of the unique trajectory from the
root node to a given node vy is denoted as Cost(vy). It

,newyv

Fig. 1: Extension of the graphs computed by the CL-RRT# algorithm.
Trajectories in the output and state spaces are shown in orange and green
colors, respectively. Whenever a new node in the output space is added,
then several incoming and outgoing edges are included to the graph in the
vicinity of the new node, i.e., region colored with cyan.

also builds another graph Gσ , to store the state trajectories
computed by simulation of the closed-loop dynamics when
a reference trajectory is tracked. Once a new node is added
to Gy after Extend, Replan is called to improve the existing
solution by propagating the new information (Line 7). The
dynamic system is simulated for different reference trajecto-
ries as needed during the search process. The computed state
trajectories are added to the graph Gσ as new nodes along
with the corresponding controls information.

Finally, when a predetermined maximum number of it-
erations is reached, ConstrSolution extracts the spanning
tree of Gy that contains the lowest-cost reference trajectories
(Line 8). Algorithm 3 gives the details of ConstrSolution.

Algorithm 3: The ConstrSolution Solution Procedure
1 ConstrSolution(S)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vy, Ey)← Gy; X ← ∅;
4 foreach vy ∈ Vy do
5 σ ← vy.pσ.σ;
6 vx ← StateNode(σ.back());
7 Vx ← Vx ∪ {vx};
8 vx,parent ← find(Vx,σ.front());
9 if vx,parent = ∅ then

10 vx,parent ← StateNode(σ.front());
11 Vx ← Vx ∪ {vx,parent};
12 ex ← StateEdge(vx,parent, vx, σ);
13 Ex ← Ex ∪ {ex};
14 X ← X ∪ {σ.back()};
15 return Tx = (Vx, Ex);

1) The Extend Procedure: The Extend procedure is
given in Algorithm 4. It first extends the nearest output node
vy,nearest to the output sample y (Lines 4-5). The output
trajectory that extends the nearest output node vy,nearest
towards the output sample y is denoted as rnew. The final
output point on the output trajectory rnew is denoted as ynew.
If rnew is collision-free, then a new output node vy,new is
created to represent the new output point ynew (Line 8), and
the following changes in the vicinity of vy,new on both graphs
are shown in Fig. 1. The initial node is shown as a square
box, the obstacles are shown in red color, and the graphs Gy
and Gσ are shown in orange and green colors.

The members of the node vy,new are set as follows. First,
Near finds the set of neighbor output nodes Vnear in the
neighborhood of the new output point ynew (Line 9). Then,

Algorithm 4: The Extend Procedure#

1 Extend(S, Xgoal, y)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vy, Ey)← Gy; (Vσ, Eσ)← Gσ;
4 vy,nearest ← Nearest(Gy ,y);
5 rnew ← Steer(vy,nearest.y,y);
6 if ObstacleFree(rnew) then
7 ynew ← rnew.back();
8 vy,new ← OutNode(ynew);
9 vy,new.h← ComputeHeuristic(ynew,Ygoal);

10 Vnear2← Near(Gy ,ynew,|Vy|) ∪ {vy,nearest};
11 Ey,succ ← ∅; Ey,pred ← ∅;
12 foreach vy,near ∈ Vnear2 do
13 r ← Steer(ynew,vy,near.y);
14 if ObstacleFree(r) then
15 ey ← OutEdge(vy,new,vy,near,r);
16 Ey,succ ← Ey,succ ∪ {ey};
17 r ← Steer(vy,near.y,ynew);
18 if ObstacleFree(r) then
19 ey ← OutEdge(vy,near,vy,new,r);
20 Ey,pred ← Ey,pred ∪ {ey};

21 V ′
σ ← ∅; E′

σ ← ∅;
22 foreach ey ∈ Ey,pred do
23 vy,pred ← ey.tail;
24 vσ,pred ← vy,pred.pσ;
25 xpred ← vσ,pred.σ.back();
26 σ ← Propagate(xpred,ey .r);
27 if ObstacleFree(σ) then
28 vσ,new ← TrajNode(σ,ey ,Ey,succ);
29 eσ ← TrajEdge(vσ,pred,vσ,new,σ);
30 V ′

σ ← V ′
σ ∪ {vσ,new};

31 E′
σ ← E′

σ ∪ {eσ};
32 if vy,new.ḡ > vy,pred.g+ Cost(σ) then
33 vy,new.ḡ← vy,pred.g+ Cost(σ);
34 vy,new.py ← vy,pred;
35 vy,new.pσ ← vσ,new;

36 Vy ← Vy ∪ {vy,new};
Ey ← Ey ∪ Ey,succ ∪ Ey,pred;

37 Vσ ← Vσ ∪ V ′
σ; Eσ ← Eσ ∪ E′

σ;
38 Gy ← (Vy, Ey); Gσ ← (Vσ, Eσ);
39 Q ← UpdateQueue(Q,vy,new);
40 Qgoal ← UpdateGoal(Qgoal,vy,new,Xgoal);

41 return S ← (Gy,Gσ,Q,Qgoal);

the set of incoming edges Ey,pred and outgoing edges Ey,succ
of the new output node vy,new are computed by using the
information of the neighbor output nodes (Lines 10-19).

Once the new output node vy,new is created together with
the set of incoming edges Ey,pred and outgoing edges Ey,succ
connecting it to its neighbor output nodes Vnear, Extend

attempts to find the best incoming edge that yields a segment
of a reference trajectory which incurs minimum cost to get to
vy,new among all incoming edges in Ey,pred (Lines 20-34).
That is, for any incoming edge ey in Ey,pred, the algorithm
first gets the information of the predecessor output node
vy,pred and its internal state xpred by using the information
of the parent state trajectory node vσ,pred (Lines 22-24).
Then, it simulates the system forward in time with the state
xpred being the initial state and ey.r being the reference

trajectory to be tracked, (Line 25). If the state trajectory
σ computed by closed-loop prediction is collision-free, a
new trajectory node vσ,new is created together with its list
of outgoing output trajectories being initialized with Ey,succ
(Line 27). When a new trajectory node vσ,new is created,
the outgoing state trajectories emanating from the final state
of the state trajectory vσ,new.σ via closed-loop prediction
are not immediately computed, for the sake of efficiency.
Instead, the algorithm keeps the set of candidate outgoing
output trajectories, that is, the edges in Ey,succ, in a list
vσ,new.outgoing, and the simulation of the system for these
output trajectories is postponed until the head output node
of the output edge vσ,new.ey is selected for the Bellman
update during the Replan procedure. Once the new state
trajectory node vσ,new and the edge between the predecessor
state trajectory node vσ,pred and itself are created (Lines 27-
28), they are added to the set of nodes and edges of the graph
Gσ , respectively (Lines 29-30). If the incoming output edge
ey between the predecessor output node vy,pred and the new
output node vy,new yields a collision-free state trajectory σ
that incurs cost less than the current cost of vy,new, then,
the ḡ-value of vy,new is set with new lower cost, vy,pred and
vσ,new are made the new parent output node and the new
parent state trajectory node of vy,new (Lines 31-34).

After successful creation of the new output node vy,new, it
is added to the graph Gy together with all of its collision-free
output edges (Line 36). Likewise, all trajectory nodes and
edges created during the simulation of the system dynamics
are added to the graph Gσ (Line 37). Lastly, the priority
queues, Q and Qgoal are updated accordingly by using the
information of the new output node vy,new, that is, reordering
of the priorities after insertion of vy,new to the queue Q and
reordering the goal output nodes in Qgoal if vy,new happens
to be a goal output node (Lines 38-39).

2) The Replan Procedure: The Replan procedure is
given in Algorithm 5 (see [3]). It improves cost-to-come
values of output nodes by operating on the nonstationary and
promising nodes of the graph Gy . It pops the most promising
nonstationary node from the priority queue Q, if there are
any, and this node is made stationary by assigning its ḡ-value
to its g-value (Lines 5-6). Then, the g-value of the output
node vy is used to improve the ḡ-values of its neighbor output
nodes. Before this, the algorithm computes the set of all
outgoing state trajectories emanating from internal state of
the output node v (Lines 9-16). To do so, the algorithm first
gets the information of the internal state x by using the parent
state trajectory node of vy (Lines 7-8). For any outgoing edge
ey in vσ.outgoing, the algorithm first gets the information
of the successor output node vy,succ by using the output
edge ey (Line 10). Then, it simulates the system forward
in time with the state x being the initial state and ey.r being
the reference trajectory to be tracked (Line 11). If the state
trajectory σ computed by closed-loop prediction is collision-
free, a new trajectory node vσ,succ is created together with
its list of outgoing output trajectories being initialized with
the set of outgoing output edges of vy,succ (Line 13). Also,
a state trajectory edge between vσ and vσ,succ is created

(Line 14). Then, the new state trajectory node and edge
are tentatively added to the set of nodes and edges of the
graph Gσ (Lines 15-16). This continues until all candidate
outgoing output trajectories are processed in the closed-loop
simulation, then the list vy.outgoing is cleared up (Line
17). All newly computed state trajectory nodes and edges
are added to the graph Gσ (Line 18).

For each outgoing state trajectory σ, Replan adds up
its cost, incurred by reaching to the successor output node
vy,succ to the g-value of vy , and compare it with the current
ḡ-value of vy,succ (Line 22). If the outgoing state trajectory
edge σ yields a lower cost than vy,succ, the ḡ-value of
vy,succ is set with new lower cost, and vy and vσ,succ are
made the new parent output node and the new parent state
trajectory node of vy,succ, respectively (Lines 23-25). Last,
the priority queues Q and Qgoal are updated by using the
update information of the successor output node vy,succ, that
is, reordering of the priorities after updating the key value of
vy,succ to the queue Q and reordering the goal output nodes
in Qgoal if vy,succ happens to be a goal output node (Lines
26-27). These steps are repeated until there is no promising
nonstationary output node left in the priority queue Q, that
is, Q.top key() � Qgoal.top key().

Algorithm 5: Replan Procedure#

1 Replan(S, Xgoal)
2 (Gy,Gσ,Q,Qgoal)← S;
3 (Vσ, Eσ)← Gσ;
4 while Q.top key() ≺ Qgoal.top key() do
5 vy ← Q.pop();
6 vy.g← vy.ḡ;
7 vσ ← vy.pσ;
8 x← vσ.σ.back();
9 foreach ey ∈ vσ.outgoing do

10 vy,succ ← ey.head;
11 σ ← Propagate(x,ey .r);
12 if ObstacleFree(σ) then
13 vσ,succ ←

TrajNode(σ,ey ,outgoing(Gy ,vy,succ));
14 eσ ← TrajEdge(vσ ,vσ,succ,σ);
15 Vσ ← Vσ ∪ {vσ,succ};
16 Eσ ← Eσ ∪ {eσ};

17 vσ.outgoing← ∅;
18 Gσ ← (Vσ, Eσ);
19 foreach vσ,succ ∈ succ(Gσ ,vσ) do
20 σ ← vσ,succ.σ;
21 vy,succ ← vσ,succ.ey.head;
22 if vy,succ.ḡ > vy.g+ Cost(σ) then
23 vy,succ.ḡ← vy.g+ Cost(σ);
24 vy,succ.py ← vy;
25 vy,succ.pσ ← vσ,succ;
26 Q ← UpdateQueue(Q,vy,succ);
27 Qgoal ←

UpdateGoal(Qgoal,vy,succ,Xgoal);

28 return S ← (Gy,Gσ,Q,Qgoal);

The auxiliary procedures in Extend and Replan are
shown in Algorithm 6. UpdateQueue maintains the pri-
ority queue Q whenever a new output node is created or
key value of an output node that is already in the queue is

updated. During a call to UpdateQueue with the priority
queue Q and the output node vy , there are three possible
cases. First, if vy is a nonstationary output node, that is,
vy.g 6= vy.ḡ, key value of vy is updated and priorities in the
queue are reordered (Line 3). Second, if vy is a nonstationary
output node and it is not in the queue, then it is inserted to
the queue Q with its key value (Line 5). Third, if vy is a
stationary output node, that is, vy.g = vy.ḡ, and it is in the
queue Q, then, it is removed from the queue Q (Line 7).

Algorithm 6: Auxiliary Procedures#

1 UpdateQueue(Q, vy)
2 if vy.g 6= vy.ḡ and vy ∈ Q then
3 Q.update(vy ,Key(vy));

4 else if vy.g 6= vy.ḡ and vy /∈ Q then
5 Q.insert(vy ,Key(vy));

6 else if vy.g = vy.ḡ and vy ∈ Q then
7 Q.remove(vy);

8 return Q;

9 UpdateGoal(Qgoal, vy,Ygoal)
10 vσ ← vy.pσ;
11 x← vσ.σ.back();
12 if x ∈ Xgoal then
13 if vy ∈ Qgoal then
14 Qgoal.update(vy ,Key(vy));

15 else
16 Qgoal.insert(vy ,Key(vy));

17 return Qgoal;

18 Key(vy)
19 return k = (vy.ḡ+ vy.h, vy.h);

Algorithm 7 gives constructor procedures for node and
edge data structures used in the CL-RRT#.

Algorithm 7: Node and Edge Constructor Procedures#

1 OutNode(y)
2 vy.y ← y;
3 vy.g←∞; vy.ḡ←∞;
4 vy.h← 0;
5 vy.py ← ∅; vy.pσ ← ∅;
6 return vy;

7 OutEdge(vy,from, vy,to, r)
8 ey.tail← vy,from;
9 ey.head← vy,to;

10 ey.r ← r;
11 return ey;

12 TrajNode(σ, ey, Ey)
13 vσ.σ ← σ;
14 vσ.ey ← ey;
15 vσ.outgoing← Ey;
16 return vσ;

17 TrajEdge(vσ,from, vσ,to, σ)
18 eσ.tail← vσ,from;
19 eσ.head← vσ,to;
20 eσ.σ ← σ;
21 return eσ;

22 StateNode(x)
23 vx.x← x;
24 return vx;

25 StateEdge(vx,from, vx,to, σ)
26 ex.tail← vx,from;
27 ex.head← vx,to;
28 ex.σ ← σ;
29 return ex;

C. Properties of the Algorithm

The CL-RRT# algorithm provides both dynamic feasi-
bility guarantees, that is, the lowest-cost reference trajectory
computed by the algorithm can be tracked by the low-level
controller, and asymptotic optimality guarantees, that is, the
lowest-cost reference trajectory computed by the algorithm
converges to the optimal reference trajectory almost surely.
The former property is an immediate result of using closed-

loop prediction during the search phase. During the extension
of the graph Gy , if some segments of a reference trajectory
can not be tracked, that is, is not dynamically feasible, the
corresponding state trajectory is not stored in the graph
Gσ constructed by the algorithm. The former property is
due to the asymptotic optimality property of the RRT#

algorithm [3]. The proposed algorithm incrementally grows a
graph Gy in the output space in a similar fashion as the RRG
algorithm does [6]. Therefore, the lowest-cost path encoded
in Gy converges to the optimal output trajectory in the output
space almost surely. In addition, the lowest-cost output
trajectory encoded in the graph Gy is extracted at the end of
each iteration in a similar fashion as the RRT# algorithm
does. Given the cost function that associates each edge in
Gy with a non-negative cost values being monotonic and
bounded, the proposed algorithm is asymptotically optimal.

IV. NUMERICAL STUDY

The proposed algorithm is evaluated on two scenarios
where a nonholonomic, wheeled vehicle, modeled as a
unicycle, travels along a track. The motion equations are

ẋ1 = x4 sin(x3), ẋ2 = x4 cos(x3), ẋ3 = u1, ẋ4 = u2,

y1 = x1, y2 = x2,

where x1, x2 are the Cartesian coordinates of the vehicle,
x3 is the heading angle, x4 is the translational velocity ,
and u1, u2 are the controls for the angular and translational
velocity. Each control input takes values in an interval, that
is, ui ∈ [uli, u

u
i]. A pure-pursuit controller tracks a given

reference path [1]. The heading command is generated by
following a look-ahead point on a given reference path. The
speed command is given as a desired speed vcrs, which is
tracked by a proportional controller.

First, the objective is point-to-point navigation in the
counter-clockwise direction on a race track, while min-
imizing the Euclidean path length. The track size is
(100m×100m) and the origin is located at its center.
CL-RRT#executed for 1,500 iterations. Fig. 2 shows the
resulting tree at different stages. Initially, the vehicle is at
(−25,−45), with zero heading angle and zero speed (yellow
square at bottom-left). The task is to move to (48, 33) (red
square at top-right). As seen in Figs. 2(a)-(d), the algorithm
incrementally grows a graph in the output space (x1, x2).
Each path in the graph corresponds to a reference path, used
as an input to the closed-loop system. CL-RRT#quickly
computes a long reference path. Then, it seeks alternative
paths of the graph as more information is explored and
improves the existing solution if closed-loop simulation of a
new reference path yields lower cost. The nodes and edges of
the graph correspond to waypoints and straight line segments.
The lowest-cost path is shown in yellow. The value is 127.2.
Figs. 2(e)-(h) shows the state trajectories, computed during
closed-loop simulation in CL-RRT#.

In the second scenario, the goal is to recursively navigate
the vehicle on the race track. The vehicle is tasked to navigate
sequentially to a set of waypoints, presumably coming from a
high-level navigator. In each stage, the CL-RRT#algorithm

was executed for 1,500 iterations to find a motion plan
from the current state of the vehicle to a desired next
waypoint. Each next waypoint is sent to the motion planner
as the vehicle gets close to the current waypoint, similar
to [11]. In this simulation, the vehicle is tasked to navigate
four waypoints sequentially. The solution trees of reference
paths and corresponding state trajectories for each step are
shown in Fig. 3. As seen during simulations, leveraging the
dynamics information of the vehicle during the search phase
allows to construct dynamically feasible paths and avoid
shortest paths that pass close to the boundary of the track.

V. CONCLUSION

We presented a new asymptotically optimal motion-
planning algorithm, called CL-RRT#, using closed-loop
prediction for trajectory generation. The approach is a hybrid
of the CL-RRT and the RRT# algorithms. It incrementally
grows a graph of reference trajectories, used as inputs to a
low-level tracking controller, and chooses the one that yields
the lowest-cost state trajectory of the closed-loop system.
CL-RRT# provides dynamic feasibility by construction and
ensures asymptotic optimality, that is, it finds the optimal
reference trajectory given controller. Simulation results on a
nonholonomic system showed the efficacy of the approach.

REFERENCES

[1] O. Amidi. Integrated mobile robot control. Technical Report CMU-RI-
TR-90-17, Carnegie Mellon University, Robotics Institute, May 1990.

[2] O. Arslan, E. A. Theodorou, and P. Tsiotras. Information-theoretic
stochastic optimal control via incremental sampling-based algorithms.
In IEEE Symp. Adaptive Dynamic Programming and Reinforcement
Learning, pages 1–8, 2014.

[3] O. Arslan and P. Tsiotras. Use of relaxation methods in sampling-
based algorithms for optimal motion planning. In IEEE Int. Conf.
Robotics and Automation, pages 2413–2420, 2013.

[4] O. Arslan and P. Tsiotras. Dynamic programming guided exploration
for sampling-based motion planning algorithms. In IEEE Int. Conf.
Robotics and Automation, pages 4819–4826, 2015.

[5] O. Arslan and P. Tsiotras. Dynamic programming principles for
sampling-based motion planners. In ICRA Optimal Robot Motion
Planning Workshop, 2015.

[6] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In 49th IEEE Conf.
Decision and Control, pages 7681–7687, 2010.

[7] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal
motion planning. Int. J. Robotics Research, 30(7):846–894, 2011.

[8] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller.
Anytime motion planning using the RRT*. In IEEE Int. Conf. Robotics
and Automation, pages 1478–1483, 2011.

[9] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*.
Artificial Intelligence Journal, 155(1-2):93–146, 2004.

[10] J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. In-
oue. Dynamically-stable motion planning for humanoid robots. Au-
tonomous Robots, 12(1):105–118, 2002.

[11] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. P.
How. Motion planning in complex environments using closed-loop
prediction. In AIAA Guidance, Navigation, and Control Conf., 2008.

[12] S. M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[13] S. M. LaValle and J. J. Kuffner, Jr. Randomized kinodynamic planning.
Int. J. Robotics Research, 20(5):378–400, May 2001.

[14] J. Leonard et al. A perception-driven autonomous urban vehicle. J.
Field Robotics, 25(10):727–774, 2008.

[15] J. H. Reif. Complexity of the movers problem and generalizations. In
Proc. IEEE Conf. Foundations of Computer Science, pages 421–427,
1979.

[16] R. Vinter. Optimal Control. Birkhäuser, Boston, MA, 2010.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: The evolution of the solution trees for reference paths and state trajectories computed by CL-RRT# are shown in (a)-(d) and (e)-(h), respectively.
The trees (a), (e) are at 50 iterations, (b), (f) are at 100 iterations, (c), (g) are at 500 iterations, and (d), (h) are at 1500 iterations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Results from a simulation where the vehicle navigates four consecutive waypoints, given by a high-level navigator. The evolution of the trees for
reference paths and state trajectories computed by CL-RRT# are shown in (a)-(d) and (e)-(h), respectively. In each stage, 1,500 iterations are made. As
the vehicle gets close to the current waypoint, the next waypoint is sent to the motion planner, similar to [11].

	I Introduction
	II Problem Formulation
	II-A Problem Statement
	II-B Primitive Procedures

	III The CL-RRT#Algorithm
	III-A Details of Data Structures
	III-B Details of the Procedures
	III-B.1 The Extend Procedure
	III-B.2 The Replan Procedure

	III-C Properties of the Algorithm

	IV Numerical Study
	V Conclusion
	References

