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Abstract— We consider the global tracking control problem
of robots with elastic joints. Even if joint elasticity introduces
beneficial features for modern applications which require phys-
ically resilient and safer robots that can interact with the
environment or humans, it challenges the achievable control
performance. We propose a novel controller which combines the
benefits of two approaches: the intrinsic robustness to model
uncertainty from passivity-based control and the implemen-
tation efficiency of inverse-dynamics control schemes using a
modern recursive algorithm. The novel controller is applied
to an elastic-joint reconfigurable robotic arm using a recently
proposed framework for on-the-fly control design. Simulation
and experimental results validate our proposed approach.

I. INTRODUCTION

Modern light-weight robots have non-negligible elasticity

in the joints that significantly affects the motion-control

performance [1], [2]. A typical reason for this elasticity is

the use of long shafts, belts and/or harmonic drives in the

transmissions [3], [4]. Although formerly the joint elasticity

has only been considered as an undesired effect as a source

of degradation of the motion-control performance, we have

witnessed a growing research interest toward the intentional

inclusion of compliant joints in the last two decades. Elastic-

joints allow modern robots to overcome limitations of clas-

sical rigid robots in advanced applications requiring e.g. safe

interaction with the environment, energy storage or force

control [5], [6]. However, these new features come at the

price of new control challenges.

Control of elastic-joint robots has attracted several re-

searchers. An overview of works up to the mid ’90s can be

found in [7], [8]. In particular, in [9] the author introduces

reasonable assumptions for control design that make the con-

trol problem more tractable and allow e.g. the realization of

static feedback-linearizing controllers for trajectory tracking.

The consideration of the time-scale separation between the

(fast) motor-side dynamics and the (slow) link-side dynamics

can be found in [10]. That approach has shown to be very

effective when sufficiently low elasticity in the joints is

present, as described in the experimental comparison with

the feedback-linearizing controller on a single-link arm in

[11]. A feedforward/feedback method has been introduced

in [12] and has also been considered in [2] as an effective,
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practical solution for trajectory tracking, for which however

only local stability can be shown. A semi-global tracking

controller for elastic-joint robots which interestingly does

not require the calculation of the link jerks can be found

in [13]. A comparative study of global tracking controllers

based on decoupling, backstepping and passivity is described

in [14]. Among more recent works, an approach for trajectory

tracking where limited sensing capability is considered for

lossless elastic-joint manipulators can be found in [15] and

a passivity-based approach for both link-side tracking and

damping assignment considering nonlinear springs can be

found in [16]. For regulation tasks, recent effective ap-

proaches can be found e.g. in [17], [18].

We focus on the global tracking control problem. Among

the existing methods, the inverse-dynamics (or feedback

linearization) control scheme is especially attractive thanks

to a recently proposed algorithm that allows its efficient

implementation [19]. However, this controller relies on the

exact cancellation of the system couplings and may be

sensitive to even small model mismatches, thus loosing

tracking performance and stability. Such a behaviour is

reflected in our simulations and is not new, as other authors

have previously realized the risk of poor robustness in that

control technique such as in [14], among others. In that

paper, the authors propose instead an effective passivity-

based controller. On the other hand, an algorithm for a

computationally efficient implementation of the passivity-

based controllers in [14], [16] as it is for inverse-dynamics

control thanks to [19], [20] is not yet available, to the best

of our knowledge.

In this work, we provide a controller with better intrin-

sic robustness with respect to the inverse-dynamics control

scheme, which can still be computed in a similar compu-

tationally efficient way. Our new global tracking control

approach is based on the partial cancellation of the mod-

elled system dynamics combined with the exploitation of

the passivity-properties of the robot model. Our proposed

combined inverse-dynamics/passivity-based control scheme

allows us to merge the enhanced robustness typical of

passivity-based controllers (see e.g. [21]–[23]) with the ef-

ficient numerical computability recently made possible for

inverse-dynamics control of elastic-joint robots in [19], [20].

We test the effectiveness of our controller using simulations

and experiments. For the experiments, we consider a modular

reconfigurable testbed with elastic joint modules and we

implement the on-the-fly synthesis of the model-based global

tracking controllers under test according to the framework

proposed in [24].



The remainder of this paper is structured as follows:

we describe in detail the control problem in Sec. II and

we recall the essence of the inverse-dynamics control for

elastic-joint robots in Sec. III. We introduce our combined

inverse-dynamics/passivity-based control law, as well as its

efficient implementation in Sec. IV. In Sec. V we evaluate

the performance using simulations and experiments.

II. PROBLEM DESCRIPTION

Throughout this paper we use bold symbols for matrices

and vectors. We omit time dependence of time-varying vari-

ables for brevity, except for reasons of clarity. We consider

a robot manipulator composed of N links serially connected

through elastic joints. By adopting the practically reasonable

(so called) “Spong’s assumptions” for control design [9], we

consider the following dynamical model of a robot arm with

N elastic joints:

M(q)q̈+n(q, q̇)+K(q−θ) = 0, (1a)

Jθ̈ + f(θ̇)+K(θ −q)
︸ ︷︷ ︸

:=τe

= u, (1b)

where M(q) ∈ R
N×N is the inertia matrix of the rigid links

assembly, J ∈ R
N×N is the constant diagonal matrix of the

rotor inertia moments reflected through the square of the

respective gear ratio, K∈R
N×N is the constant diagonal joint

stiffness matrix, u ∈R
N is the vector of input forces/torques,

q ∈ R
N is the vector of link-side joint position variables,

θ ∈ R
N is the vector of motor-side joint position variables,

f(θ̇) ∈ R
N is the vector of the motor-side friction terms and

τe ∈ R
N is the elastic torque vector. In addition, the term

n(q, q̇) ∈ R
N can be expressed as

n(q, q̇) = C(q, q̇)q̇+Dq̇+g(q),

where g(q) ∈ R
N is the vector of the gravity terms, D ∈

R
N×N is the matrix of the link-side viscous damping co-

efficients and C(q, q̇) q̇ ∈ R
N is the vector of Coriolis and

centrifugal terms with C(q, q̇) ∈ R
N×N being a matrix such

that N(q, q̇) = Ṁ(q, q̇)− 2C(q, q̇) is skew-symmetric and

therefore:

xT N(q, q̇)x = 0, ∀x ∈ R
N . (2)

For the scenario described above we face the problem of

designing a control law that guarantees global tracking of

sufficiently smooth (at least four times differentiable) link-

side joint-space trajectories qd(t):

lim
t→∞

‖q(t)−qd(t)‖= 0.

To keep the subsequent description succinct, we also omit

hereafter joint variable dependencies of the model terms de-

noting for example the matrix M(q) by M, its first derivative

over time as Ṁ instead of Ṁ(q, q̇) and its second derivative

as M̈ instead of M̈(q, q̇, q̈). We use the same notation for

the other model terms. All norms in this paper are Euclidean

norms.

III. PRELIMINARIES: INVERSE-DYNAMICS

CONTROL

Inverse-Dynamics (ID) control of robot manipulators aim

at canceling nonlinear and coupling terms through feedback.

With the same goal, the inverse-dynamics control of elastic-

joint robots first introduced in [9] is realized by the use of

the following control command:

u = JK−1
[

My+2Ṁq[3]+M̈q̈+ n̈
]

+[M+J] q̈+n+ f(θ̇),

(3)

where y ∈ R
N denotes an auxiliary control input and

n̈ = (C+D)q[3]+ C̈q̇+2 Ċq̈+ g̈. (4)

We use the notation of x[n] for denoting dn

dtn x with n ∈ {3, 4}.

By rewriting (1) as

Mq̈+n = u− f(θ̇)−Jθ̈ , (5)

and by using (3) and the following relation

θ̈ = K−1
[

Mq[4]+2Ṁq[3]+M̈q̈+ n̈
]

+ q̈, (6)

which is obtained by rearranging and differentiating twice

(1a) with respect to time, a linear decoupled system is

obtained:

q[4] = y.

The control law can be completed by assigning an asymptoti-

cally stable dynamics of the trajectory tracking error through

y such as

y = q
[4]
d −KID3e[3]−KID2ë−KID1 ė−KID0 e,

where e = q−qd and KIDi with i ∈ {0,1,2,3} are typically

diagonal gain matrices with KIDi j j
being the jth element of

the diagonal, such that

id j(s) := s4 +KID3 j j
s3 +KID2 j j

s2

+KID1 j j
s+KID0 j j

, ∀ j ∈ {1, . . . ,N}, (7)

are Hurwitz polynomials.

Even though the dependence of model terms from the joint

variables and their derivatives in (3) is omitted for brevity,

this control law requires measurements (or good estimates) of

link-side joint accelerations and jerks. These estimates can be

obtained in principle in a model-based fashion using typical

sensing capabilities of elastic-joint robots such as q and θ
(
or the elastic torque τe instead of either q or θ by using the

definition of τe in (1b)
)
. The first derivative of the position

measurements can be obtained by using tachometers or via

numerical differentiation as a cheaper practical solution and

allows one to obtain τ̇e = K(θ̇ − q̇). The joint accelerations

and jerks are computed using (1a) and its first derivative:

q̈ = M−1 [τe −n] , (8)

q[3] = M−1
[
τ̇e −

(
Ṁq̈+ ṅ

)]
. (9)



IV. COMBINED INVERSE-DYNAMICS/

PASSIVITY-BASED CONTROL

As previously introduced, instead of seeking a linear and

decoupled system as one does for the inverse-dynamics

control method (through perfect cancellation of the over-

all modelled system dynamics), we aim at only partially

canceling nonlinear and coupling terms through feedback

and at exploiting the passivity properties of the manipulator

dynamics for ensuring stability and control performance.

In this section we first present our proposed control law,

followed by the description of its efficient implementation.

A. Description of Our Proposed Control Law

We introduce the combined Inverse-Dynamics/Passivity-

Based (ID/PB) control law as follows:

u = JK−1
[

(2Ṁ+D)q[3]+M̈q̈+ C̈q̇+2 Ċq̈+ g̈
]

−JK−1
(
Mq

[4]
a +Cq

[3]
a +Λr

)
+[M+J] q̈+n+ f(θ̇), (10)

where

r = e[3]+KHY 3ë+KHY 2ė+KHY 1 e,

q
[3]
a =−q

[3]
d +KHY 3ë+KHY 2ė+KHY 1 e,

q
[4]
a =−q

[4]
d +KHY 3e[3]+KHY 2ë+KHY 1 ė.

Applying the control law of (10) to the system in (5) with

(6) and (4) yields after algebraic manipulation to

Mṙ+Cr+Λr = 0. (11)

In light of (11), the trajectory tracking error will globally

converge to zero for a positive definite matrix Λ, provided

that the diagonal gain matrices KHYi ∀i ∈ {1,2,3}, with

KHYi j j
being the jth elements of the diagonals, are selected

so that

hy j(s) := s3 +KHY 3 j j
s2 +KHY 2 j j

s

+KHY 1 j j
, ∀ j ∈ {1, . . .N}, (12)

are Hurwitz polynomials. This can be seen by consider-

ing the general result for passivity-based control in [25,

Theorem 4.1]. In particular, it is worth mentioning that

when disturbances and model mismatches are considered,

a perturbation term ψ arises and the closed loop dynamics

in (11) can be similarly written as

Mṙ+Cr+Λr = ψ. (13)

Now, it can be noticed that (13) represents the classical

structure that is typically desired when developing passivity-

based tracking controllers. Indeed, by considering the storage

function V = 1
2
rT Mr, it defines an output strictly passive

operator ψ → r [26, Lemma 2.7]. It is additionally worth

mentioning that the proposed controller is still applicable

when the manipulator is composed of mixed rigid/elastic

joints with the use of dynamic feedback terms, as described

in [27] where the applicability of the inverse-dynamics

control scheme is considered.

B. Efficient Implementation of the Control Law

Our proposed controller can be efficiently implemented

by combining the use of a recently introduced recursive

Newton-Euler algorithm for elastic joint robots (EJNEA)

in [19] with the use of a modified recursive Newton-Euler

algorithm (NE∗) for passivity-based control of rigid robot

manipulators in [21]. To describe how to properly combine

these algorithms, let us denote by EJNEA(q, q̇, q̈,q[3],q[4])
the algorithm that provides the following relation as proposed

in [19]:

JK−1
[

Mq[4]+2Ṁq[3]+M̈q̈+ n̈
]

+[M+J] q̈+n

= EJNEA(q, q̇, q̈,q[3],q[4]),

and by NE∗
0(q, q̇, q̇a, q̈) the algorithm that provides the fol-

lowing relation as proposed in [21]:

Mq̈+Cq̇a = NE∗
0(q, q̇, q̇a, q̈).

We would like to remind the unfamiliar reader that model

terms such as M̈ or n̈ among others may contain hundreds

of terms and therefore the above mentioned algorithms

are crucial for efficient numerical computations, especially

when the number of joints N becomes large. With these

two algorithms at hand, our proposed control law can be

efficiently implemented as follows

u = EJNEA(q, q̇, q̈,q[3],0)

−JK−1
(
NE∗

0(q, q̇,q
[3]
a +q[3]

︸ ︷︷ ︸

=r

,q
[4]
a )+Λr

)
+ f(θ̇). (14)

Once q̈ and q[3] are computed (see e.g. [19, Sec. IV])

which inverse-dynamics control also requires, the complex-

ity for the computation of (14) is linear in the number

of joints
(
O(N)

)
, since both EJNEA(q, q̇, q̈,q[3],q[4]) and

NE∗
0(q, q̇, q̇a, q̈) have linear computational complexity.

Remark 1: The use of passivity-based control principles

allows us to introduce practical benefits in terms of intrinsic

robustness as is typical for passivity-based controllers, thus

avoiding the complete cancellation of the overall modelled

system dynamics. A more detailed discussion of the benefits

introduced by the consideration of passivity properties for

controlling mechanical systems can be found e.g. in [22],

[26].

Remark 2: Our proposed control law is a passivity-based

global tracking controller for elastic-joint robots with ef-

ficient numerical computability by means of recursive NE

algorithms. Previously proposed passivity-based global track-

ing controllers (see e.g. [14], [16]) would require instead the

availability of the matrices corresponding to the first and

second derivatives of C and M for which the property in

(2) holds. In our approach these terms are not necessarily

required thanks to the use of the above mentioned recursive

algorithms. In fact, according the proposed efficient imple-

mentation of the control law, the contributions of Ṁ, M̈, Ċ,

C̈, are already included in the numerical computations of

EJNEA.



Remark 3: The tuning phase of our proposed control law

is more practical and intuitive (as experienced in our simula-

tions and experiments) thanks to the introduction of the gain

matrix Λ and the order reduction by one of the polynomials

that has to be maintained Hurwitz
(
compare (12) with (7)

)
.

In practice the Λ gain matrix has an intuitive influence on the

tracking error since it allows one to directly inject damping

in (13). This results in an intuitive tuning knob that allows

us to reduce the tracking error when increasing the matrix

entries, without having to consider the roots of a polynomial

for a required increase of tracking performance. This will

become more evident in Fig. 3 of the next section.

V. EVALUATION OF THE TRACKING

PERFORMANCE

In this section we evaluate the tracking performance of our

proposed control law with respect to the inverse-dynamics

controller and its sensitivity to small mismatches of the

system dynamics. We first describe a practical solution that

we adopted for our experimental setup to obtain filtered

acceleration and jerk estimates. Successively, we describe

the simulation testbed and simulation results, to conclude

this section with the description of the experimental testbed

and experimental results.

A. Estimation of Joint Accelerations and Jerks

The noise of the available torque sensor results in noisy

estimations of the joint accelerations and jerks by means

of (8) and (9). To reduce the noise of these estimates,

we implement a practical solution following the idea of

the kinematic Kalman filter proposed in [28]. We consider

availability of measurements (or estimations) of joint po-

sitions, velocities and accelerations. While in general joint

position measurements are obtained using encoders and the

velocity measurements can be obtained using tachometers

(or numerical differentiation of position measurements), an

estimation of the joint accelerations can be obtained in a

model-based way as previously recalled using (8). Given

x(t) = [q q̇ q̈ q[3]]T , we consider the following model for

designing the filter:

ẋ(t) = Ax(t)+Γw(t), y(t) = Cx(t)+ e(t),

where w(t) is the unbiased white process noise with co-

variance c, y(t) is the vector of the available measurements

and e(t) is the vector of unbiased white measurement noise

having covariance matrix R. The system matrices that we

consider are

A =






0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




 , Γ =






0

0

0

1




 , C =

[
1 0 0 0

0 1 0 0

0 0 1 0

]

.

Similarly to the considerations made in [29] for q̈, within this

model w(t) represents a surrogate of q[4] and its covariance c

can be practically regarded as a filter-tuning parameter since

the above mentioned stochastic model may not approximate

accurately the actual robot motion. For our testbed, while

the position measurements and the velocity estimates are

provided by the motor driver boards, the noisy acceleration

estimates are obtained using (8). After obtaining the covari-

ance matrix R for the available measurements/estimations

and selecting the parameter c, we implement the discrete time

version of this kinematic Kalman filter using the Matlab’s

functions c2d, dleq and destim.

B. Simulation Results

We consider a simple 2R and a 6R planar robot composed

of cylindrical links and working in the vertical plane. For

i ∈ {1, 2, . . . 6}, the nominal relevant parameters are the

lengths of the links li = 0.5m, the radius of the cylindrical

links ri = 0.025m and their mass mi = 2.5kg. The relevant

parameters for the model of the motor-side dynamics are the

rotor inertias Ji = 0.5kgm2 and the elastic-joint stiffnesses

Ki = 4650Nm/rad. We consider a sampling time of 1ms.

We show the sensitivity to model mismatches by simu-

lating small mismatches of the knowledge of the mass (and

inertia) at the last link of the respective arms. The desired

trajectory has been designed using subsequent smooth sin2

profiles as in [30, Section 6.3], setting maximum acceleration

at 3rad/s2 and maximum velocity at 1.5rad/s. The resulting

trajectory for each joint is shown in Fig. 1.

The simulation results for the 2R robot are collected in

Fig. 2. As shown in this figure, for the case of 5% and 10% of

unexpected additional mass at the second link, our proposed

controller has a remarkable insensitivity with respect to the

ID control method, leading to less tracking error and a

smoother behaviour. The gains of the two controllers have

been properly tuned for a fair comparison by allowing the

tracking error to be comparable in the case of perfect model

information as it is noticeable from the first column of

plots in Fig. 2. It is worth stressing that sampling effects

have been considered in these simulations (sampling time

1ms). This introduces a small perturbation that prevents

the tracking error to approach the numerical precision of

the solver as one would otherwise expect for the case of

perfect knowledge of the model without sampling effects

included. The gains that have been used for ID control and

for combined ID/PB control are respectively: KID3 = 150I,

KID2 = 7 · 103I, KID1 = 140 · 103I, KID0 = 1 · 106I and

KHY 3 = 150I, KHY 2 = 6,5 · 103I, KHY 1 = 40 · 103I, Λ = 9I,

where I is the identity matrix of proper dimension.

We show the effect of the increase of the elements of

Λ on the tracking performance for the combined ID/PB

controller in Fig. 3. This figure shows the intuitive effect

0

0 10 20 30

3.14

-3.14

1.57

-1.57

qd1,3,5
qd2,4,6

time (s)

q
d

(r
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)

Fig. 1. Required joint-space trajectory for the simulations and experiments
shown in this paper.
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Fig. 3. Effect of Λ on the tracking performance of the combined ID/PB
controller for a 2R planar arm, considering an additive 10% mismatch for
the second link mass and keeping fixed the other gain matrices.

of reduction of the tracking error when simply increasing

the matrix entries (keeping fixed the other gain matrices).

The same gain matrices KHY 1, KHY 2 and KHY 3 mentioned

previously have been used for these simulations.

To investigate the effect of the observer for estimat-

ing joint accelerations and jerks that our available ex-

perimental testbed requires, we include in the simu-

lations the observer and position/velocity measurement

noise such that the following covariance matrix is used

R = diag{10−9, 10−7, 20}. We show the results of these

simulations in the second and third row of plots of Fig. 4,

where the tracking performance of a 2R planar robot (first

column of plots) and of a 6R planar robot (second column

of plots) are presented, all with 10% mass mismatch at the

last link. From this figure, we can infer that the introduction

of the observer significantly robustifies the ID controller in

the presence of model mismatches so that the performance

for the 2R robot become comparable. In the second and third

row of plots in Fig. 4 we also show the effect of the reduction

of the tuning parameter c of the filter. The reduction of

this parameter is required in practice when one wishes to

increase noise suppression from the measurements at the

price of an unavoidable phase lag. With the increase of the

complexity of the simulated robot from 2R to 6R (see second

column of plots in Fig. 4) the simulations show that the ID

controller is more sensitive to the phase-lag introduced by

the observer with respect to the combined ID/PB controller,

which is therefore still preferable. The gains that have been

used for ID control and for combined ID/PB control for these

simulations are the same as the previously mentioned ones.

C. Experimental Results

Our experimental robot testbed is composed of aluminum

profiles (used as link-modules) and elastic-joint-modules

ensembles. Thanks to the modularity of the available set-

up we are able to quickly modify the robot assembly.

Among the possible assemblies that can be obtained with

our reconfigurable testbed, two of them are shown in Fig. 5

and Fig. 6 where different link-modules have been used. The

modular and reconfigurable nature of this set-up allows us to

apply a framework for automatically designing model-based

controllers of modular robot manipulators [24]. Following

that approach, each module is systematically characterized

and a compact set of information (module data) is stored

within the module or in a database. These data contain a

unique identification number as well as parameters which

characterize the kinematics and dynamics of the module

itself. Once the manipulator is assembled using a set of

possibly heterogeneous modules, the module data are col-
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lected at a central control unit, which processes them for

automatically obtaining the kinematic and dynamic parame-

ters of the resulting manipulator and model-based controllers.

The consideration of joint modules that introduce elasticity

requires that in addition to the data for obtaining the rigid

links assembly dynamics [24] and the rotor inertia (with

gear ratio), also the elastic-joint stiffness is stored. Once the

description of the robot is obtained by processing the module

data as described in [24], the efficient implementation of

our proposed combined ID/PB control law can be done as

previously described in Sec. IV-B.

The available measurements provided by the motor driver

boards are the motor-side joint positions, the deflection of

the elastic elements (∆) and the rate of change of these

quantities (θ̇ , ∆̇). The link-side joint positions and velocities

are obtained using q = θ +∆ and q̇ = θ̇ + ∆̇. The knowledge

of the joint stiffness allows us to obtain the estimate of the

elastic torques τe = K(θ − q) and its rate of change τ̇e =
K(θ̇ − q̇). For implementing our proposed control approach,

we use Simulink Real Time 2015b and an embedded target

PC (PC-104) equipped with 2 GB RAM and an Intel Core

2 Duo CPU running at 1.86 GHz. The sampling time is

1ms. We obtain the kinematic and dynamic parameters of the

modules using CAD data. The motor-side friction parameters

of the joint modules as well as the rotor inertia have been

estimated by implementing a simple identification procedure

for each motor alone, using a least square approach and

the following model that neglects link-side inertia: Jiθ̈i +
βvθ̇ +βcsign(θ̇) = ui, for the ith joint, where βv and βc are

the viscous and static friction coefficient. The elastic-joint

stiffness and the rotor inertia through the square of the gear

ratio that we have estimated are not significantly different

from those we described for our simulation testbed.

After assembly, the controller is automatically generated

by processing the module data and by efficiently imple-

menting our proposed control law as described in Sec. IV-

B. We validate the automatically obtained robot models

by measuring the elastic joint torques τe while the robot

performs movements and we finally compare them with the

torques computed from the model. Fig. 5 and Fig. 6 show

the quality of the match between the model and the actual

torque measurements, where two different robot assemblies

are respectively considered among the several we tested

(which all have comparable results). These figures show a

significantly good match during the motion.

The experimental results of the tracking performance of

both the ID and the combined ID/PB control using the

assembly of Fig. 5 are presented in Fig. 7. We show the effect

of a model mismatch by testing both the plain robot (first

column of plots of Fig. 7) and the arm with an additional

2kg load at the end of the second link, which is unknown

for control design (second column of plots of Fig. 7). The

tuning has been performed such that both controllers provide

comparable results in terms of tracking performance and

amplification of the measurement noise for the plain robot

(see first column of Fig. 7) although significant tuning effort

was required to make the ID controller perform as good as

the combined ID/PB.

It is worth mentioning that the tracking performance is

acceptable even when considering the loaded robot for both
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Fig. 5. Validation of the automatically generated model for assembly I
with total moving mass of about 7kg.

controllers (second column of plots in Fig. 7), which is

consistent with our simulation results for the 2R robot case

when using the observer. With our experimental testbed the

use of the observer is necessary for noise suppression. The

main purpose of our experiments, however, is to show real-

world applicability of our proposed controller. It should

be noted that the use of the described observer does not

necessarily maintain the global tracking properties of the

control law. Therefore, the accelerations and jerks estimation

only using (8) and (9) should be preferred, as long as torque

sensing is sufficiently precise. In such a scenario, global

tracking is ensured as supported by theory and we believe

that the clear benefits shown in simulations e.g. in Fig. 2

would reasonably appear also in practice. It is also important

to report that no significant computational overhead has been

experienced by our proposed controller compared to the ID

control as shown in Tab. I.

VI. CONCLUSION

A new global tracking control law for elastic-joint robots

with enhanced insensitivity to model uncertainty is proposed.

The use of passivity-based control concepts allows us to

avoid the complete inversion of the system dynamics through

feedback. The proposed controller is rather easy to tune and

is a passivity-based global tracking controller for robots with

elastic joints which can be efficiently implemented by means

of recursive NE algorithms. Simulation and experimental

results show its validity and its computational efficiency. In

addition, as a result of applying the approach of [24] to the

available setup, we implement for the first time the automatic

generation of model-based tracking controllers for an elastic-

joint reconfigurable robot.

Our proposed controller can be implemented using stan-

dard sensing capabilities of robot manipulators (encoders and

possibly tachometers). The precision of these measurements

is crucial for avoiding highly noisy estimates of the joint

accelerations and jerks through the use of the elastic-joint

torques and respective derivatives. However, an effective
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Fig. 6. Validation of the automatically generated model for assembly II
with total moving mass of about 6.1kg.

TABLE I

TOTAL EXECUTION TIME OF THE CONTROLLERS IN THE EXPERIMENTS.

ID control Comb. ID/PB control

Max. (10−4s) 1.445 1.449

Mean (10−5s) 5.32 5.39

Std. dev. (10−5s) 2.61 2.63

filtering solution has been proposed in the event that high

precision torque sensing is not available and related interest-

ing robustifying effects have been discussed.

We have not yet realized an experimental testbed with a

more complex structure since different hardware has not yet

been available. An extension of this work with the applica-

tion of the combined ID/PB controller to a more complex

robotic arm with series elastic actuators will be subject of

upcoming work. We also plan to perform a more detailed

sensitivity analysis with respect to external disturbances and

parametric model uncertainty.
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