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Abstract— Aerial robots are becoming popular among gen-
eral public, and with the development of artificial intelligence
(AI), there is a trend to equip aerial robots with a natural
user interface (NUI). Hand/arm gestures are an intuitive way
to communicate for humans, and various research works have
focused on controlling an aerial robot with natural gestures.
However, the techniques in this area are still far from mature.
Many issues in this area have been poorly addressed, such as
the principles of choosing gestures from the design point of
view, hardware requirements from an economic point of view,
considerations of data availability, and algorithm complexity
from a practical perspective. Our work focuses on building an
economical monocular system particularly designed for gesture-
based piloting of an aerial robot. Natural arm gestures are
mapped to rich target directions and convenient fine adjustment
is achieved. Practical piloting scenarios, hardware cost and
algorithm applicability are jointly considered in our system
design. The entire system is successfully implemented in an
aerial robot and various properties of the system are tested.

I. INTRODUCTION

Nowadays aerial robots have moved beyond military ap-
plications and become popular in the civilian market. Various
aerial robots are used to capture photos and videos from the
aerial perspective. Users commonly control an aerial robot
with a controller, and the control signal is transmitted through
wireless communication channels.

With the development of artificial intelligence (AI), there
is a trend to develop natural user interfaces (NUIs) [1]–[4]
that facilitate the interaction between humans and machines.
Hand/arm gestures are a natural and intuitive means of ex-
pression for humans, and using such gestures would allow us
to instinctively command an aerial robot, in a way similar to
commanding our pets. Thus, gesture-based human-computer
interaction (HCI) is a promising research area for aerial robot
control.

Existing gesture-based control systems of aerial robots
are quite different from each other [5]–[11]. From a design
point of view, different gesture vocabularies are mapped
to different chosen commands. Most designs treat gesture
recognition as a classification problem, where a few gestures
are recognized and map to arbitrary chosen commands.
However, an aerial robot can perform various functions, so
rather than arbitrarily picking some of them, it is possible
to focus on a particular scenario, enabling a tailored design.
E.g. to design a gesture to trigger a “taking a picture” action,
we need to consider that the system may need to handle
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a scene with multiple people close together and decide a
proper delay between receiving the command and taking the
action; to design gestures to demonstrate a set of special
trajectories, a set of movements that mimic these trajectories
may be a good choice; and to design gestures to command
the aerial robot to take off or land, we need to consider
gestures sophisticated enough to ensure that they won’t be
triggered by accident. A good NUI is application dependent,
and simply involving gestures does not guarantee intuitive
human-machine interaction and enjoyment.

In this work, we propose a monocular gesture-based
control system, which is particularly designed to pilot an
aerial robot. Despite its physical speed limitations, a small
quadrotor, which is the most common aerial robot, can
travel in any direction in open space, and it is desirable
for the commands generated by our system to cover as
many directions as possible. Our design jointly considers this
piloting scenario, the natural gestures of humans, the aerial
robot’s behaviors expected by the user, and the command
transition between different directions targeted by the aerial
robot. Our design not only realizes a pet-like enjoyable
interaction on aerial robots, but also helps the users to get
rid of the unwieldy controller in certain scenarios and has
potential to be developed into some game.

Human gestures can be captured by expensive equipment,
such as a data suit, data gloves or an optical motion capture
system, but since aerial robots are commonly equipped with
various cameras, capturing human gestures in a vision-based
manner using these cameras saves additional hardware costs
and payload. The sensor required by our system is only a
color camera, which is economical and applicable in both
indoor and outdoor cases. Based on the input video stream
captured by an onboard color camera, our system recognizes
a stretched out hand and command the aerial robot to fly in
the direction pointed to by the user. In contrast to modeling
it as a classification system, directly using the directions
pointed to by the user without quantization enables fine
piloting in any direction parallel to the image plane, and it is
also intuitive and easy for users to change their own gestures
in order to adjust the behavior of the aerial robot. A pair of
gestures is designed to pilot in the direction perpendicular to
the image plane.

As for recognition algorithms, NUI requires real-time pro-
cessing and robustness. Thanks to the techniques of computer
vision and artificial intelligence, machines are able to see and
interpret vision information efficiently. Our system involves
a face detector, a tracker, a skin detector and a hand-crafted
decision tree to generate commands, and the entire algorithm
can easily run onboard in real time. From the implementation
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point of view, similar works do not use the same platforms,
so rather than a numerical comparison of performances, the
complete implementation of the entire system is emphasized.

The remainder of this paper is organized as follows.
Section II reviews previous works on gesture recognition
and human-machine interaction. Our proposed system is pre-
sented in Section III, which is then followed by experimental
results in Section IV. Section V concludes this paper.

II. RELATED WORK

There are many inspiring algorithms solely concern-
ing vision-based gesture recognition [12]–[16], and various
works have addressed the human-machine interaction issue
[4]–[11], [17]–[23]. The design philosophies, however, are
usually just generally mentioned. In [7], W.S. Ng and E.
Sharlin particularly emphasizes that their design is inspired
by falconeering, and it is evaluated by users. Kevin P.
Pfeil et al. in [10] explore multiple sets of upper body 3D
interaction metaphors, and the evaluation by users shows a
preference toward intuitive and easy gestures. Our command
design aims at recognizing simple and intuitive gestures, and
mapping them to as many piloting commands (i.e. target
directions) as possible.

Since a depth image highlights the foreground structure
and has much lower dimensions than a color image, it is a
popular input for gesture recognition algorithms. The depth
is usually calculated from stereo images [12], [22], [23] or
directly captured by an active sensor [4], [8], [10], [11], [14],
[15], [20]. Kinect is one of the best-performing, and thus
most popular depth sensors used in gesture recognition, but
it only works in indoor environments, while piloting an aerial
robot is a popular outdoor activity as well. Our system only
requires a color camera, which is very low-cost, and can be
applied in both the indoor and outdoor environments. When
color images are used in gesture recognition, skin detection
is widely adopted to find the region of interest (i.e, hands
and face) [12], [16], [17], [21]–[23], and this is applied in
our system as well.

Static gestures are usually recognized by various hand-
crafted features and rule-based algorithms [4], [12]–[17],
[21]–[23], and dynamic gestures are typically recognized by
state-space models [13], [19], [22]. A neural-networks-based
method is used in [18] for image interpretation, predicting
the angles of the arm from an image segment. We focus
on static gesture recognition and the recognition results of
multiple frames are summarized together to robustly generate
a command. Our recognition algorithm is rule-based and is
not data-driven.

III. PROPOSED SYSTEM

In this paper we propose a monocular gesture-based pi-
loting system for aerial robots. The overview of the whole
system is shown in Fig. 1. We focus on the command design
and gesture recognition module, and in the following, we will
first describe the design of our commands, followed by the
detailed procedure of the gesture recognition algorithm.

Fig. 1. System overview. A black rectangle represents a piece of hardware
and a blue rectangle is a software module. The communication between
different parts is shown by blue arrows. All the pieces of hardware are
onboard.

A. Command Design

We assume that during the interaction, the user keeps
visible for the aerial robot, and there are no other people
close by. Considering that the quality of the video captured
by an onboard camera is usually not very high due to
the distance between the user and the aerial robot, camera
motion, uncontrollable outdoor lighting conditions etc, arm
gesture instead of hand gesture, is recognized.

As mentioned before, our piloting system maps natural
arm gestures to as many target directions as possible. Here
we use single arm pointing gestures and we do not distin-
guish between left and right arms. We first detect both the
user and his/her hand, which is not in a resting position, then
command the aerial robot to fly in the direction pointed to by
the user, with the velocity proportional to the length of the
distance from the hand to the the center point between the
shoulders. This mapping results in a very intuitive interaction
between the user and the aerial robot, and the user does not
need to memorize specially designed gesture vocabularies in
most cases.

The position of the user’s hand has 3D coordinates, but we
can only extract its 2D projection on the image plane. Thus,
we design a pair of special gestures to command the aerial
robot to go further and come closer. Both these commands
are triggered when a hand is placed in front of the body.
If the hand raises above the body center, the system will
command the aerial robot to move closer and if the hand is
placed below the body center, the system will command the
aerial robot to go further.

Theoretically, the user can point in any direction parallel
to the 2D image plane, and in most situations during the
interaction, the pointing direction of the hand indicates where
the user wants the aerial robot to go. However in practice,
three cases of hand positions can not be interpreted naively
in this way according to common sense: when the hand is
resting at the side of the user, and when the hand is pointing
up or pointing down. The resting position should not trigger
aerial robot movement in any direction, and when the hand
is raised high as shown in the fourth image in the top row
of Fig. 3, though not exactly pointing up in the center, the
user probably wants the aerial robot to go straight up rather
than sideling up, and the same applies to the pointing down
hand gesture, as shown in the fourth image in the bottom row



Fig. 2. Command design summary. The red bounding box locating the user
is obtained by tracking (detailed in Subsection III-B.2). When the user places
a hand in different color regions in the 2D image, the system will command
the aerial robot to travel in different directions colored correspondingly.
“Fine direction piloting region” means that when the user places a hand in
this region, the system will command the aerial robot to travel in whatever
direction is pointed to by the user without quantization. “No movement”
means the user’s hands are in a resting position, and no movement of the
aerial robot is triggered.

of Fig. 3. We adjust the generated command in these three
cases so that our system shows more reasonable behaviors.

Fig. 2 summarizes our command design. As shown in the
figure, when the user places a hand in different color regions
in the 2D image, the system will command the aerial robot
to travel in different directions colored correspondingly. Note
that in the orange region we do not quantize the direction
obtained from the pointing gesture of the user, so in this
region very fine piloting is achieved. Fig. 3 shows some
actual cases. The user is performing piloting gesture, and
the recognition results are marked in red on the images. The
commands parallel to the image plane are shown by a red
arrow, the “come closer” command is shown by a cross in
front of the the center between the shoulders of the user and
the “go further” command is shown by a small circle.

Another strong advantage of our design is that in the fine
piloting region, when the user observes that the aerial robot
deviates from the desired path, he/she can easily correct the
aerial robot by changing his/her own gesture intuitively. E.g.
when the user sees the aerial robot is traveling higher than
desired, he/she only needs to lower his/her arm, rather than
recall a sophisticated gesture vocabulary to figure out what
to do.

B. Gesture Recognition

The flow chart of our gesture recognition method is shown
in Fig. 4. The static gesture in each frame is recognized first,
and the recognition results of multiple frames are summa-
rized to robustly generate a piloting command. The static
gesture in a frame is represented by a 2D vector indicating
a stretched out hand position relative to the center point
between the shoulders of the user (the pointing gesture), or
a hand position in front of the body relative to the center
of the bounding box tightly containing the user. This vector
specifies the next target position of the aerial robot desired

by the user. In the recognition method, a discriminative scale
space tracker (DSST) [24] is applied to detect the user first,
and then a non-resting hand is detected according to the
results of both tracking and skin detection. Typically a tracker
is initialized by manually drawing a bounding box that tightly
contains the target object. Considering that in our scenario
the target is always a person, we adopt a face detector to
automatically initialized the tracker, and manual initialization
is also implemented in case the face detection fails. The
details of each major step are given as follows.

1) Face Detection: We use the Haar feature-based cascade
classifier in OpenCV [25]–[27] for face detection. This de-
tector has two main characteristics. Firstly it uses very simple
features like edges, lines and center-surround points [27] to
detect an object, such as a face [26]. These simple features
not only enable fast calculation, but are also very easy to
scale. The second characteristic is the cascade classifier,
which is a concatenation of several simple classifiers. A
successful face sample should be able to pass all the simple
classifiers at each stage [27]. The result of the face detection
is given by a bounding box tightly containing the face. If a
face is successfully detected in the first frame, a bounding
box containing the whole body of the user is calculated from
the face bounding box according to a preset head-body ratio.

2) Discriminative Scale Space Tracker (DSST): The
DSST [24] extends the standard discriminative correlation
filters to multidimensional features, and 3-dimensional filters
are used for scale-space localization of the target. Consider-
ing a d-dimensional feature map representation of an image,
let f be a rectangular patch, and the lth dimension of f is
denoted by f l. In order to find an optimal correlation filter
h consisting of hl for each dimension, [24] minimizes the
following objective function:

ε =

∥∥∥∥∥
d∑

l=1

hl ∗ f l − g

∥∥∥∥∥
2

+ λ

d∑
l=1

∥∥hl∥∥2 (1)

where g is the desired correlation and λ > 0 weights the
regularization term. The solution of (1) in the Fourier domain
is:

H l =
ḠF l∑d

k=1 F̄
kF k + λ

(2)

Using Al
t and Bt to denote the numerator and denominator

in (2), in order to obtain a robust approximation, the update
equation with learning rate parameter η can be written in the
following form:

Al
t = (1− η)Al

t + ηḠtF
l
t (3)

Bt = (1− η)Bt + ηḠt

d∑
k=1

F̄ kF k (4)

Given the trained filter, the score y of a rectangular region
z is computed as



Fig. 3. A few samples of the gestures we use. The commands parallel to the image plane are shown by a red arrow, the “come closer” command is
shown by a cross in front of the upper body of the user and the “go further” command is shown by a small circle.

Fig. 4. The flow chart of our gesture recognition method.

y = F−1

{∑d
l=1

¯AlZl

B + λ

}
(5)

The new target state is the z that has the maximum y.
While searching the target in the current frame, DSST starts
at the target location in the previous frame, and the 2-D
translation subspace is searched first. Then the 1-D scale
subspace is determined. In our system, the tracking result is
a bounding box Buser containing the target object, i.e, the
person interacting with the aerial robot.

3) Skin Detection: In our system, we use the nonpara-
metric histogram-based skin detection model in [28] which

Fig. 5. Two examples of the skin detection [28] results. The first image of
each row is the input image, the second one shows the skin likelihood of
each pixel, the third image shows the thresholded likelihood of each pixel
(i.e, the binary skin image), and the last one shows the overlaid input image
with the binary skin image through setting the R value of the skin pixels to
255.

is trained using 14,985,845 manually annotated skin pixels
and 304,844,751 non-skin pixels. Using this model to apply
skin detection on a given image is simply a table-lookup,
rearranging the three 8-bit color values of an RGB pixel into
one number and then obtaining the corresponding probability
that this pixel is a skin pixel. Fig. 5 shows two examples of
the skin detection results. The first image of each row is the
input image, the second one shows the skin likelihood of
each pixel, the third image shows the thresholded likelihood
of each pixel (i.e, the binary skin image), and the last one
shows the overlaid input image with the binary skin image
through setting the R values of the skin pixels to 255. In our
system, the skin detection is applied in a rectangular region
extended form the tracking bounding box, and we use the
binary skin image as a mask and represent it as Mskin.

Note that besides the hands and arms, the face, neck, legs
and feet can also be detected as skin areas. Assuming that
the user is standing, we remove the skin areas within Buser

roughly corresponding to these regions according to preset
ratios, leaving an easier job for the hand detection.

4) Hand Detection: Here we use p to denote a 2D pixel
coordinate in a image, F represents a function, B is a
bounding box, M is a mask of the same size as the input
frame and λ is scaler weight. Superscripts and subscripts are
used to identify different variables of the same kind and also



give information about their properties. puc is the center point
between the shoulders of the user. shand is a set of position
coordinates of the pixels in a square whose area is roughly
equal to that of a hand. We manually set the side length of
this square to Buser.width/4.

According to the gestures used in our interaction system,
two kinds of hand positions can trigger the movement of the
aerial robot: stretching out one hand parallel to the image
plane and placing one hand in front of the body. Since the
first gesture corresponds to much richer commands, it is more
often used and can be detected with higher confidence, the
existence of a stretched out hand is checked first. Whether
there is a hand placed in front of the body is checked later
if the detection of a stretched out hand fails.

Given Buser and Mskin, the stretched out hand is detected
following the procedure in Algorithm 1. We first check
whether there is sufficient number of skin pixels outside of
Buser, which indicates the existence of a stretched out hand,
and then the position of the hand is determined based on two
considerations: the hand region should contain many skin
pixels and the stretched out hand should have a large distance
from puc. The function Fskin(p) simply counts the number
of skin pixels in a shand centered at p. From the formulation
of Fdist(p) it can be seen that we score the horizontal and
vertical distances differently. Thinking of the practical scene
when a user is interacting with an aerial robot, in most cases
a stretched out hand would be horizontally away from the
center of the person, and since we do not distinguish between
the left and right arm, the absolute value of the horizontal
difference |puc.x − p.x| is used. However, when the user
raises his/her arm high up, |puc.x − p.x| can be small, so
(puc.y − p.y) is used to add a score onto the raised hand
position. The term Fdist(p) not only captures the “stretched”
property, but also distinguishes the hand from the arm. Since
the hand is at the tip of the skin region, it is further away
from the body than the arm when it is stretched out.

Similarly, the procedure to detect the hand in front of the
body is described in Algorithm 2, where pbc is the center of
Buser. This time the hand is only searched for within Buser.
An area with many skin pixels is again preferred, and the

Algorithm 1 Stretched out hand detection
Input: Buser, Mskin

Output: pout
hand

1: Mout
skin = Fout

Buser
(Mskin,Buser) . get skin region out

of Buser

2: if number of non-zero elements in Mout
skin > 30 then

3: pout
hand = arg max

p∈Mout
(Fdist(p) + λ1Fskin(p))

4: where Fdist(p) = |puc.x− p.x|+ λ2(puc.y − p.y)
5: and Fskin(p) =

∑
p′∈sphand

Mout
skin(p′) . count skin

pixels
6: pout

hand = pout
hand − puc . hand position relative to the

center point between shoulders
7: else
8: pout

hand = 0

term F cost
dist penalizes the positions that are horizontally away

from the center of the body.

Algorithm 2 Front-of-body hand detection
Input: Buser, Mskin

Output: pfront
hand

1: Min
skin = F in

Buser
(Mskin,Buser) . get skin region in

Buser

2: pfront
hand = arg max

p∈Min
skin

(−F cost
dist (p) + λ3Fskin(p))

3: where F cost
dist (p) = |pbc.x− p.x|

4: and Fskin(p) =
∑

p′∈sphand
Min

skin(p′)

5: if F cost
dist < Buser.width/5 ∧ Fskin > 30 then

6: pfront
hand = pfront

hand − pbc

7: else
8: pfront

hand = 0

5) Command Generation: Algorithm 3 describes how
we generate a command based on the results of previous
steps. The “command” here simply means a 3D vector in
the camera frame. This vector indicates where the desired
position is relative to the current position of the aerial robot.
The real target position for the control system is obtained by
scaling this vector and transforming it into the body frame
of the aerial robot.

We use S to denote the state buffer. Specifically, Sout stores
all the pout

hand detected in the latest 60 frames, and Sfront stores
the latest 60 pfront

hand.

Algorithm 3 Command generation
Input: Sout, Sfront

Output: pcmd

1: nout ← count non 0 in Sout . check stretched out hand
2: if nout > 30 then . a stretched out hand is detected in

more than half of the frames in the state buffer
3: pcmd ← average of non 0 in Sout . set two

components of pcmd, leaving pcmd.z = 0
4: if |pcmd.y| > |λ4pcmd.x| then
5: pcmd.x = 0

6: else . check the front-of-body hand
7: nhigher ← count pfront

hand.y < 0 in Sfront

8: nlower ← count pfront
hand.y > 0 in Sfront

9: if nhigher > 30 then
10: pcmd.z = −1 . come closer
11: else if nlower > 30 then
12: pcmd.z = 1 . go further
13: else
14: pcmd.z = 0

As mentioned previously, the stretched out hand can be
detected more confidently than the hand in front of the body,
so, in general, the commands for the directions parallel to
the image plane are more reliably recognized than those
for directions perpendicular to the image plane. Assuming
that there is at most one true command each time, in our
system a decision tree is used to generate the command.



The high-confidence choices are checked first, while the
low-confidence choices are only checked when the previous
attempt has failed.

Generating a command based on a single frame is vul-
nerable to outliers. Our system first checks whether there
are enough states in the buffer consistently containing non-
resting gestures of either kind (stretching out one hand or
placing a hand in front of the body). If so, the recognition
results of these frames are averaged to robustly generate
a smooth piloting command. This method increases the
robustness and smoothness of the generated command, which
is quite favorable from the practice and control points of
view.

Recall in Subsection III-A that we mention adjusting our
generated pointing up and down commands to make our
system behave more reasonably. From Algorithm 3 it can
be seen that this adjustment is done by simply setting the
small pcmd.x to 0.

IV. EXPERIMENTAL RESULTS

We first test the capability of the face detection adopted
in our system to automatically initialize the bounding box
for DSST. Then we test our recognition algorithm given the
bounding box containing the user. The performance of the
entire system is shown last. We implement our method on a
DJI Matrice 100 with an Intel NUC computer and a Logitech
webcam onboard. We use ROS (Robot Operating System)
to handle the communication between different modules.
Some of the video samples processed off-line to demonstrate
the gesture design (in Subsection III-A), face detection and
skin detection (in Subsection III-B.3) are taken by a DJI
Phantom 4. In our experiments we choose λ1 = 0.5, λ2 =
0.2, λ3 = 0.013 and λ4 = 0.5 empirically.

A. Capability of Face Detection

We test the capability of the face detection method by two
720p video sequences taken by the Phantom 4. Both videos
contain one person, and one video is taken indoors, while the
other is taken outdoors. Initially the quadrotor is far away
from the person and the face detection fails to detect the face
of the person. As the quadrotor gradually moves closer to the
person, the face is more and more reliably detected. Fig. 6
shows some frames where face detection is successful. The
first row of frames is taken in an indoor environment and the
second one is outdoors. From left to right the person takes
up a larger and larger proportion of the image. The left-most
image shows the point at which face detection starts to work.
Conservatively speaking, using our cameras (both the camera
on the Phantom 4 and Logitech webcam), the face detection
works within about 5 meters of the person. Note that this
face detection is used to automatically initialize the tracker,
so it only performs on the first frame of the video stream.
I.e., 5 meters is a conservative range within which the system
can automatically initialize its tracker. Since our tracker also
has manual initialization implemented, it will work well even
if the user is further away than 5 meters when the system
starts. This distance also depends on the video quality, as

higher quality videos enable the face detection to work at a
longer distance.

B. Performance of Gesture Recognition Algorithm

The performance of our gesture recognition algorithm
is shown in this subsection. We first test the recognition
accuracy of the stretched out hand gesture, and then show the
recognition accuracy of placing a hand in front of the user.
Here we assume that the tracker has handled the camera
motion and a reliable bounding box containing the user is
given, so we simply use video taken by a stationary camera.

Since the directions pointed to by a stretched out hand
of the user is directly used to pilot the aerial robot without
quantization, the performance of this fine piloting is mainly
determined by the accuracy of the recognized gesture vector,
which starts from the center point between the shoulders of
the user and ends at the position of the stretched out hand.
In order to test the recognition accuracy, we tie one marker
to the middle of the shoulders of the user and one to the
back of her stretched out hand. An OptiTrack system is used
to precisely record the 3D position coordinates of these two
markers to obtain the ground truth gesture vector, and we
only use two components of the 3D vector that are parallel
to the image plane. Fig. 7 shows the detection accuracy of
the x and y components w.r.t. the frame index. Note that
our recognition algorithm use the coordinate system of the
image frame, which is different from that used by OptiTrack.
There is a translation between the two origins and their
coordinates have different scales. From Fig. 7 it can be seen
that for most of the frames, the recognition results of our
algorithm are quite consistent with the ground truth. In some
frames our algorithm fails to detect the hand and the gesture
vectors simply remain zero. In the outdoor environment,
we do not have the OptiTrack system to offer us a ground
truth. A processed video taken by a Phantom 4 hovering in
front of the user is used to offer a subjective performance
demonstration. Both indoor and outdoor videos are included
in our video attachment, from which it can be seen that even
though the hand detection (represented by a red square box
containing the hand, and also where the red arrow starts)
fails occasionally, the generated command (the red arrow) is
quite stable due to the state buffer adopted in our algorithm.
The outdoor video also well illustrates our fine piloting in the
directions parallel to the image plane. The user slowly raises
her arm from its resting position and the generated command
gradually changes accordingly. Some representative frames
of this outdoor video are shown in Fig. 8.

With the gesture of putting a hand in front of the body,
either the “come closer” or “go further” command is trig-
gered. The system only needs to identify in which of the
two regions (either pink or purple region in Fig. 2) the hand
is placed, rather than to determine the precise position of the
hand. A video clip in our attachment shows the recognition
performance of our system on this pair of gestures. We
manually check the recognition result in each frame, and
the success rate is 85.45%.



Fig. 6. Face detection test on two 720p video sequences taken by an aerial robot moving towards a single person from far away. The first row of frames
is taken in an indoor environment, and the second one is outdoors. From left to right the user takes up a larger and larger proportion of the image. The
face of the user is successfully detected in all eight frames and a red square bounding box tightly containing the face is also shown in each frame. The
left-most frame of each row shows the point at which the face detection just starts to work.
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Fig. 7. Hand detection accuracy in the image plane. The orange plot is the
ground truth obtained by the OptiTrack with its axis shown on the right, and
the blue plot is the results obtained by our algorithm with its axis shown
on the left.

C. Performance of the Entire System

We successfully implement the proposed system on a
Matrice 100 with an Intel NUC and a Logitech webcam
onboard. The position of the quadrotor is controlled by
the gesture of the user, and its yaw angel is automatically
adjusted based on the position of the user relative to that of
the quadrotor, keeping the camera always facing the user. A
demonstration of mixed gesture piloting of the aerial robot is
available in our video attachment. For our hardware settings,
the proposed system works within about 10 meters.

We find seven labmates without particular knowledge of
this system (but they may have some general knowledge
of UAVs from the class) to evaluate our system. We first
demonstrate the gesture commands by interact with the
quadrotor ourselves (it takes about 1.5 minutes to go through
all the gestures), then ask them to interact with the quadrotor
for about 5 minutes and to evaluate the system form four
aspects: whether the gestures are comfortable and intuitive
to perform; whether piloting an aerial robot through our
system is enjoyable; the rough percentage of the correct
response (accuracy); whether it is easy to make adjustment.
The accuracy is given by a percentage, and the other three
evaluations score from 0 to 9. 0 means too bad or unaccept-
able, 9 means excellent and 5 means reasonably fine. The
averaged score and the standard deviation of each evaluation
is shown in Table I. All the users think this gesture-based
piloting system is enjoyable and the gestures are comfortable
to perform in general. Some users think that the commands

of “come closer” and “go further” are not very intuitive,
and the percentage of failure cases of this pair of gestures
are relatively high. This is due to the imperfection of the
skin detection and the design of our decision tree, which
gives higher priority to the directions parallel to the image
plane. One user points out that the easiness of adjustment
is hard to judge, since the motion of the quadrotor is not
very precise anyway. Another user sharply senses that there
is a delay between when he performs the gesture and when
the quadrotor starts to act correspondingly. This is mainly
due to two reasons: first, for safety reason, we can not allow
the quadrotor to go too fast, so we manually insert a 600
milliseconds delay before each gesture-command generated
and this upper bounds the gesture-command to about 1.6667
Hz; second, the usage of the state buffer, which is adopted
to improve the robustness of the system and to smooth the
command generated. Here some other information of the
system are offered: the speed of the control loop is about
103 Hz, the frame rate of the received video is about 25,
the algorithm generates gesture-command with the average
rate of 22.4, and drifting is observed when the received GPS
signal is weak. Optimization of this system and even making
it be able to adapt to each user would be our future work.

Evaluation comfort enjoyment accuracy easy adjust
mean 7.7857 7.7857 0.7286 7.2143
std 0.9063 0.3934 0.0859 0.6362

TABLE I
THE SUMMARY OF THE USER EVALUATIONS.

V. CONCLUSIONS

In this paper we propose a monocular gesture-based pilot-
ing system for an aerial robot. To command an aerial robot
to fly in a direction parallel to the image plane, the user
simply stretches out one arm and points in that direction.
This design is not only simple and intuitive, but also very
convenient for the user to make fine adjustments. Our system
also recognizes a pair of gestures in which a hand is placed in



Fig. 8. Sample frames of the video clip demonstrating fine piloting in the directions parallel to the image plane.

front of the body to command the aerial robot to come closer
or go further, enabling piloting in 3D space. A DSST is used
to locate the user, and a face detector is adopted for automatic
bounding box initialization. Based on a skin mask result
from a nonparametric histogram-based skin detection model
together with the tracking result, the hand position in each
frame is obtained. The recognition results in multiple frames
are combined together to robustly produce a command. The
entire system can successfully run on an onboard mini PC
in real time. Evaluations from seven users show that this
gesture-based piloting system of an aerial robot is very
enjoyable and intuitive to use.
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