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Local Driving Assistance from Demonstration for Mobility Aids

James Poon1, Yunduan Cui2, Jaime Valls Miro1, Takamitsu Matsubara2 and Kenji Sugimoto2

Abstract— Active assistive mobility systems are largely lim-
ited to a-priori mapped environments, whereas their reactive
assistive counterparts are in general location independent and
focus on the provision of collision avoidance in the immediate
space surrounding the platform. This paper presents a frame-
work capable of providing active short-term navigation, com-
bining the intelligence of active assistance with the freedom of
location independence. Demonstration data from an able expert
while driving the mobility aid in a standard indoor setting is
used off-line to learn reference behavioral models of navigation
given perceptual information from the platform surroundings
and the input controls exerted by the user while navigating.
These serve as the foundation for on-line probabilistic short-
term destination inference using the instantaneously available
data from the user and on-board sensors. This is coupled with a
real-time stochastic optimal path generation able to exploit the
same short term demonstration paths from the expert with
the belief they capture both the driver’s awareness of the
platform’s physical geometry and appropriate behaviors for
their surroundings. Experimental results with users of varying
proficiency in a setting unvisited in training data show promise
in using the framework in assisting users experiencing difficulty
in safe power mobility aid use.

I. INTRODUCTION

The global population is ageing quickly, with predictions
that the worldwide proportion of people aged 60 and over is
expected to nearly double by 2050 [1]. Mobility assistance
aids for the elderly and frail promote independence and self-
esteem in their users, and as such there is a strong motivation
within the research community to develop intelligent systems
capable of providing advanced mobility assistance to these
populations [2]. The anticipated benefit of these advances
to alleviate the substantial time devoted by carers on every-
day mobility supervision, that could be otherwise spent on
supplementary aspects of care, also appears compelling. Our
objective is to thus develop an aid framework that can be
incorporated into power mobility devices (PMDs) - such as
the one shown in Fig. 1 - fit to be continuously used without
undue resistance or dependance on the part of the user to sup-
port them during navigational activity. Since PMDs are large,
heavy and powerful machines there are strict conditions an
applicant must meet before prescription is approved [3] even
if they are otherwise capable of independenly performing
other routine tasks. In this light, the target end users of
this work are those who retain some independence but can
benefit from assistance in mobility to avoid potential damage
to themselves or their surroundings, rather than individuals
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Fig. 1: UTS semi-autonomous wheelchair.

requiring constant oversight due to more complex healthcare
or lifestyle requirements.

The fundamental proposition of this work is to learn both
short-term “local” intention estimation and their associated
confined planning strategies from data acquired from sensors
mounted on the platform without reliance upon objectives
drawn from static locations, so that the proposed intelligent
PMD can extrapolate these learnings to new places and
different users. This is done through models built from an
able ‘expert’ driving the PMD around a known and mapped
environment while position, joystick input and sensor data,
in our case a planar laser scanner, are logged. For intention
estimation a behavioral model is built allowing for a discrete
distribution of likelihoods across points in a moving window
around the PMD, to be inferred only upon immediately
available sensor information and user input (generally taken
to be 2D joystick measurements). Here we define intention
as likely points in the local surroundings of the PMD that
the user may reasonably wish to stop at or pass through at a
given instant. The procedure for obtaining this model from
training expert data is described in Section II.

We also propose a methodology to facilitate the learning
of short-term path planning and user compliance from the
same training data set in Section III. Short local paths
are decomposed into primitives which are spatially scal-
able to desired intentions. As this does not ensure safety,
we combine these paths with sensor data and refine them
via a stochastic optimal control method, Dynamic Policy
Programming (DPP) [4] and take the resultant path as the
final output of the path planner. The motivation for this is



that we believe expert demonstration must capture some of
the expert’s awareness of the PMD’s geometric properties
and what they consider to be desirable vehicle behavior, so
it is much more beneficial for a framework to learn from
and exploit this information for navigation purposes rather
than having parameters tuned to suit different environments
and platforms. A subsequent compliance model, also built
from training data, then continually assesses the correlation
between the path and the user’s joystick input allows the
planner to readily replan towards likelier intentions.

This combined intention estimation and path planning
framework is then taken to areas unvisited in training data
where it is assessed in novel and large environments without
further calibration for new settings or users. Section IV
assesses framework performance in novel settings with users
of varying PMD proficiency. Sections V-VI discuss compar-
isons to other methodologies in assistive PMD navigation,
the outcomes of this work and avenues for future work.

II. LOCAL INTENTION ESTIMATION

Most inferences on likeliest intention points defined solely
within the PMD’s immediate space should be as far from
the PMD’s origin as training data reasonably allows. This
is primarily due to the platform’s sheer footprint size; the
unit in Fig. 1 measures approximately 0.8m from origin to
front, and 0.7m across. For driving a PMD of this size its
user needs to plan manoeuvres that consider a local space of
several metres around to allow adequate room for delicate
tasks such as aligning him/herself with a doorway, and it is
reasonable to assume a planning algorithm would also benefit
from a comparable area.

There is also an upper bound when planning paths for
continuous navigation assistance. Excessive length is unnec-
essary as put forward by Huntemann et al. [5], as a path
can be considered correct so long as it coincides with the
user’s desire for a brief interval. When constantly evaluating
the fitness between the path being currently tracked by the
PMD and the user’s latent intention, there is no need to plan
paths too far as the user can always indicate a change in
intention. Hence the quantity of local space needed can be
thought of as a soft region between the lower bound defined
by the requisite space required for planning for a PMD of
a given size, and the upper bound beyond which additional
computation is mostly wasted.

As the DPP component in the subsequent path planner
works in a grid-world scenario, we discretise the local space
around the wheelchair and plan in a grid defined as a 5m
square around the PMD with a cell resolution of 0.05m for
an acceptable path planning time (<0.5s).

A. Intention Estimation Behavioral Modelling

Demonstration data contains expert actions a1:N of 2D
Cartesian joystick positions, odometry information o1:N con-
taining the platform’s Cartesian position, heading and linear
and angular velocities, and sensor data z1:N consisting of
a sweep of distances to obstacles across the on-board laser
scanner’s 180◦ horizontal field of view. This data is first

(a) Subsequent exiting of local
grid boundary.

(b) Subsequent loss of line of
sight.

(c) Inflection in vertical joy-
stick axis.

(d) Orientation change of ≥
90◦.

Fig. 2: Conditions for extracting local paths with origin at
the solid red PMD footprint, from a longer expert trajectory
(black). Training data at the local termination point (orange
point) is recorded, consisting of the expert joystick input at
the origin, and the range of the beam (blue line capped with
blue circle) from an on-board laser scanner that covers the
termination point. Gray contours represent edges of obsta-
cles perceived by the laser scanner, green arrows represent
joystick position, and magenta lines represent the boundary
of the PMD’s local path-planning space.

decomposed into a series of short paths which terminate
when any of the termination criteria in Fig. 2 are met. Given
each local path (black line), a training data instance for the
cell in which the path’s terminal point lies (orange circle)
is recorded. For a path starting at pose on, a training data
instance consists of {an,rθ} = 1 where (r,θ) is the polar
co-ordinate of the blue circle, representing the end point of
the laser beam (blue line) nearest in angular orientation to
the path’s terminal point from laser scan sweep zn. Beams
reaching beyond the local grid (magenta lines) centred to
on are capped at the grid border. Only edges of obstacles
perceived in zn are considered as we believe therein contains
sufficient information for a human to also make an instan-
taneous decision. Paths are recorded from all training data
instances 1, . . . ,N.

This beam-style model is used in order to alleviate the
effects of the curse of dimensionality when working with
high dimensional laser scan data. Rather than attempting to
match instances of z1,...,N in their entirety to the new z∗ as this
would be easily overfitted, this approach allows for improved
tolerance to large variation in environmental structure while
retaining some information on the latent relationship between
z and the sense of space the expert afforded the PMD.

Each grid cell containing training data then has its own



Fig. 3: Paths from training data sharing a similar endpoint
orientation are gathered (left); their resulting primitive can
then be spatially scaled to arbitrary poses (right, gray circles).

one-class classifier built as training data has only positive
examples. Radial Basis Function Networks [6] are used for
the intention likelihood estimate P(y|a∗,r∗

θ
) of each cell for

which data was present, given new joystick input a∗ and
range information r∗

θ
. As y = 1 is a solution, a strong 0 prior

is employed to reduce overfitting. Normalising p across the
grid yields a discrete intention distribution, from which the
center of the likeliest cell is taken as the intended goal point.

III. LOCAL PATH PLANNING

This section presents our local path planning method,
and the control scheme for compliant path tracking. As
the singular goal points from Sec. II-A do not provide
information about the expert user’s driving behavior, we aim
to capture the expert’s driving style in the form of primitive
paths (Sec. III-A) that can be readily scaled to potential
goal points. This expert-styled path, along with obstacles
perceived by the on-board laser scanner is used to initialize
a baseline reward function, allowing DPP (Sec. III-B) to
compute an optimal grid-world traversal policy in the form
of a Markov Decision Process.

The resultant path drawn from the final DPP policy
(Sec. III-C) then becomes the path to be tracked. We use the
same training data to formulate an inverse joystick model
(Sec. III-D) to estimate the user’s compliance to the current
path given their input, allowing them to request a new path
whenever the user changes his/her mind or the remainder of
the current path proves to be incorrect.

A. Local Path Primitives

From the training data, local paths with similar endpoint
orientations are gathered and a primitive is obtained as a
least-squares solution after spatially scaling the paths to the
same endpoint. In this work we use 17 discretized endpoint
orientions for creating expert-styled path primitives. Then for
a goal point (x,y) with a desired endpoint orientation of β ,
a path primitive with an endpoint orientation nearest to β is
spatially scaled to reach it. Fig. 3 shows an example of a
scaled primitive extracted from multiple expert paths. In this
work the primitive starting with the nearest fit to the joystick
orientation is taken.

B. Dynamic Policy Programming

Stochastic optimal control learns a Markov Decision Pro-
cess (MDP) defined by a 5-tuple (S,A,T,R,γ). S is a finite

set of states, A is a finite set of actions, T a
ss′ is the transition

probability from state s to state s′ under the action a, r a
ss′ =

R(s,s′,a) is the reward from state s to state s′ under the action
a. Here we define S as a small grid-world around the PMD
for planning paths in, with A consisting of 9 moves from a
cell to one of its immediate neighbors or to itself. γ ∈ (0,1) is
the discount factor. The policy π(a|s) denotes the probability
of taking the action a under the state s. The value function

Vπ(s) = lim
k→∞

Eπ

[ K

∑
k=1

γ
k−1rst+k |st = s

]
is the expected return

when the process starts in s and the decision maker follows
the policy π . The solution of MDP is an optimal policy π∗

that attains the maximum expected reward:

π
∗ = argmax

π
∑

a∈A
s′∈S

π(a|s)Ta
ss′
(
ra

ss′ + γV ∗(s′)
)
,∀s ∈ S.

(1)

DPP builds a new value function by adding the Kullback-
Leibler divergence to the reward function R as a penalty
term. The Kullback-Leibler divergence between the policy π

and the baseline policy π̄ and the new value function V are
defined as:

gπ
π̄(s) = KL(π‖π̄) = ∑

a∈A
π(a|s) log

(
π(a|s)
π̄(a|s)

)
, (2)

Vπ̄(s), lim
k→∞

Eπ

[ K

∑
k=1

γ
k−1

(
rst+k −

1
η

gπ
π̄(st+k−1)

)∣∣∣∣st = s
]

(3)

where Eπ denotes expectation over transition model T and
the current policy π . Parameter η ∈ [0,1] is a constant that
controls the Kullback-Leibler divergence term.

According to [4], the action preferences function [7]
for all state action pairs (s,a) ∈ S×A in the k-th iteration
are defined as Ψk(s,a) = 1

η
log π̄k−1(a|s)+∑s′∈ST

a
ss′
(
r a

ss′
+

γV k−1
π̄

(s
′
)
)
. It represents the closed form of the optimal

policy π∗ following:

V k+1
π̄

(s) =
1
η

log ∑
a∈A

exp(ηΨk(s,a)), (4)

π̄
k+1(a) =

exp
(
ηΨk(s,a)

)
∑a′∈A exp

(
ηΨk(s,a

′
)
) . (5)

The optimal action preferences function determines DPP’s
optimal policy according to Eq. 5. The update recursion of
Ψ follows:

Ψk+1(s,a)=Ψk(s,a)−MηΨk(s)+∑
s′∈S

Ta
ss′
(
ra

ss′
+γMηΨk(s

′
)
)

(6)

where Mη Ψk(s) is the the Boltzmann soft-max operator:

Mη Ψ(s) = ∑
a∈A

exp
(
ηΨ(s,a)

)
Ψ(s,a)

∑a′∈A exp
(
ηΨ(s,a′)

) . (7)

Following Eq. 6, DPP updates action preferences function
Ψ to iteratively optimize its value while upholding smooth-
ness in its policy updates as determined by η .



C. Path Generator Using DDP

In order to use expert-styled paths with DPP, a baseline
reward grid-world is set (Eq. 5). Cells along the scaled prim-
itive receive increasingly positive reward, whereas obstacle
cells from the laser scanner with 0.3m inflation receive a
negative reward. DPP then optimizes its policy grid-world
by smoothly updating with consideration to this baseline,
and the resultant path drawn from the final policy is then
followed.

Given initial action preferences Ψ0(·, ·), DPP parameters
γ , η and the number of iterations K, the process of the path
generator is summarised in Algorithm 1.

Algorithm 1: Process of path generator using DPP
input : Ψ0(·, ·), γ , η , K
/* DPP loop */
for k = 1,2,3, ...,K−1 do

for (s,a) ∈ S×A do
calculate s

′
, the next state of s under action a

TkΨk(s,a) = r a
ss′

+ γMη Ψk(s
′
)

Ψk+1(s,a) = Ψk(s,a)+TkΨk(s,a)−Mη Ψk(s)

/* generate path */
i = 0; s0← position of occupancy grid origin
while si is within occupancy grid do

ai = argmaxa∈A Ψk+1(s,a)
calculate si+1, the next state of si under action ai
i = i+1

output: assistance path {s1,s2, ...,si−1}

D. Path Compliance Model

Path tracking via the Pure Pursuit tracking algorithm [8]
commences immediately once a path is acquired from DPP
and transformed into global co-ordinates. The magnitude of
the joystick’s polar displacement scales the tracker’s output
linear and angular velocities, allowing the user to always
control the rate of PMD motion. At each step the tracker
provides an immediate control point on the path ahead of the
PMD by a fixed distance, from which command velocities
are derived. Since this point is always in the PMD’s frame
of reference it serves as a convenient focus to assess the
user’s desire to go to the control point, and arguably the
remainder of the current generated path. A compliance model
for potential control points around the PMD is built in
a similar manner to the intention estimation sensor model
however only the joystick input is considered, resulting in a
compliance estimate P(y|a∗). Either insufficient compliance
or the control point nearing the end of the path results in a
new intention and path computation.

IV. EXPERIMENTAL RESULTS

Training data was obtained in a simulated house envi-
ronment (20m x 10m) by an able user driving a PMD-like
platform. The training paths followed by the user are shown
in Fig. 4, who was tasked with driving throughout the space

Fig. 4: Training data (red) from an able user in a 20m x
10m simulated home environment.

Fig. 5: Visualization of accuracy of the intention estimator
and path generator, for a user mimicking the mean path (blue)
of 5 other able users in a 7m x 5.5m simulated task. For more
details please refer to the caption of Fig. 6, here the RMSE
is 0.08m.

while maintaining safe distances to obstacles and walls. This
could have also been done on the real platform, but we feel
one of the advantages of the proposed framework is its ability
to capture and generalise reasonable driving behaviors, so by
simulating the dynamics and interactions it is shown how the
process can be extended to different layouts, platforms and
sensing characteristics, which can then be incorporated and
tested on the real platform, as explained below (a scenario
depicted by Fig. 6).

One the models were learned, the framework was first
tested in a different indoor setting (7m x 5.5m) with the
task of passing through a doorway and approaching a table
(Fig. 5). This represents an environment deliberately laid out
so that expected paths to be followed by a PMD user between
a start and a goal point can be reasonably constrained. Given
the challenge of accurately measuring an “intention”, this
exercise allows us to establish a metric of the performance
of the intention estimation and path planning in generating
paths that are close to what an expert would do. As expected,
an able user performing the task unassisted produced paths in
a manner comparable to the mean paths of 5 other unassisted



Fig. 6: Visualization of accuracy of the intention estimator and path generator, run a-posteriori for each of the logged points
along an able user’s free path (gray with PMD footprints). The first 50% of each generated path are shown here in green and
red, with green representing points lying within 0.1m RMSE between generated path points and the user’s path. Conducted
on UTS campus in a space measuring approx. 60m x 27m on the UTS semi-autonomous wheelchair.

able users tasked to do the same, shown in blue in the Figure.
The intention estimator and path generator were then run
a-posteriori on each recorded point along their driven path.
Here we consider the first 50% of each generated path for the
metric of, upholding the notion that a path has to be ‘correct’
only for a reasonable portion of its length.The RMSE (root
mean-square error) between the truncated estimated path
points to the inferred intention point, and the effective user’s
driven path is 0.08m, showing a strong correlation between
the proposed paths and what an able user deemed to be
near-optimal navigational behavior in a novel exercise. For
reference, points in red indicate estimated intended paths that
lie beyond a 0.1m RMSE between the planned and actually
executed path.

Similar evaluation of the intention estimation on the UTS
semi-autonomous wheelchair (Fig. 1) is shown in Fig. 6.
It can be seen how most of the initial 50% of the paths
generated a-priori along the final paths traversed as estimated
by the proposed navigational framework yielded an RMSE
with 0.1m (shown in green), showing the system’s ability
to generalize to large open areas despite being trained in
a restrictive house-like indoor space. PMD localization and
map building was handled by Hector SLAM [9].

To assess the framework’s overall ability to provide as-
sistance to less capable users, an 82 year old female volun-
teer with deficiencies typical of her age and without prior
PMD experience was first requested to attempt the same
task of doorway navigation and table approach (Fig. 7a).
A collision occurred while attempting to pass through the
doorway which required a small reversal to fix, and pulling
over at the table involved turning in place before a final

straight approach. Fig. 7b shows the same task undertaken
with the assistive framework in operation. The framework
was capable of providing generated paths across the entire
duration of travel, with a more gradual approach to the
final destination resulting in minimal turning in place for
aligning with the table edge. The path travelled with the
aid of the assistive framework is noticeably smoother and
devoid of collisions, and ends with the PMD reaching the
table while being closer to the wall to the right of its final
pose. For further testing, 5 able users subject to Gaussian
noise of N(0,0.3) on the joystick (∈ (−1,1)) were requested
to attempt the task (Fig. 8). All 5 were able to pass through
the doorway, although some difficulties were encountered
in terms of aligning with the table. 95±7% of all points fit
within the 2σ bound from paths by the same 5 users without
assistance or input signal interference, indicating a degree of
robustness against user tremoring.

Experimentation was conducted on an i7 Linux machine
with 16 GB RAM and Nvidia 980M GPU. An average
intention inference and path generation cycle took <0.5s
in addition to minor latencies arising from MATLAB/ROS
(www.ros.org) communications.

V. RELATED WORK AND DISCUSSION

A. Intention Estimation for PMDs

Conventional active navigational assistance with PMDs
tend to rely on a-priori map building of the entire space
that the system is expected to operate in. Selected locations
of interest in this space correspond to destinations that
can be perceived as longer-term targets. Examples include
key points in a home allowing easy access to furniture

www.ros.org


or household utilities, or strategically placed in especially
difficult areas such as doorways that require intervention for
safe traversal [10]. For an intelligent system to provide timely
assistance while manoeuvring, the tendency is to evaluate
the most likely intended target with some form of classi-
fication, postulated on prior learnings from demonstrative
navigational data typically gathered from end-users or able-
bodied demonstrators. This long-term destination likelihood
classification has already been previously addressed by sev-
eral inference methodologies including Dynamic Bayesian
Networks [11], Heirarchical Hidden Markov Models [12],
Gaussian Processes [13], Artificial Neural Networks [14] as
well as heuristic multi-hypothesis consideration [15].

The critical shortcoming of approaches reliant on known
environments is the requirement of maintaining considerable
spatial maps to accomodate longer-term assistive planning,
and the computational complexity associated to that. More-
over, preserving inference accuracy over time in deployment
scenarios where both environmental configuration and user
preferences change, such as in a shopping center or the local
neighbourhood, requires significant upkeep. It is effectively
infeasible to attempt to map and provide targets for all
the places a PMD user would go in everyday life for
any sizeable environment. Instead this paper describes an
approach to build probabilistic models for local intention
estimation within a moving window aroud the user, allowing
for a system to provide intention estimates and navigational
assistance “anywhere”. Circumventing the curse of dimen-
sionality from high-dimensional laser scan data by consider-
ing a beam-type sensor model for intention estimation makes
this methodology, to the best of our knowledge, the first to
perform local intention estimation as per demonstration data.

B. Assisted Navigation and Path Planning

Local assistive navigation for PMDs is rather well es-
tablished, with possibly the simplest being systems such
as the Bremen Autonomous Wheelchair [16] that nullify
inputs which would result in collision. Obstacle avoidance
algorithms are frequently used, for instance the Vector Field
Histogram [17] on the NavChair [18] platform or protocols
tailored to specific sensor arrangements [19]. This approach
still requires some rudimentary intention estimation to occa-
sionally override pure obstacle avoidance protocols as near-
collisions have to occur to allow for actions like parking
close by furniture.

Fusion of robot command signals with that from the
user is a common approach for shared autonomy [20]–[22],
employing a metric of ‘goodness’ on the part of the user
to dictate their share of a final control signal composed
of a weighted sum. These metrics are usually defined as a
combination of heuristic measurements including proximity
to obstacles and the smoothness of user input. However
we believe it is inherently safer for the user to provide
suggestions to a system fully in control of platform behavior
rather than to share control in this manner, as there is little
guarantee the combined control signal is safe or desirable
even if the individual signals comprising it are.

(a) Unassisted path.

(b) Assisted path (gray) with compliant generated path points
(green) and incompliant (red).

Fig. 7: Comparison between unassisted and assisted paths
taken by an 82 year old female volunteer.

Fig. 8: Assisted paths of 5 able users with joystick input
subject to N(0,0.3) Gaussian noise, over µ and 2σ of
unassisted and unhindered paths by the same users (blue).



It bears noting that the most common approach for mobile
robot path planning still largely remains in the domain of
optimizing over a gridworld due to their versatility and
lower computational cost, so it is the method we have
also incorporated for this work. The reduced proximity of
our intentions allows us to define a spatially adaptable set
of curves extracted from training data which can then be
concatenated along the PMD’s journey, in a manner similar
to the chaining of Dynamic Movement Primitives [23] in the
Hybrid A* algorithm [24].

VI. CONCLUSIONS

In this paper a framework for PMD assistance is proposed,
capable of inferring short-term destinations and their subse-
quent navigation. A probabilistic sensor model only reliant
upon immediately available user input data and laser range
information is built from demonstration driving data from
an able expert to provide estimates of the most likely point
a user wishes to pass through or stop at in a given instant.
The same training data set is then also used to regress path
primitives and an inverse joystick model to assess compliance
with the user. Path primitives extracted from training data and
spatially scaled to these intentions are subsequently refined
via Dynamic Policy Programming, a stochastic optimization
process smoothly combining sensor data with movements
along the provided baseline path.

Validation of the intention estimation and path planning
engine revealed a 0.08m RMSE between the first 50% of
paths generated a-posteriori and an able user in a novel
setting. Similar evaluation with a real wheelchair in an open
lobby environment on UTS campus yielded an RMSE below
0.1m, indicating the intention estimator’s ability to generalize
to differing environments. An 82-year old volunteer with no
prior experience of PMD use was able to complete a complex
task of driving through a doorway and approaching a table,
without the collisions and awkward manoeuvres present in
an attempt without assistance.

Future work will focus on the use of a continuous prob-
abilistic framework to better capture intention distributions
across the local space, as well as an improved methodology
for base path selection or generation.
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I. Sánchez-Tato, J. C. del Toro, F. Galluppi, U. Cortés, R. Annichiar-
icco, C. Caltagirone, and F. Sandoval, “A new multi-criteria opti-
mization strategy for shared control inwheelchair assisted navigation,”
Autonomous Robots, vol. 30, no. 2, pp. 179–197, 2011.

[22] A. Goil, M. Derry, and B. D. Argall, “Using machine learning to blend
human and robot controls for assisted wheelchair navigation,” in Re-
habilitation Robotics (ICORR), 2013 IEEE International Conference
on, pp. 1–6, June 2013.

[23] S. Schaal, “Dynamic movement primitives - a framework for motor
control in humans and humanoid robotics,” Adaptive Motion of Ani-
mals and Machines, pp. 261–280, 2006.

[24] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for
autonomous vehicles in unknown semi-structured environments,” The
International Journal of Robotics Research, vol. 29, no. 5, pp. 485–

501, 2010.

https://www.health.qld.gov.au/mass/documents/form-mass24-home-access-safety.pdf 
https://www.health.qld.gov.au/mass/documents/form-mass24-home-access-safety.pdf 

	Introduction
	Local Intention Estimation
	Intention Estimation Behavioral Modelling

	Local Path Planning
	Local Path Primitives
	Dynamic Policy Programming
	Path Generator Using DDP
	Path Compliance Model

	Experimental Results
	Related work and discussion
	Intention Estimation for PMDs
	Assisted Navigation and Path Planning

	Conclusions
	References

