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Ryan C. DuToit, Joel A. Hesch, Esha D. Nerurkar, and Stergios I. Roumeliotis

Abstract—The objective of this paper is to provide consistent,
real-time 3D localization capabilities to mobile devices navigating
within previously mapped areas. To this end, we introduce
the Cholesky-Schmidt-Kalman filter (C-SKF), which explicitly
considers the uncertainty of the prior map, by employing the
sparse Cholesky factor of the map’s Hessian, instead of its dense
covariance-as is the case for the Schmidt-Kalman filter (SKF). By
doing so, the C-SKF has memory requirements typically linear in
the size of the map, as opposed to quadratic for storing the map’s
covariance. Moreover, and in order to bound the processing needs
of the C-SKF (between linear and quadratic in the size of the
map), we introduce a relaxation of the C-SKF algorithm, the sC-
SKF, which operates on the Cholesky factors of independent sub-
maps resulting from dividing the trajectory and observations used
for constructing the map into overlapping segments. Lastly, we
assess the processing and memory requirements of the proposed
C-SKF and sC-SKF algorithms, and compare their positioning
accuracy against other approximate map-based localization ap-
proaches that employ measurement-noise-covariance inflation to
compensate for the map’s uncertainty.

I. INTRODUCTION

In many applications (e.g., surveillance, manufacturing,
virtual and augmented reality), robots or people need to
accurately localize within a frequently-visited indoor space.
In such cases, the accuracy and efficiency of localization can
be significantly improved by using a map of the area of
operation. In the context of 3D visual-inertial localization,
maps computed beforehan have been employed by local-
ization algorithmsE] such as the multi-state constraint Kalman
filter (MSCKF) in [15] and [18], and parallel tracking and
mapping (PTAM) in [16] and [25], to improve positioning
accuracy based on visual observations of mapped features.
These methods achieve real-time performance but are not
consistent (in this work, we refer to a consistent estimator
as having zero-mean error with covariance equal to or larger
than the estimation error’s true covariance). Specifically, [16]]
and [235] are inconsistent not only because the assumption of a
perfect map but also due to the approximations invoked by the
optimization algorithm used for localization; thus they cannot
provide a reliable measure of their positioning uncertainty.
On the other hand, [18], which also assumes that the map is
perfect and [15], which ignores the correlations between the
estimated state and the map, inflate the camera measurement’s
noise covariance so as to reduce the effect of inconsistency:

IBesides batch least squares (BLS), pose-graphs [1]], and PTAM [12] have
also been used for reducing the processing cost of map building. Since such
approximations yield inconsistent maps, we do not consider them further in
the context of this work.

2Since we are interested in continuous localization, we do not consider
vision-only methods that provide pose estimates only intermittently (e.g., [3]).

overly confident and often unreliable estimates. Nevertheless,
inflating the measurement noise does not alleviate the incon-
sistency that arises from ignoring cross-correlations between
the estimated state and the map.

An alternative, approximate method, which explicitly ac-
counts for the map’s uncertainty and its correlations with the
estimated state, is the Schmidt-Kalman filter (SKF) [22} 23]].
The SKF has processing requirements /inear in the map’s size,
as it only needs to update the device’s state, covariance, and
cross-correlation with the map. Although the map’s state and
covariance need not be updated, storing its covariance has cost
quadratic in the number of features. This has been the main
drawback of the SKF, as well as of its variants applied to
simultaneous localization and mapping (e.g., [6, [11]), which
has restricted its use to small-size areas.

To overcome this limitation, in this work, we introduce
the Cholesky (C)-SKF which has, typically, linear in the
map’s size memory requirements, while providing the same
consistency properties as the SKF. The key insight behind
our approach is that most current methods employed for
constructing large-scale maps, such as batch least squares
(BLS), compute and use the Cholesky factor of the problem’s
Hessian, which is sparse [typically linear number of non-zero
elements (nnz) in the size of the map’|| instead of the dense
covariance matrix [24]]. Additionally, and in order to reduce
the processing requirements of the C-SKF — between linear
and quadratic in the map’s size — we introduce a consistent
relaxation of the C-SKF, the sub-map (s)C-SKF, which trades
localization accuracy for processing speed by operating on
the Cholesky factors of the partitioned Hessians resulting from
dividing the original map into independent sub-maps. Note that
the sub-maps used throughout this work are generated from
the method of [8]], however, other methods that produce sub-
maps (i.e., [3)]) could be employed as well. This approximation
allows mapping larger areas and/or operating on resource-
constrained mobile devices, such as cell phones and tablets.

In summary, the main contributions of this paper are:

o We introduce the Cholesky-Schmidt-Kalman filter (C-
SKF), which employs the Hessian’s Cholesky factor to
compactly represent the map’s uncertainty, and efficiently
compute consistent map-based updates.

« We introduce the sub-map (s)C-SKF, a relaxation of the
C-SKF, which employs multiple, independent sub-maps

3In extreme cases, such as when the map is constructed using images taken
while hovering over the same scene, the memory requirements may become
quadratic. In such cases, alternative approaches, such as PTAM, should be
employed instead for localization.



of the area of interest to support real-time, consistent
map-based localization on mobile devices.

o We validate the accuracy and consistency of the C-SKF
and sC-SKF using visual and inertial measurements from
mobile devices against VICON ground truth.

In what follows, we provide an overview of our map-based
localization system (Sect. [ll) and then present the system
state and measurement models (Sect. [l). In Sect. [V] we
describe the limitations of the SKF when applied to map-based
localization, and then introduce the C-SKF and the sC-SKF.
Our method for generating reliable 2D-3D correspondences
is presented in Sect. [V] Lastly, we experimentally validate
the proposed algorithms in Sect. and provide concluding
remarks with a discussion on future work in Sect. [VIIl

II. MAP-BASED LOCALIZATION ALGORITHM OVERVIEW

Our objective is to design a consistent estimator for com-
puting, in real-time, the 3D position and attitude (pose) of a
mobile device using inertial and visual measurements, as well
as a prior map of the area of operation. To do so, we require
the following information from the (offline) mapping process:

o The Cholesky factor of the (sub)map’s Hessianﬂ

o The 3D position estimates of the mapped features along
with their descriptors (e.g., FREAKs [2] or ORBs [21]])
and the vectors of their corresponding images as indexed
by a vocabulary tree (VT) [20].

The former is necessary for representing the map’s uncertainty,
while the latter is used for recognizing mapped features and
using their position estimates for updating the device’s pose.

Given this information, in Fig. [T, we provide an overview
of the (online) image processing and estimation components
of our (s)C-SKF map-based localization algorithms. In par-
ticular, at the core of our estimator is the MSCKF [7, [18]
which processes inertial measurements for propagating the
device’s state and covariance estimates. Intermittently, and
when feature tracks (e.g., Harris corners [9] corners tracked
by KLT [14]]) become available, the proposed (s)C-SKF adap-
tation of the MSCKF consistently updates only the device’s
state-covariance and correlations with the map, but not the map
itself (Sect. [[V-C). Similarly, every time the 2D-to-3D feature-
matching pipeline (Sect. [V) finds correspondences between
the, e.g., FREAK features extracted in the current image and
those found in the map, the (s)C-SKF uses this information
to, again, update all estimated quantities except the map and

its covariance (Sect. —[IV-B).

“In this work, we employ the cooperative mapping (CM) algorithm of [§]
since, in addition to computing the Cholesky factor of the map’s Hessian, it
also provides a convenient mechanism for handling sub-maps and computing
their corresponding Cholesky factors needed for the sC-SKF.
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Fig. 1. Cholesky-Schmidt-Kalman filter (sub)map-based localization algo-
rithm overview.

III. SYSTEM STATE AND MEASUREMENT MODELS
A. Device State

At time-step k, the estimated state i}

T
T (T T T
Xp = [XE Xe ., o XGy XT} (D
where xg is the evolving state of the device:

_ (L ofT G\T T G T
Xg = [qu Py, bgk M2

b, %pf]" @
kqs is the quaternion representation of the global, {G},
frame’s orientation in the IMU’s current frame, {I; }, b, and
b, are the accelerometer and gyroscope biases, respectively,
and Ov;,_and ®p;, are the velocity and position of {/;} in {G}.
In (), x, = ["q “p] ts,}T, i=k—N,...,k—1 corre-
sponds to previous IMU poses. Following [18], we maintain a
sliding window of N such poses so as to process measurements
to non-mapped (or local) features without incorporating them
into the state vector.

Finally, our problem formulation requires estimating the 4
degree of freedom (d.o.f) transformation between the device’s
global frame, {G?}, and one or more map’s frames of reference,

{M,‘}Z
XT:[XZ1 XZ:Z XZL]T, XT[:[Mi(i)G GpLi]T 3)

where “py, is the position of {M;} in {G}, and Mi¢g is the
rotation about gravity between the two frames. Note that since
the roll and pitch angles are observable for any vision-aided
inertial navigation system (VINS) [10], we can choose the z-
axis to align with gravity in both the global and map coordinate
frames.

3To simplify the subsequent derivations, we assume the camera and IMU
are time synchronized and co-located. In practice, we estimate their extrinsic
calibration parameters and time offset following the approaches of [17]
and [[7], respectively.



B. IMU measurement model

Following [[18]], we propagate the state estimate of the device
[see (T)] by integrating the IMU’s rotational velocity and linear
acceleration measurements, uy,

X1 = 8(Xp, ug) + Wy “4)

where g is a nonlinear function corresponding to the IMU
measurement model and wy is zero-mean, Gaussian noise of
known covariance [4].

C. Local-feature measurement model

As the device traverses its environment, it observes and
tracks (via KLT [14]) point features (Harris corners [9]]) that
have not been mapped. These local features are used as in [18]]
to provide measurement constraints between the N+ 1 IMU-
camera poses maintained in the state vector.

The non-linear and linearized local-feature measurement
models are

z=h(x,ps)+n, r=HpXzr +Hsp;+n 5)

where z is the measurement, h is the perspective-projection
camera measurement model, r is the linearized measurement
residual, Xz (Xg) is the device state (error-state), py (py) is the
local feature state (error-state), Hg and Hy are the measure-
ment Jacobians corresponding to the device and feature states,
respectively, and n is zero-mean, Gaussian noise with known
covariance, R.

As in [18], we marginalize the local feature by projecting
r on the left null space of Hy, U:

r’ = Hy%g +n° (6)

H = UTHg, n’°=U"n

The new measurement residual, r°, and Jacobian, H%, are
then (Sect. [[V-C2) used for updating the device state estimate.
D. Mapped-feature measurement model

When a previously-mapped point-feature, f, (expressed
with respect to the IMU-camera frame, {Ifi}, that first
observed it during mapping) is detected by the device, we
can form the following geometric relationship (see Fig. 2):

lep, :ﬁé C (GPMi ~“py +1(t;4i C M[plf" J{fé" ¢ d Bs D @
A

where all rotation matrices, C, are parameterized by their cor-
responding 3 d.o.f quaternions, except 1?41(:’ which corresponds
to a rotation about gravity by an angle Mi¢s. Applying the
camera perspective-projection transformation, 7, leads to the
following measurement model:

Znap = % (“Py) + 1
M;
= hmap (lel’1 pf) +n (8)

where n is zero-mean, Gaussian noise with covariance R.
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Fig. 2. The geometric relationship of a mapped feature observation. The

dotted line is a bearing measurement, solid lines correspond to quantities
estimated online. Dashed lines correspond to variables determined during
mapping offline.

To simplify the notation, from here on, we omit time indices
and denote the state x; in (I) by xg, while we use xp to
represent the vector comprising of all mapped features and
IMU-camera poses. Linearizing (8] yields:

r = HgXp + Hy Xy +n 9)

where Hg and Hj, are the device and map Jacobians, respec-
tively. Note that both Hg and H,, are sparse, as the measure-
ment equation only involves the position and quaternion of
the current and mapped IMU-camera pairs, the 4 d.o.f map-
to-global transformation, and the position of the feature.

With our system state and measurement models defined, in
what follows, we present how measurements @), (6), and (8)
are processed in a consistent manner.

IV. ALGORITHM DESCRIPTION

In what follows, we first review the SKF, and then introduce
the C-SKF and sC-SKF. To simplify notation, we denote up-
dated values with ® and propagated values with ©, rather than
using time subscripts. [i.e., Py js1 = f(Prp ) is expressed
as PO =£(P), and Py, = g(Py;) is PO =g(P) |

A. Background: Schmidt-Kalman filter

Consider the current propagated system covariance, P, and
Jacobian, H, to be:

P {PRR PRM}

Pur Pum H=[H Hy]

(10)

The state and covariance update equations for the extended
Kalman filter (EKF) are:

£ =% +Kr

PO = (I-KH)P (I- H'K") + KRK’

(1)
(12)



where
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As shown in [23]], the SKF updates only part of state by
zeroing the Kalman gain associated with the state elements
whose estimates are to remain the same (in our case the map,
Xp):

Kskr = [(KeS™HT 0" (14)

Substituting (T4) in (TI) yields the following state update:
£ =%y (15)
Additionally, by employing in (12), we arrive at the SKF’s
covariance update:
. [ReSRE RisTK],
RyS K. 0

ﬁ% :)'ZR—I—I_(RSill‘

(16)

Note that if we express the updated covariance of the EKF as
a function of the SKF updated covariance, it is straightforward
to show:

0 1 _
P%KF = P?KF + |:I_<M:| S [0 KI{/I] a7
= P%KF = P?KF (18)
. . .. . 0 _ =
Since S~ ! is positive definite, and hence [KM:| S-! [0 K;,,]

must be positive semi-definite.

Thus, we have shown that the SKF is consistent as it
does not underestimate the system covariance. Furthermore,
as evident from (T6)), the cost of an SKF covariance update is
linear in the size of the map, as only the device’s covariance
and cross-correlation terms need to be updated, while H in @])
is sparse.

On the other hand the SKF requires storing the covariance
of the map, Py, which is dense. To better appreciate the
challenge this poses on mobile devices, we note that the
covariance of a map generated from 1.5 min of visual and
inertial data requires 1.2 GB of storage space. Instead, the
sparse Cholesky factor of the corresponding Hessian matrix
requires only 76 MB. This motivates us to introduce the
Cholesky-SKF (C-SKF) in the next sections.

B. C-SKF device-map initialization

In what follows, we start by describing the process for esti-
mating the 4 d.o.f transformation between the map’s frame and
the device’s global reference frame, as well as its covariance
and correlations with all estimated quantities.

Specifically, consider the first time the mobile device ob-
serves two or more previously-mapped features. An initial
estimate, X, for the uniform 4 d.o.f transformation is obtained

by employing the 2+1 pt RANSAC [13]. Furthermore, we
partition the current state as

T T T]T

Xx=[xp XI Xy (19)

where Xz comprises of the remaining elements of the device’s
state vector [see (I)], and the corresponding covariance as

PR/R/ 0 0
P=| 0 P 0 P = lim (uLy)  (20)
0 0 (GGN)! e

where P is the covariance of the unknown 4 d.o.f transforma-
tion, GGT is the Hessian of the map, and G is its Cholesky
factor. After linearizing the measurement model in (8) and
denoting the corresponding Jacobian as

H=[Hy H. Hy] Q1)
we employ (13)-(13) to update the estimates of xp and X;:
%0 = &g + P HLS 't (22)
2 =%, + (HIA'H,) 'HIA Iy (23)
§) = &u 24)

Additionally, employing (I6), it can be shown that the updated
SKF covariance is

e P P | o
P=|Pp. P& PG | = [5&%’* (GI();*TKI} (25)
P P (66N M
where
PO r = Prr —PrpHpS ™ 'HpPrp
P = —PppHpA 'H (HIA 'H;) !
P?, = (HZAHT)A
© o — P HL, S B
w1 = [ e
=IG™! (26)
and
St=A"1"-AH,(HIA'H, ) HIA™!
A =HpPrpHy +JJT +R
Finally, J is defined as:
GJ' =HI, 27)

A key element of our approach is that, from this point on,
instead of updating the cross-correlation term, Pgys, we will
represent it in a factorized form [see (26)] and apply updates
on its factor, I, as is shown in Sect. and Sect.
Following this convention, we have:

I
(GG)"!

Prr

P=lrgyr

(28)

Note also that we do not need to compute the inverse of the
Cholesky factor, G. Instead, all update equations involving G



will be of the same form as (27), where a back-solve involving
the sparse G is required for efficiently computing J7.

C. C-SKF propagation and local-feature update

1) IMU-based Propagation: By employing the IMU mea-
surement model in (@), the device’s state is propagated while,
as is the case for the SKF, the map’s state remains the same:

22 =f(%g,u) , £ =xy (29)

On the other hand, and in order to propagate the covariance
of the C-SKF [see (28)], we employ the EKF covariance
propagation equation:

T —1
PO = &PDL +Qc = [ngl’ig IJ;TQ (zg(ﬁ)l} (30)
with
@ = B’ ‘I’] , Qc= {‘3 g} G1)

where @ and Q are the IMU Jacobian of the state and
corresponding noise covariance, respectively.

As evident from (30), the device’s propagated covariance is
computed at low cost, while the cross-correlation terms only
require modifying the cross-correlation factor, I, (i.e., o=
®TI’) at cost linear in the size of the map.

2) C-SKF Local-Feature Measurement Update: When a
local-feature-track measurement becomes available [see ()],

we arrive at the following Jacobian:
H=[H 0] (32)

As in (T4), we zero out the Kalman gain associated with the
mapped states, leading to an update of the device state, while

the map remains the same:
%0 = &g +PreHY S 1, =%y (33

For the covariance update, we first denote K = PH:
I:(R B Prr ! HIOQT B PRRHIOQT
Ky [(TGHT (GGHY || 0 | |GTTTHY
(34)

Next, we employ (34) and (28) in (T6)) without evaluating Ky,
yielding:

Py = Pre — PreHY ST HEPre, PGy =Pyy  (35)
and
PS, =I'G ! —KrS 'K,
= (I-PrgH'ST'HE) TG
=IoG! (36)

As evident from @B3)-(36), the local-feature update has
complexity linear in the size of the map, as we only need
to apply a standard EKF update on the device’s covariance,
and update the cross-correlation factor, I'.

D. C-SKF map-based updates

When the device observes previously mapped features
(Sect. [V), we employ the methodology of Sect. [(13)-
(T6)] using the measurement model of (B)—(9), and operate
on the system covariance with factorized cross-correlation, as
defined in (28). Specifically, we denote K =PH? as:

_ PrrHL + TG 'H,

Ke) _ (37)
Ky G 'TTHL + (GGT)~'H],

Note that we do not explicitly compute Ky, instead we first
compute J as:

GJ' =H], (38)

Because G is triangular, we can compute J with a back-solve
operation. Substituting J into (37) yields:

Kg PrrHE +TJ7
[KM:| = l:GTl-\Tng LGy (39)
Next, we compute the residual covariance:
S = HrPreHy + HgTY' +JTTH; +JI7 + R (40)
and state update [see (T3)]:
=%z +KgS'r, £ =%y (41)

Finally, we update the covariance using (I6) with (39). Avoid-
ing the calculation of Ky, and following the same process
in (36), we produce a factorized form of the updated cross-
correlation:

PR@R =Prr — KRS71K£
PO, =IG' —KrS™'(HRI'G™' +JG ')
= [ —KgS~'(HR+1J))G™!

=ToG™! (42)

At this point, we should note that unlike propagation and
local-feature updates, the processing requirements of mapped-
feature updates are not strictly linear in the size of the map.
The main bottleneck is (38), as computing J has complexity
between linear and quadratic in the size of the map (depending
on the structure of G). As shown in Sect. as the map grows,
the time to compute J becomes unacceptable for real-time
operation on a mobile device. This limitation motivates us to
introduce the sub-map relaxation of Sect. and Sect.
That is, we decrease the size of G in (38) by partitioning the
map into independent sub-maps, while retaining consistency.

E. Sub-map relaxation

Before discussing the sC-SK, we first describe the sub-
mapping relaxation process. As shown in Fig. [3]and described
below, we divide the trajectory and associated features into
two separate setsﬂ

First, the IMU-camera poses &, are divided into two sets
([&, to Ey] and [Ey; to &,]). Our current implementation

To simplify the explanation, without loss of generality, we describe the
case for two sub-maps
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Fig. 3. A partitioning of a single map into two sub-maps, with a geometric
constraint, k(x,4,xz,f j) =0, imposed to common features.

evenly distributes these sets in time. As part of our future
work, we seek to find an optimal partitioning into sub-maps.
With this division defined, we partition features into two sets:
(i) Zq: those observed by IMU-camera poses &, to &, and
(ii) Fg: those observed by IMU-camera poses &y, to &,
Features in %y N . are common features appearing in both
sub-maps. The cooperative mapping (CM) algorithm [8]] “du-
plicates” these features such that the two sub-map’s individual
cost functions are independent, but also introduces a non-linear
constraint between these common features

k(Xa,XT,fj) =0, fj € Fq ﬂyﬁ 43)

where x, is the state of all IMU-camera poses and x; is the
4 d.o.f transformation between the two sub-maps. For each
common feature, this constraint enforces its corresponding
“duplicate” in .7y or F to have the same physical position.
Finally, all camera and IMU measurements, z; ; and u; ;; 1, are
assigned to their corresponding sub-map (with the execption
of uy 1, which is discarded).

With such a partitioning, by ignoring the common-feature
constraints, we can form two independent cost functions
corresponding to each sub-map, 4] and %;:

N N—1
¢ =Y lzj—h& )+ Y 1§ —&&uii)llo
=1 i=1

f/e70
M M—1
=Y llzi;—h&.)lr+ Y, 11§11 —8& i)l
i=N+1 i=N+1
fje,fiﬁ

(44)

where g and h are defined in (3) and (@), respectively.
Summing these two cost functions and imposing the common
feature constraints yields:
C =6+
s. t. K(Xg,%¢,f5) =0, f; € Fo N .Fp

(45)

We minimize (43)) by employing the CM algorithm of [8].

FE. Cholesky-Kalman-Schmidt with sub-maps (sC-SKF)

In our problem, we take advantage of the high-accuracy
estimate computed from the solution of (43)), but relax the
information attributed to each sub-map by storing the Cholesky
factors, G;, resulting from each corresponding cost function
in (@4) linearized at the CM solution of (#3)). Such a relaxation
causes the sub-maps to become independent, but maintains
consistency.

Theorem 1: The covariance of each sub-map when ignoring
the common-feature constraints is larger or equal, in the
positive semi-definite sense, to that computed from the CM.

Proof: See Appendix [A] for proof of Theorem [I} [ |

To process mapped measurements with sub-maps, we rep-

resent the system covariance as:

Prr G’ IG;'!
P= (UG HT (GiG])™! 0 (46)
(TG T 0 (G2GI) !

where I'; and G; is the cross-correlation factor from (28)) and
the Cholesky factor of the i’th sub-map, respectively.

When a mapped feature in the first sub-map is observed
(without loss of generality), the measurement Jacobian is:

H=[H; H, 0] 47

where H; is the measurement Jacobian corresponding to the

states in the first sub-map. We compute J; and denote K in
similar fashion as in (38) and (39), respectively:

Kk PreHj +T1J7
G J' =Hl, K| = |G/ (T]HE+JT) (48)
K, G, T H}

The residual covariance and state update are computed as:
S = HgPrrH% + Hi[ JT + 3, TTHE + 3137 +R

~ N = a—1 N ~ ~ N
XR@:xR—FKRS r, x?:xl , X?ZXz 49)

Finally, we update the device covariance and cross-correlation
using the same factorization as the single-map case [see @2)]:

PO, =Prr —KrS™ 'K, PP =P;, P=Pn

PQ =TG;' —KgS'K]
= [[; —KgS™' (HgI; +J1)]G; !

=I9G;" (50)
PR, =T,G;' —KgS 'K}

= [1-KzS™'Hx|IG, !

=I9G,! (51)

By employing the sub-map relaxation, we have significantly
lowered the computational requirements of the C-SKF. Note
again that the bottleneck of our system is the computation of
J1 [see (@8)]. With the sub-map relaxation, however, we can
adjust the sC-SKF to given hardware constraints by adjusting



the number of sub-maps employed. Increasing the amount of
sub-maps decreases the size of the system when solving for J,
dramatically reducing computation time. It should be noted,
however, that increasing the number of sub-maps decreases
the information associated with the map, which typically leads
to slightly less accurate device pose estimates (Sect. [VI).

V. 2D-3D FEATURE CORRESPONDENCE PIPELINE

Before employing map-based updates, we identify corre-
spondences between 2D feature measurements (FREAK fea-
tures [2]) in the current image and 3D features which have
been previously mapped (Fig. [I] Box B). Our pipeline takes
a dual layer approach: the first considers the case when
the estimator has no prior for the 4 d.o.f device-to-map
transformation, while the second takes advantage of such a
prior to improve efficiency.

A. Pose-less correspondence generation

1) VT query: We query the saved VT with the current
image, which returns up to five mapped images of similar
appearance.

2) Feature matching: We apply binary descriptor matching
between features in the query and returned images.

3) Outlier rejection: We apply 3+1 pt RANSAC [19] on
each image returned by the VT. If less than 7 correspondences
remain, we classify that VT return as an outlier. Then, the 2+1
pt RANSAC [13]] is applied over the remaining set of inlier
correspondences, If less than 13 correspondences remain, we
classify all feature measurements as outliers.

B. Pose-assisted correspondence generation

During nominal operation, the estimator will have a reliable
estimate for the device-map transformation. We leverage this
estimate to re-project a subset of mapped features into the
current image bypassing the VT (the main bottleneck in the
pose-less pipeline).

1) Pose-based matching: We find mapped images whose
camera poses are nearby the current camera pose. A number
of heuristics could be used to define nearby mapped images;
in our case we require images to be within 3 m of the current
position, and have an optical axis within 45 deg of the current
optical axis. Images satisfying these criteria are the initial set
of mapped image matches.

2) Co-visibility: We add mapped images which view at
least 50 common features with any of the pose-based image
matches to the set of mapped image matches. This step allows
the pipeline to include images that are far from the current
camera pose, but still view the same scene.

3) Feature re-projection and matching: The union of
all features in the set of matched mapped images (through
pose-based matching and the co-visibility) are reprojected
onto the current image. Re-projected features are matched
with current features by binary descriptor matching; projected
features considered for matching are limited to a small radius
(30 pixels) around the current feature.

4) Outlier rejection We apply 2+1 pt RANSAC on the
set of matched 2D-3D correspondences to reject outliers. If

less than 13 correspondences remain, we classify all feature
measurements as outliers.

C. Additional outlier rejection

While RANSAC-based approaches generally remove the
majority of any 2D-3D outliers, we further improve our
system’s reliability by applying a Mahalanobis distance test
on a per-feature basis.

VI. EXPERIMENT RESULTS

All experimental results are obtained on a Google Project
Tango tablet, which is equipped with a fisheye, global-shutter,
grayscale camera, a MEMS quality IMU, a quad-core, 2.3 GHz
ARM Cortex-A15 CPU, and 4 GB of RAM.

A. Data collection and ground truth

To generate experimental results we collected three datasets:
the first (DS1) (2,069 images, approximately 60m long) is
the dataset which the tested estimators run, the second (DS2)
(2,627 images, approximately 75m long) is used to generate
the map of the area of interest. All maps and sub-maps are
generated using the CM method of [§]. In addition to each
map’s estimate and Cholesky factor, we save FREAK binary
descriptors [2] and a VT [20], which indexes all mapped
images. To acquire ground truth for the trajectory in DSI,
we generate a BLS estimate, where in addition to all camera
and IMU measurements, we supply the BLS estimator with
absolute pose measurements from a VICON system.

B. Results

Note that in the trajectory of DS1, the user moves within
the VICON-room, visiting the same scene several times. Such
a trajectory will emphasize the detrimental effects of an
inconsistent estimator which does not track device-map cross-
correlations (the device estimate becomes strongly correlated
with the map when viewing the same features multiple times).
This inconsistency is illustrated in Fig. ] which shows the
error and 30 bounds for the inflated measurement noise model
(o =17.5 pixels), and the sC-SKF estimator employing 2 sub-
maps. Furthermore, the pose RMSE for each method of map-
based updates can be found in Table |[I, where, as expected,
the C-SKF and sC-KF outperform inconsistent methods.

The storage requirements of the map’s uncertainty infor-
mation is the main limitation of the SKF addressed by the
C-SKEF. The sizes of the Cholesky factors used for the map of
DS2, its two sub-maps, as well as an additional, larger map
(DS3), are available in Table E} Furthermore, we provide the
corresponding size of each map’s covariance. As expected, the
sparse Cholesky factor requires much less disk space than the
dense covariance, and grows at a slower rate as the map size
increases.

As mentioned earlier, the motivation for partitioning the
map into sub-maps is to reduce the time required to compute
J [see (B8)]. We supply the average time for the back-solve
required to compute J on a Project Tango tablet, for different
map sizes in Table For large maps, it becomes impossible
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Fig. 4. The error and 30 bounds for the sC-SKF with 2 sub-maps and perfect
map-based updates with inflated measurement noise.

to perform real-time map-based updates with the C-SKF. On
the other hand, by reducing the map size (i.e., increase number
of sub-maps) and employing the sC-SKF, we significantly
reduce the computation requirements.

Finally, we present the times of the most computationally-
demanding-components of the sC-SKF pipeline (using the two
sub-maps of DS2) in Table Specifically, the components
timed are the 2D-3D correspondence detection pipeline, the
map-based update, the local feature tracking pipeline (Harris
and KLT), and the MSCKF update. We also provide the
time for mapped-feature updates using the perfect-map as-
sumption (inflate noise) for comparison. Our MSCKF runs
at approximately 6Hz (depending on the user’s motion). By
summing the MSCKF update time and feature-tracking time

Map ID DS2 sub-map 1 DS2 sub-map 2 DS2 Full Map DS3
Num Feat. 1,838 1,424 2,203 12,164
Map Dim 11,517 8,774 20,537 63,692
Size (G) 45 MB 18.1 MB 76 MB 457 MB
Size (Pyum) 530 MB 308 MB 1.2 GB 16.2 GB

TABLE 1

SIZES OF VARIOUS MAPS AS WELL AS THE ASSOCIATED MEMORY
REQUIREMENTS OF STORING THEIR CHOLESKY FACTOR, G, AND
COVARIANCE Pyys.

Method Position RMSE (cm)
C-SKF, Single Map 6.2
sC-SKF, Two Sub-maps 6.6
Perfect Map Approximation 8.3
No Map-based Updates 14.7
TABLE II

PosiTION RMSE

listed, our local-measurements estimation requires on average
324 ms of CPU time per second, which leaves 676 ms to be
devoted to map-based updates. The sC-SKF map-based update
pipeline (2D-3D pose-based correspondence generation and
map-based-update) takes 214 ms per iteration. Therefore, we
can generally apply map-based updates while maintaining real-
time operation. If the application or device has stricter process-
ing requirements, we have the option to increase the number
of sub-maps (decreasing the total information attributed to the
map).

VII. CONCLUSION

In this paper, we focused on the problem of performing
approximate, but consistent map-based localization. Specif-
ically, and motivated from the linear (in the map’s size)
processing cost, but quadratic memory requirements of the
Schmidt-Kalman filter (SKF) when applied to map-based

Number of Features in Map Time to Compute J
3,926 6.7 ms
6,341 24.5 ms
12,164 233.3 ms

TABLE III
AVERAGE TIME TO COMPUTE J [SEE (38)] FOR A SINGLE FEATURE
MEASUREMENT IN VARIOUS MAPS.

’ Item Mean Time (ms) ‘
Mapped-feature Update (sC-SKF) 180
Mapped-feature Update (perfect map) 7
Correspondence Detection (pose-less) 52
Correspondence Detection (pose-assisted) 36
Harris + KLT Tracking 20
Propagation + Local-feature Update 34

TABLE IV
MEAN TIMES FOR THE STEPS OF THE ESTIMATOR PIPELINE.



localization, we introduced the Cholesky (C)-SKF, which uses
the map’s Cholesky factor to model the information (and
thus uncertainty) in the prior map. By doing so, and given
the sparsity of the Cholesky factor, the C-SKF has only
linear, in the map’s size, memory requirements. Moreover, its
equations are factored in such a form so as to avoid inverting
the Cholesky factor of the map’s Hessian matrix. Despite,
however, the gains in efficiency, the processing cost of the
C-SKF may grow more than linearly in the map’s size. In
order to bound its processing cost, we introduced a relaxation,
termed the sC-SKF, which uses the sub-maps obtained by
partitioning the original map, with minimal loss in accuracy.
Lastly, the computational requirements of the proposed C-
SKF and sC-SKF were assessed using a Project Tango tablet,
while we demonstrated their superior performance against
other approximate, but inconsistent, map-based approaches
through real-world experiments using high accuracy ground
truth.

APPENDIX A
PROOF OF SUB-MAP CONSISTENCY

We seek to prove Theorem [I]in Section [[V-E
Proof: As described in [8], for the case of two sub-
maps, the KKT matrix, %, resulting from the constrained
optimization problem is:

A0 AT 0
o s AL 0
Z=1A A, 0 B
0 0 B o0

where % is the Hessian of sub-map i, A; corresponds to
features common to the two sub-maps, and B is a tall ma-
trix whose columns correspond to the 4 d.o.f transformation
between the two sub-maps.

Computing the covariance of the sub-maps in the CM result
requires computing the 2 x 2 block sub-matrix of the inverse
of ¥ . ie,

P= (4 212

(e )-lE gl o T ‘ﬂ}l

Employing the matrix inversion lemma yields:

A0 [ 0 s 0
P= —1| — 1| M -1

0 E A 0 EA 0 E A
where

_ AlT 0 A A
P e

and
w-lo [A1 A2 A7 0 J[AT o] [0 B

10 0 0 J({l Ag 0 BT 0

R

with
O 2 A AT + A AT

On the other hand, if we treat each of the sub-maps as
being independent (i.e., we ignore the constraints imposed by
common features) but we compute their Hessians using the
CM result, their covariances are:

-1
P [%”1 0 }

o (53)

In order to prove P < P, it suffices to show M in (52) is sym-
metric positive semi-definite (PSD). We start by computing

X Y
where:
-1
X-0'-0'B (BTG)_lB) B’@"! (55)
-1
Y—-0'B (BTQ—IB) (56)
-1
Z—— (BTG)’lB) (57)
Substituting (34) in (32) yields
AT
M= {AIT} X[A1 A (58)
2

Note that X in (33) is PSD since it is the (1,1) Schur
complement of the PSD matrix [BIT] © '[I B]. Thus M
is also PSD. |

REFERENCES

[1] Motilal Agrawal and Kurt Konolige. Frameslam: From
bundle adjustment to real-time visual mapping. IEEE
Trans. on Robotics, 24(5):1066-1077, October 2008.

[2] Alexandre Alahi, Raphael Ortiz, and Pierre Van-
dergheynst. FREAK: Fast retina keypoint. In Proc. of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 510-517, College Park, MD, June
16-21 2012.

[3] Clemens Arth, Daniel Wagner, Manfred Klopschitz,
Arnold Irschara, and Dieter Schmalstieg. Wide area
localization on mobile phones. In 8th IEEE and ACM
International Symposium on Mixed and Augmented Re-
ality, pages 73-82, Orlando, FL, USA, October 19-22
2009.

[4] Averil Burton Chatfield. Fundamentals of High Accuracy
Inertial Navigation, volume 174. American Institute of
Aeronautics and Astronautics, 1997.

[5] Siddharth Choudhary, Luca Carlone, Henrik I Chris-
tensen, and Frank Dellaert. Exactly sparse memory
efficient slam using the multi-block alternating direction
method of multipliers. In Proc. of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
Hamburg, Germany.



(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Jose E Guivant and Eduardo Mario Nebot. Optimiza-
tion of the simultaneous localization and map-building
algorithm for real-time implementation. /EEE Trans. on
Robotics and Automation, 17(3):242-257, 2001.

Chao Guo, Dimitrios Kottas, Ryan DuToit, Ahmed
Ahmed, Ruipeng Li, and Stergios Roumeliotis. Efficient
visual-inertial navigation using a rolling-shutter camera
with inaccurate timestamps. In Proceedings of Robotics:
Science and Systems, Berkeley, CA, USA, July 12-16
2014.

Chao Guo, Kourosh Sartipi, Ryan DuToit, Georgios
Georgiou, Ruipeng Li, John O’Leary, Esha Nerurkar, Joel
Hesch, and Stergios Roumeliotis. Large-scale coopera-
tive 3D visual-inertial mapping in a Manhattan world. In
Proc. of the IEEE International Conference on Robotics
and Automation, Stockholm, Sweden, May 16-21 2016.
URL http://mars.cs.umn.edu/papers/CM_line.pdf.

Chris Harris and Mike Stephens. A combined corner and
edge detector. In Proc. of the Alvey Vision Conference,
pages 147-151, Manchester, UK, August 31 — September
2 1988.

Joel A. Hesch, Dimitrios G. Kottas, Sean L. Bowman,
and Stergios I. Roumeliotis. Consistency analysis and
improvement of vision-aided inertial navigation. IEEE
Trans. on Robotics, 30(1):158-176, February 2014.
Simon J Julier. A sparse weight Kalman filter approach
to simultaneous localisation and map building. In Proc.
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 3, pages 1251-1256, Maui,
HI, USA, October 29 — November 3 2001.

Georg Klein and David Murray. Parallel tracking and
mapping for small AR workspaces. In 6th IEEE and
ACM International Symposium on Mixed and Augmented
Reality, pages 225-234, Nara, Japan, November 13-16
2007.

Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla.
Closed-form solutions to minimal absolute pose prob-
lems with known vertical direction. In Proc. of the
Asian Conference on Computer Vision, pages 216-229,
Queenstown, New Zealand, November 8-12 2011.
Bruce D. Lucas and Takeo Kanade. An iterative im-
age registration technique with an application to stereo
vision. In Proc. of the International Joint Conference
on Artificaial Intelligence, pages 674—-679, Vancouver,
British Columbia, August 24-28 1981.

Simon Lynen, Torsten Sattler, Michael Bosse, Joel

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Hesch, Marc Pollefeys, and Roland Siegwart. Get out of
my lab: Large-scale, real-time visual-inertial localization.
In Proc. of Robotics: Science and Systems Conference,
Rome, Italy, July 13-17 2015.

Sven Middelberg, Torsten Sattler, Ole Untzelmann, and
Leif Kobbelt. Scalable 6-dof localization on mobile de-
vices. In Proc. of the European Conference on Computer
Vision, pages 649-663, Zurich, Switzerland, September
6-12 2014.

Faraz M. Mirzaei and Stergios I. Roumeliotis. A Kalman

filter-based algorithm for IMU-camera calibration: Ob-
servability analysis and performance evaluation. [EEE
Trans. on Robotics, 24(5):1143-1156, October 2008.
Anastasios I. Mourikis, Nikolas Trawny, Stergios I.
Roumeliotis, Andrew E. Johson, Adnan Ansar, and Larry
Matthies. Vision-aided inertial navigation for spacecraft
entry, descent, and landing. IEEE Trans. on Robotics, 25
(2):264-280, April 2009.

Oleg Naroditsky, Xun S. Zhou, Jean Gallier, Stergios I.
Roumeliotis, and Kostas Daniilidis. Two efficient so-
lutions for visual odometry using directional correspon-
dence. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 34(4):818-824, April 2012.

David Nister and Henrik Stewenius. Scalable recognition
with a vocabulary tree. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2161-2168, New York, NY, June 17-22 2006.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. ORB: An efficient alternative to SIFT or
SURF. In Proc. of the IEEE International Conference
on Computer Vision, pages 2564-2571, Barcelona, Spain,
November 6-13 2011.

Stanley F. Schmidt. Applications of state space meth-
ods to navigation problems. in C. T. Leondes, Editor,
Advanced Control Systems, 3:293-340, 1966.

Dan Simon. Optimal state estimation: Kalman, H infinity,
and nonlinear approaches. John Wiley & Sons, 2006.
Bill Triggs, Philip McLauchlan, Richard Hartley, and
A. Fitzgibbon. Bundle adjustment - a modern synthesis.
In Vision Algorithms: Theory and Practice, pages 298—
375. Springer—Verlag, 2000.

Jordi Ventura, Clemens Arth, Gerhard Reitmayr, and
Dieter Schmalstieg. Global localization from monocular
SLAM on a mobile phone. IEEE Trans. on Visualization
and Computer Graphics, 20(4):531-539, April 2014.


http://mars.cs.umn.edu/papers/CM_line.pdf

	I Introduction
	II Map-based Localization Algorithm Overview
	III System State and Measurement Models
	III-A Device State
	III-B IMU measurement model
	III-C Local-feature measurement model
	III-D Mapped-feature measurement model

	IV Algorithm Description
	IV-A Background: Schmidt-Kalman filter
	IV-B C-SKF device-map initialization
	IV-C C-SKF propagation and local-feature update
	IV-C1 IMU-based Propagation
	IV-C2 C-SKF Local-Feature Measurement Update

	IV-D C-SKF map-based updates
	IV-E Sub-map relaxation
	IV-F Cholesky-Kalman-Schmidt with sub-maps (sC-SKF)

	V 2D-3D Feature Correspondence Pipeline
	V-A Pose-less correspondence generation
	V-B Pose-assisted correspondence generation
	V-C Additional outlier rejection

	VI Experiment Results
	VI-A Data collection and ground truth
	VI-B Results

	VII Conclusion
	Appendix A: Proof of sub-map consistency

