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Gaussian Processes Online Observation Classification for RSSI-based
Low-cost Indoor Positioning Systems

Maani Ghaffari Jadidi, Mitesh Patel, and Jaime Valls Miro

Abstract— In this paper, we propose a real-time classification
scheme to cope with noisy Radio Signal Strength Indicator
(RSSI) measurements utilized in indoor positioning systems.
RSSI values are often converted to distances for position
estimation. However due to multipathing and shadowing effects,
finding a unique sensor model using both parametric and non-
parametric methods is highly challenging. We learn decision
regions using the Gaussian Processes classification to accept
measurements that are consistent with the operating sensor
model. The proposed approach can perform online, does not
rely on a particular sensor model or parameters, and is robust
to sensor failures. The experimental results achieved using
hardware show that available positioning algorithms can benefit
from incorporating the classifier into their measurement model
as a meta-sensor modeling technique.

I. INTRODUCTION

The spreading of personal communication systems into
many public and private places, as well as the onset of new
generation of smartphones, has enabled the development of a
vast number of indoor positioning systems based on standard
wireless communication technologies [1], [2]. While indoor
radio propagation follows the same mechanisms as outdoor,
shorter coverage range and greater variability of indoor envi-
ronments, e.g. the presence of tinted metal in windows, make
modeling the radio signal attenuation significantly more
challenging [3]. Further, compared to outdoor scenarios,
the number of Line-Of-Sight (LOS) observations are lower
which means the common Friis free space model cannot
accurately model the radio signal attenuation. Therefore, for
any indoor positioning system that relies on such models,
the ability to differentiate LOS and Non-LOS (NLOS) ob-
servations is beneficial.

In this paper, we propose a probabilistic framework to
explicitly detect and systematically mitigate NLOS radio sig-
nal observations. The proposed approach is non-parametric,
does not require a statistical characterization of waveforms,
and can be incorporated into recursive Bayesian estimation
frameworks such as particle filters as a meta-sensor modeling
technique. We use Gaussian process classification (GPC) for
offline learning of decision regions based on dense distance
and Radio Signal Strength Indicator (RSSI) measurements,
shown in Figure 1, and employ it in online scenarios using
kd-tree structures.
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Fig. 1: The decision surface learned by a Gaussian process classifier using
collected LOS and NLOS measurements. Each LOS/NLOS point is averaged
over 6 RSSI from 6 co-located BLE beacons with the same transmission
power. The groundtruth distances are computed using a laser range-finder
sensor and an iterative closest point-based scan-matching technique.

A. Motivation

The main motivation stems from the challenge faced in
using Bluetooth Low Energy (BLE) beacons for indoor
positioning. Assuming RSSI is the only quantity available to
the receiver, the common practice reported in the literature
is to convert the measured RSSI to distance. However,
in our experience, under realistic conditions, radio signals
are severely impacted due to shadowing and multipathing
effects. These incidents are due to various factors such as
the presence of people, the number of reflective surfaces,
and overall dynamics of the environment. Therefore, a large
number of spurious measurements results in biased dis-
tance conversion and consequently poor position estimation
performance. Through rejecting measurements that are not
compatible with the sensor model, we only add information
to the estimation process if it maintains its consistency.

B. Contributions

The contributions of this paper are two folds. Firstly, we
propose an online (adaptive) technique to model the BLE
sensor so that it can tackle the shadowing and multipathing
effects of the signal. Secondly, we utilize the BLE sensor
model in a position estimation framework to localize a
smartphone user or a robot in a given environment. It should
be noted that by utilizing our approach, we eliminate the
tedious process of fingerprinting the environment to generate
a radio map, rather we collect data to model the BLE sensor
which is a one time process and has considerably lower
overhead compared to fingerprinting the environment.



C. Notation

Probabilities and probability densities are not distin-
guished in general. Matrices are capitalized in bold, such as
in X , and vectors are in lower case bold type, such as in x.
Vectors are column-wise and 1: n means integers from 1 to
n. Random variables, such as X , and their realizations, x, are
sometimes denoted interchangeably. x[i] denotes a reference
to the i-th element of the variable. An alphabet such as X
denotes a set. A reference to a test set quantity is shown
by x∗. Finally, E[·] and V[·] denote the expected value and
variance of a random variable, respectively.

D. Outline

In the following section, we present the related work. In
Section III, the problem formulation, and required prelimi-
naries are explained. We present details of sensor modeling
and analysis in Section IV. The positioning algorithm is
explained in Section V. We present the experimental results
in Section VI and Section VII concludes the paper.

II. RELATED WORK

The idea of integrating non-parametric models into
Bayesian filtering is not new. In [4], the system dynamics
and observation models in extended and unscented Kalman
filters and Particle Filters (PFs) are appropriately replaced by
Gaussian Processes (GPs). In comparison to parametric mod-
els, upon the availability of sufficient training data, results
show improvement in tracking accuracy. Machine learning
techniques are also extensively considered for indoor local-
ization systems. In location fingerprinting approach, kernel
methods in the form of Support Vector Machines (SVMs) and
GPs frameworks have become the standard way of indoor
positioning [5]–[8]. However, these approaches require the
tedious process of mapping the RSSI values in different
locations in the environment, prior to the experiment which
is distinct from the online approach we use in this work.
Furthermore, the likelihood map is non-adaptive and does
not take into account dynamic of the environment.

An important part of online RSSI-based positioning sys-
tems is the radio signal path-loss model [9]. Such models are
usually based on Friis free space model and are only valid if
there is a direct and collision-free path between transmitter
and receiver, with no reflection and refraction due to nearby
obstacles, and in the far-field of transmitting antenna [3],
[10]. A key challenge here is to be able to identify and
mitigate NLOS observations [11]–[16]. To the best of our
knowledge, approaches in [15], [16] are conceptually the
closest to this work. In [15], the problem of range error
mitigation using SVM and GP regression is studied. The
approach uses `2 and `1-minimization and characterizes the
ranging error based on a set of features extracted from the
received waveform. In [16], a set of statistical features are
extracted from the received signal; a classifier discards the
NLOS measurements, and the distance to the transmitter is
estimated using regression techniques. In this work, we do
not rely on feature extraction from the received signal, the
receiver has only access to the received RSSI (unlike [15]),

and the classification output is incorporated into the prob-
abilistic positioning framework for sequential estimations.
In particular, instead of discarding measurements we use a
probabilistic mixture measurement model.

The technique in [17] uses the floor plan to associate
multipath components of the propagated radio signal to
the surrounding geometry. An environment survey prior to
the experiment is required as well as more sophisticated
hardware for data collection. In [18], indoor channel models
for a wider range of frequencies to meet 5G – 5th generation
wireless systems – requirements are studied. The probability
of LOS observations is modeled using exponential decays
as a function of distance. However, it is mentioned that
high variability exists between different deployments and
openness of the area. It is clear that using purely distance
results in a passive model and cannot cope with online radio
signal variations. The proposed solution in this work is a non-
parametric representation of LOS probabilities using distance
and RSSI and takes the spatial correlation of radio signal
propagation into account.

III. PROBLEM FORMULATION AND PRELIMINARIES

We now define the problems we study in this paper
and then briefly explain the required preliminaries to solve
these problems. Let M = {m[j] ∈ R3|j = 1 : nm} be a set
of known and fully observable features whose elements
represent BLE beacons locations. The robot has a receiver
that can only receive the RSSI of a broadcasted signal.
Let St ⊂ Z be the set of possible RSSI measurements at
time t. The observation consists of an ns-tuple random
variable (S

[1]
t , ..., S

[ns]
t ) whose elements can take values

s
[k]
t ∈ St, k ∈ {1 : ns}. We denote the robot position up to

time t by x0:t , {x0, ...,xt} where xt ∈ R3. Given the set
of known BLE beacons and noisy observations, we wish to
solve the following problems.

Problem 1 (Measurement model): Let Zt ⊂ R≥0 be the
set of possible range measurements at time t that is calculated
through a nonlinear mapping st 7→ zt. The measurement
model p(zt|xt) is a conditional probability distribution that
represents the likelihood of range measurements. Find the
mapping from signal to range measurements and the likeli-
hood function that describes the measurement noise.

Problem 2 (Positioning): Let z1:t , {z1, ..., zt} be a se-
quence of range measurements up to time t. Let xt be a
Markov process of initial distribution p(x0) and transition
equation p(xt|xt−1). Given p(zt|xt), estimate recursively in
time the posterior distribution p(x0:t|z1:t).

In the first problem, we try to characterize the received
signal and through an appropriate model transform it to
a range measurement. Furthermore, we need to find a
likelihood function that describes the measurement noise.
The second problem can be seen as a range-only self-
localization problem. For simplicity, since the map is known,
it is eliminated from conditional probabilities terms. We now
express the main assumptions we use to solve the defined
problems.



Assumption 1 (Constant transmission power): The trans-
mission power of all beacons during positioning experiments
remain fixed.

Since a different transmission power leads to a different
signal propagation behavior, i.e. a shorter or a longer range,
this assumption guarantees that the sensor model complies
with the employed beacons.

Assumption 2 (Known data association): Each beacon
has a unique hardware identifier that is available to the
receiver device.

This assumption is usually satisfied in practice as each
beacon has a unique MAC-address that broadcasts it together
with the RSSI. Finally, we assume that the only available in-
formation to the receiver is the RSSI, this is the common case
for existing wireless routers and BLE beacons. However, if
the time difference of arrival (transmission time) be available
to the receiver device, the position estimation accuracy can
be improved.

A. Bluetooth low energy technology

Bluetooth Low Energy [19] protocol was devised in 2010.
It operates in the 2.4 GHz license-free band and hence shares
the same indoor propagation characteristics as 2.4 GHz WiFi
transceivers. Unlike WiFi, BLE uses 40 channels each with
a width of 2 MHz [20].

B. Gaussian processes classification

Supervised classification is the problem of learning input-
output mappings from a training dataset for discrete outputs
(class labels). Gaussian process classification [21] is a non-
parametric Bayesian technique that uses statistical inference
to learn dependencies between points in a dataset. The
problem in this paper is a binary classification. We define
a training set D , {(x[i], y[i])|i = 1 : no} of dimension
d which consists of a d-dimensional input vector x and
a class label y ∈ {−1,+1} for no observations. In GPC,
the inference is performed in two steps; first computing the
predictive distribution of the latent variable corresponding
to a query case, f∗|D,x∗ ∼ N (E[f∗],V[f∗]), and then a
probabilistic prediction, p(y∗ = +1|D,x∗), using a sigmoid
function.

The non-Gaussian likelihood and the choice of the sigmoid
function can make the inference analytically intractable.
Hence, approximate techniques such as Expectation Prop-
agation (EP) [22] needs to be used. The vector of hyper-
parameters (parameters of the covariance and mean func-
tions), θ, can be optimized by maximizing the log of the
marginal likelihood function, log p(y|X,θ), where X is
the d× n design matrix of aggregated input vectors x, and
y = [y[1], ..., y[n]]T .

The GPC model implemented in this work uses a con-
stant mean function, squared exponential covariance function
with automatic relevance determination as described in [23],
whereas the error function likelihood (probit regression), and
EP technique for approximate inference is done using the
open source Gaussian process (GP) library in [21].

C. Particle filters

In the problem of localization using RSSI, the observation
space is nonlinear, and the posterior density is often multi-
modal. Particle filters are a non-parametric implementation
of the Bayes filter that are suitable for tracking and local-
ization problems where dealing with global uncertainty is
crucial [24]–[26]. In this work, we use Sample Importance
Resampling (SIR) filter embedded with the systematic re-
sampling algorithm. To detect the degeneracy and perform
resampling, we compute the effective sample size which
corresponds to the reciprocal of the sum of squares of particle
weights.

IV. SENSOR MODELING AND ANALYSIS

In this section, we tackle the first problem. To model
the mapping from the signal to the measurement space,
i.e. RSSI to range, we use Friis free space model [3],
[10] in which the signal attenuation is proportional to the
logarithm of the distance. This model can characterize radio
signals propagation in LOS scenarios; however, in NLOS
and the presence of clutter, it may perform poorly which
negatively affects the positioning algorithm. We first describe
experimental data collection rounds, followed by how we use
the experimental data to estimate the parameters of the path-
loss model and train the GP classifier.

A. Data collection rounds

We employ a robot equipped with an Inertial Measurement
Unit (IMU) and a laser range-finer to localize using laser
odometry. We use this result as a proxy for groundtruth to
estimate distances to the BLE beacons at known locations.

We empirically found that the effective range of BLE
beacons to define a meaningful relation between RSSI and
distance is about 10 m, which is consistent with the available
literature [1]. Hence, all data collection rounds for sensor
modeling are performed along a 10 m range to capture the
main trend of data. In Round I, RSSIs are collected in LOS
and NLOS scenarios. The NLOS is created artificially by
blocking the LOS using furniture such as chairs. In Round
II, on a different working day, we collected another LOS
dataset. The collected data from Round I and II are illustrated
in Figure 2.

B. Path-loss model parameters estimation

The signal propagation in an indoor environment is a
complex physical phenomenon, and it is often not possible
to find a unique model to characterize it. However, the
simplified free space path-loss model can capture the essence
of signal propagation. The model depends on, aX in dBm,
which captures the transmission power, antenna characteris-
tics and the average channel attenuation, the received power,
pRSSI in dBm, the path-loss exponent γ, and a reference
distance, d0 in m, for the antenna far-field. The model can
be expressed as follows.

pRSSI = aX + 10γ log10(
z

d0
) + ε (1)
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Fig. 2: Raw RSSI measurements are from 6 co-located BLE beacons collected along 10m range for (a) Round I: LOS (12680 points) and (b) Round I:
NLOS (9380 points). The NLOS measurements have lower signal strength due to shadowing and non-constructive multipathing effects. (c) shows Round II:
LOS (10640 points), and (d) shows path-loss model parameter estimation using the maximum likelihood and a Gaussian noise model. The points indicate
the median of measurements from all 6 beacons with a similar time-stamp, i.e within ten milliseconds.

where ε is the received signal power noise and assumed to
have an independent and identically distributed (i.i.d.) Gaus-
sian distribution, ε ∼ N (0, σ2). The three model parameters
aX , γ, and d0 can then be estimated using the nonlinear
least squares parameter estimation technique, i.e. maximum
likelihood estimation with a Gaussian noise assumption.
Figure 2d shows the model with parameters estimated using
the Round II dataset.

Remark 1: From Equation (1), it is clear that if pRSSI , in
dBm, follows a normal distribution, then the received power,
in Watt, follows a log-normal distribution. Therefore, we can
assume that the distance follows a log-normal distribution as
well. In practice, we calculate the range z from a known
value of pRSSI .

C. GP classifier training and validation
To increase the diversity of training data, we use NLOS

observations from Round I and LOS observations from
Round II. The total number of raw observations taken from
6 BLE beacons is about 20, 000. We compute the median
of the observations within ten milliseconds to reduce the
effect of outliers and improve the accuracy of the training
set, leading to about 2000 points. We then downsample data
to about 1000 points to keep the computational aspect of
GPC manageable. Each training point input consists of a
2-dimensional vector concatenated from the RSSI observa-
tion and the corresponding groundtruth range. The target
labels are set to +1 and −1 for LOS and NLOS, respectively.
Figure 1 shows the inferred probability surface in which the
higher probabilities correspond to LOS observations. Note
that in practice one does not have access to the groundtruth

distance. Instead, the estimated distance to a beacon together
with the RSSI observation are the input. To employ the
classifier online, the results are stored in a kd-tree data
structure with an appropriate resolution.

We evaluate the performance of the classifier using the
Receiver Operating Characteristic curve (ROC) and the area
under the ROC (AUC) [27]. The raw measurements without
any filtering are used to conduct two tests. First, we use all
observations from Round I NLOS and Round II LOS. In the
second test, we use all observations from Round I and II
which contain about 32, 000 points. Figure 3 illustrates the
ROC analysis results where the AUC indicates the average
performance of the classifier on each test set.

V. POSITIONING ALGORITHM

We now formulate a measurement model that embeds
the classifier into the Bayesian filtering algorithm. Let C [i]

t

be a Bernoulli random variable whose realization at time t
indicates LOS probability for the i-th particle. Without loss
of generality, the joint probabilistic measurement model can
be defined as follows.

p(zt, c
[i]
t |x

[i]
t ) = p(c

[i]
t |zt,x

[i]
t )p(zt|x[i]

t ) (2)

The conditional probability p(zt|x[i]
t ) is the so-called likeli-

hood function of the Bayesian filtering and in the traditional
SIR filter returns an importance weight w[i]

t for the i-th
particle. Therefore, the joint probability of the range mea-
surement and LOS can be seen as a new likelihood function.
However, this model is only valid if the measurement is
LOS. The classifier can theoretically detect the NLOS when
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Fig. 3: The receiver operating characteristic curve and the area under the
curve for the trained GP classifier. The classifier is validated using the
LOS and NLOS measurements collected on Round I and II. The average
performance of the classifier on the larger test set is lower, 0.591.

p(c
[i]
t |zt,x

[i]
t ) ≤ plos, where plos is a threshold for LOS

detection and can be set using the ROC analysis performed
earlier [27]. As such, in the absence of any prior knowledge
about the environment, we treat NLOS measurements as
random with a constant probability prand. Consequently, the
measurement function can be written as:

p(zt, c
[i]
t |x[i]

t ) ={
p(c

[i]
t |zt,x[i]

t )p(zt|x[i]
t ) if p(c[i]t |zt,x[i]

t ) > plos
prand otherwise

(3)

To query the probability p(c
[i]
t |zt,x

[i]
t ) from the classifier,

we use the raw RSSI observation and estimated distance to
the corresponding beacon as

h(x
[i]
t ) ,

√
(x

[i]
t −m[j])T (x

[i]
t −m[j]) (4)

The formulated probabilistic measurement model incorpo-
rates the developed classifier into the SIR filter framework.
As we will see later, one can only use p(zt|xt) to com-
puting the filtering distribution of the robot position, e.g.
using a normal or a log-normal distribution, however, the
joint measurement model improves the confidence about the
correctness of the model-measurement relation.

As it is assumed there is no interoceptive sensor avail-
able, we do not have any knowledge regarding the transi-
tion probability model p(xt+1|xt). Let the state vector be
x̄
[i]
t = [x

[i,1]
t ẋ

[i,1]
t x

[i,2]
t ẋ

[i,2]
t ]T , where ẋ[i]

t denotes the the i-
th particle’s velocity at time t. Assuming a constant velocity
motion model, the state equation becomes:

x̄
[i]
t+1 = F x̄

[i]
t + u, F =


1 ts 0 0
0 1 0 0
0 0 1 ts
0 0 0 1

 (5)

where ts is the sampling time, u ∼ N (0,Q), and Q is
a diagonal motion noise covariance matrix. Note that the
receiver height installed on the robot is fixed as the robot
operates on an even floor.

TABLE I: Parameters used in the positioning experiments.

Parameter Symbol Value

− Compared SIR particle filter variants:
Gaussian PFG -
Gaussian with classifier PFG-C -
Lognormal PFL -
Lognormal with classifier PFL-C -
− Path-loss model parameters:
Attenuated transmission power aX -64.53
The path-loss exponent γ 1.72
Reference distance d0 1.78 m
− Measurement model:
Classifier threshold plos 0.4
Gaussian; standard deviation σn 3 m
Gaussian; random probability prand 0.1
Lognormal; standard deviation σln 0.4 dBm

Lognormal; random probability prand (d0σln
√
2π)−1

− Motion model:
Position standard deviation σu 0.1 m
Velocity standard deviation σv 0.05 m / sec
− Particle filter:
Number of particles np 100
Resampling threshold nthr 20
− BLE Beacon Parameter:
Transmission power - +4 dBm
Broadcasting frequency - 10 Hz

VI. EXPERIMENTAL RESULTS

To validate the proposed measurement modeling using
the GP classifier, we evaluate our approach on an indoor
positioning algorithm using BLE beacons. The dataset is
collected during working hours in an office space and the
robot is moved with a moderate speed of 0.2 m / sec on
average. In the following, we explain the experimental setup
and results as well as a discussion on the limitations of this
work and computational complexity analysis of the proposed
algorithm.

A. Experimental setup and evaluation criteria

Traditionally, Cramér-Rao Lower Bound (CRLB) has been
developed and used for system designs and evaluations, since
it can predict the achievable performance before building
the system [25], [28]. We utilized CRLB to approximate
the theoretical lower bound for the mean-squared error. We
define the efficiency, η, of a system using

√
CRLB and the

Root Mean Squared Error (RMSE) as follows.

η =

√
CRLB

RMSE
× 100 (6)

The explanations of the compared techniques and used
parameters are provided in Table I. We compare the results
for indoor positioning using the SIR Particle Filter (PF) with
Gaussian (PFG) and log-normal (PFL) likelihood functions,
and with and without incorporating the classifier, PFG-C and
PFL-C, respectively. To detect the degeneracy, we calcu-
late the effective sample size, neff = (

∑np

i=1 w
[i]
t )−1, and

perform resampling when neff < nthr; where np is the
number of particles and nthr is a threshold 1 < nthr < np.
All the results presented in this paper use np = 100 and
nthr = 20, and the robot position is estimated using the
weighted average of all particles’ positions. Moreover, the
transmission power of all beacons is +4 dBm.



Fig. 4: The indoor positioning results in an office environment populated
with BLE beacons. For clarity, The estimated trajectories are plotted by
skipping 50 time steps between any two successive positions.

TABLE II: Comparison of indoor positioning algorithms using particle
filtering with and without incorporating the online classifier on Dataset I
and II. The results are averaged over 100 runs; mean ± standard error.

PFG PFG-C PFL PFL-C
√

CRLB (m) 0.4254 0.4254 0.0747 0.0747
RMSE (m) 8.08± 0.38 1.99± 0.01 4.11± 0.06 3.06± 0.05
η (%) 5.76± 0.12 21.36± 0.13 1.85± 0.02 2.50± 0.04
Time (sec) 10.6± 0.01 182.7± 0.05 12.0± 0.02 180.8± 0.29

B. Indoor positioning results

The dataset is collected in a research office partitioned
into separate office cabins and consists of traditional office
furniture. The data is collected using a TurtleBot equipped
with an IMU sensor and a laser range-finder which are used
for groundtruth pose estimation. The beacons signals are
recorded using a smartphone Android app. The dataset is
collected by maneuvering the robot over a distance of 70 m
in an office space of 20× 40 m2, as shown in Figure 4.

The methods are implemented using Robot Operating
System (ROS) [29] and results for indoor positioning are
processed using MATLAB. The nominal sampling rate is
BLE beacons is 10 Hz; however, in practice, we experienced
a sampling rate of 7 Hz, on average, for the entire dataset.

Figure 5 shows the empirical cumulative distribution func-
tion (CDF) of the four compared techniques. The empirical
CDF is an unbiased estimate of the population CDF and is a
consistent estimator of the true CDF. Each curve illustrates
the median of 100 CDF from 100 independent runs. The
PFG-C demonstrates the best performance by the localization
error of about 2 m. Note that faster rise from zero to one
along the vertical axis is a desirable outcome.

The statistical summary of the results is depicted in
Figure 6. As an example, the estimated trajectory using
PFG-C and PFL-C are also illustrated in Figure 4. The
proposed classifier has a desirable effect on the robot position
estimation where the robot position has fewer fluctuations.
The classifier makes the positioning algorithm more robust
to noisy observations and outliers, improving the overall
reliability of the system (Figure 5). This is, in particular,

Fig. 5: The empirical cumulative distribution functions of the four compared
techniques.

Fig. 6: The statistics from indoor positioning results using particle filtering
with normal and log-normal noise distributions. The incorporation of the
classifier into the sensor model leads to a more accurate location and scale
estimation.

appealing for the case of the normal likelihood. From the
physical nature of the radio signal propagation, the ranging
bias is always positive. Therefore, a symmetric distribution
such as the Gaussian likelihood performs poorly in character-
izing the noise. However, depending on the parameters, there
are instances that the normal and log-normal distributions
behave similarly. Nevertheless, the classifier improves the
estimation performance for both types of noise models.

Table II shows the numerical comparison between dif-
ferent algorithms from 100 independent runs. The CRLB
value for normal and log-normal distributions is inherently
different as the noise variance for the former is in meters and
the latter in dBm. Thus, one should compare the efficiency
of methods with a similar likelihood function. However, we
can compare all algorithms using RMSE. Overall, PFG-
C and PFL-C show better performance compared to their
corresponding algorithms that do not use the classifier.

C. Discussion

The main limitation of the proposed online classification
technique is that the RSSI range varies according to the
BLE beacon TP. Therefore, using beacons that have different
TPs as compared to those used for training the classifier
will result in lower performance. Furthermore, the classifier
cannot improve the sensor model if it is not (at least



empirically) compatible with the underlying physical nature
of the RF signal propagation. Therefore, it can only act as a
proxy for consistent observation selection which can detect
and mitigate destructive multipathing, shadowing, or sensor
failures, i.e. weak batteries or hardware failures.

Finally, to our experience, collection of NLOS data is of
great importance. If NLOS data has a substantial overlap
with LOS data, then the performance of the trained classifier
will decrease dramatically. In small environments, this effect
can be understood from constructive multipathing or partially
blockage of LOS during data collection.

D. Computational complexity

For no observations, the approximate inference using EP
scales as O(n3o) which is performed offline. The kd-tree
structure is suitable for efficient search in low-dimensional
spaces, such as the case in this work. For np particles
and nz nearest neighbor queries, the algorithm scales as
O(npnz log nq), where nq is the number of stored query
points, and usually nz � np.

VII. CONCLUSION AND FUTURE WORK

We studied the problem of indoor positioning using BLE
beacons. We developed an online classification strategy to
improve the consistency of received measurements with the
employed sensor model. Our experimental results under
realistic conditions show promising improvements and the
proposed classifier can be used as a meta-sensor modeling
technique to cope with spurious measurements. The proposed
method is particularly simpler and more scalable than the
popular fingerprinting technique as the training phase is
in the sensor space instead of spatial coordinates of an
environment.

The future work includes further studies and improvement
of the sensor model in the presence of semi-dynamic obsta-
cles. Integration of incremental motion measurements such
as IMUs can also improve the accuracy of position tracking.
Moreover, increasing the sampling rate can provide a better
efficiency through a higher flow of information into the
estimation process. Lastly, the simultaneous estimation of the
robot (receiver) and BLE beacons positions is an interesting
avenue to follow.
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