
No-Regret Replanning under Uncertainty

Wen Sun1, Niteesh Sood2, Debadeepta Dey3, Gireeja Ranade3,
Siddharth Prakash2, and Ashish Kapoor3

Abstract— This paper explores the problem of path planning
under uncertainty. Specifically, we consider online receding
horizon based planners that need to operate in a latent environ-
ment where the latent information can be modeled via Gaussian
Processes. Online path planning in latent environments is
challenging since the robot needs to explore the environment
to get a more accurate model of latent information for better
planning later and also achieves the task as quick as possible.
We propose UCB style algorithms that are popular in the bandit
settings and show how those analyses can be adapted to the
online robotic path planning problems. The proposed algorithm
trades-off exploration and exploitation in near-optimal manner
and has appealing no-regret properties. We demonstrate the
efficacy of the framework on the application of aircraft flight
path planning when the winds are partially observed.

I. INTRODUCTION
Finding an optimal path under unknown or partially ob-

served environment is a challenging and an important task
in robotics. In this paper, we consider an online replanning
framework where in each round, the robot picks a direction
to traverse and as it travels, it receives observations about
unknown variables along the trajectory. The robot then con-
siders this newly acquired information to refine it knowledge
about the environment, which in turn influences the action
selection in the next round. Finding an optimal strategy
is challenging in such online replanning framework as the
robot essentially faces a tradeoff between exploration and
exploitation. In order to make inferences about the latent
variables, the robot needs to pick actions that can drive itself
around the space to gather information. Such exploration can
be beneficial as more accurate knowledge of the environment
promises more accurate estimation of the cost of trajectories.
However, such actions come at a cost, especially if these
information foraging actions make the robot deviate from its
mission. Thus, it is important for the robot to make the right
decisions about when/where to explore and when to exploit.

We specifically focus on receding-horizon replanning,
where the robot is equipped with a pre-computed library of
trajectories and planning entails picking a trajectory among
the library at every round. Also, we consider the cases where
the uncertainties in environment are unknown but can be
approximately modeled by Gaussian Processes. There is a
fairly large and important classes of natural phenomenon,
including winds, oceanic currents and traffic volume that is
spatially correlated, can be modeled with GPs. For example,

1The Robotics Institute, School of Computer Science, Carnegie Mellon
University. The research work was done during an internship at Microsoft
Research, Redmond. wensun@cs.cmu.edu.

2Microsoft Research, India
3Microsoft Research, Redmond

consider an aerial robot that is attempting to minimize traver-
sal time by exploiting the tail winds while avoiding the head
winds. However, without complete information it is difficult
for the robot to make the optimal decision. Consequently, we
ask how should the aircraft traverse in the space in order to
maximally utilize the winds while continuously sensing and
updating its belief about the wind field.

This paper addresses such exploration-exploitation trade-
off in the online replanning framework by presenting a
new and simple replanning strategy called Upper Confi-
dence Bound Replanning (UCB-Replanning). When trading
between exploration and exploitation, UCB-Replanning uses
the classic strategy of Optimism in the Face of Uncertainty.
Since Gaussian Processes provide a distribution over the
latent variable of interest, UCB-Replanning can leverage
the inferred uncertainty to build confidence intervals on the
estimations of the cost of trajectories. During replanning, the
robot then takes the estimation of the cost and the confidence
interval of the estimation together into consideration to make
a decision. We further analyze the performance of UCB-
Replanning. Particularly, we show that UCB-Replanning is
no-regret in a sense that the UCB-Replanning in average
is doing almost as well as picking the optimal trajectory
assuming the full knowledge of unknown variables, along
the states that the robot has visited.

Finally we conduct a case study of aircraft navigating
under wind uncertainty, where the wind speed is modeled
by a Gaussian Process. We investigate the experimental
performance of UCB-replanning under different types of
wind map, including wind maps over the continental United
States, constructed from real wind data provided by National
Oceanic and Atmospheric Administration (NOAA).

II. RELATED WORK

We discuss UCB-Replanning in relation to literature in
three main areas: 1. Receding-horizon planning in robotics 2.
Partially Observable Markov Decision Processes (POMDPs)
and 3. Multi-Armed Bandit problems (MAB).
Receding-horizon planning: In receding-horizon control a
library of pre-computed control command sequences are sim-
ulated forward from the current state of the robot using the
dynamic motion model to come up with a set of dynamically
feasible trajectories up to the planning horizon. This set of
trajectories is then evaluated on the map of the world in the
vicinity of the robot and amongst all the currently collision-
free trajectories the one that makes most progress towards the
goal is chosen for traversal [1]. The selected trajectory is tra-
versed for a portion of the time and the process of trajectory

ar
X

iv
:1

60
9.

05
16

2v
1

 [
cs

.R
O

]
 1

6
Se

p
20

16

evaluation and selection is repeated again. Receding-horizon
based planning has been widely used in aerial and ground
robot navigation in cluttered environments [2], [3], [4] due
to many attractive properties like finite runtime, adaptability
to available computational budget and dynamic feasibility
by construction. We use receding-horizon planning with pre-
computed trajectory libraries as the framework in this paper.
Partially Observable Markov Decision Processes
(POMDPs): POMDPs are used to model Markov Decision
Processes (MDPs) where only part of the state of the world
can be observed. Finding optimal policies of POMDP is
NP-hard [5]. Approximate solutions like Point-Based Value
Iteration [6], [7], Heuristic Search-Based Value Iteration [8]
and Monte-Carlo planning [9] are popular goal-free reward
oriented solvers. While goal-oriented methods like [10] are
more relevant to our problem scenario, they are hard to
adapt to continuous observation spaces and computation
and time budgets imposed by mobile robots. Belief Space
Planning approaches (e.g.,[11], [12], [13], [14], [15], [16]) is
also related to our work. But most of belief space planning
approaches assume that the uncertainty is known, e.g., the
form of the stochastic dynamics are fully known. We do not
even assume the form of the uncertainty is known here and
we utilize Gaussian Process to keep tracking the uncertainty
in a online manner while the robot is moving.

Our work is closely related to that of Dey et al., [17] who
combined Canadian Traveler Problem (CTP) with GPs to
formulate the problem of replanning as a Gaussian Traveler
Problem (GTP). GTPs used determinization techniques like
hindsight optimization [18] to efficiently incorporate uncer-
tainty over all edge costs of the graph in a GTP and show
lower empirical cost of traversal to goal for an aircraft navi-
gating partially known wind fields over continental US than
merely replanning by the mean prediction over edge costs.
GTPs have a number of limitations: 1. Discretization effects
due to representing the problem on a graph. Making the
graph dense has negative computational effects. 2. The edges
of the graph may not be dynamically feasible for the aircraft
to track. 3. The hindsight optimization determinization step
requires sampling large number of possible future graph
states which can be expensive. UCB-Replanning mitigates
all of these issues.
Multi-Armed Bandits: Optimism in the face of uncertainty
is a classic strategy for trading off between exploration and
exploitation in many Multi-Armed Bandit problems [19],
[20], [21], [22] and Reinforcement Learning (RL) problems
[23], [24]. The classic Upper Confidence Bound (UCB)
algorithm for MAB [19], [22] maintains a confidence interval
of the true reward for each arm and pull the arm with
the maximum upper bound of its confidence interval. UCB-
Replanning leverages the classic analysis of MAB to analyze
the performance of online receding horizon based planning.

III. PRELIMINARIES

Let us define X ⊂ Rd as the state space for the robot.
The state x ∈ X includes the information of the robot such
as positions and velocities. We model the uncertainty in the

Fig. 1: Notation of waypoints (red circles) of a set of
trajectory library. At time step t the robot is located at the
root (black circle) of the trajectories and needs to make a
decision about which trajectory to traverse next.

environment by a random variable v ∈ R.1 The realization
of random variable v depends on state of the robot and is
modeled by an unknown function subject to noise:

v = g(x) + ε, (1)

where we assume ε ∼ N (0, σ2). These random variable
could encode the variant types of uncertainties in the envi-
ronment such as the speed of the wind at the current position
of the robot, the estimated distance to a obstacle and so on.
For notation simplicity, in the rest of the work, we define
v(x) as a (noisy) realization of the random variable v at
state x. Throughout this work, we assume that the unknown
g is sampled from a Gaussian process prior GP(0, κ(x,x′)).
Given a set of pairs {xi, v(xi)}Ni=1, the posterior over g is
GP distribution with mean µ(x), covariance cov(x,x′) and
variance σ2(x) as:

cov(x,x′) = κ(x,x′)− κN (x)T (KN + σ2I)−1κN (x′),

µ(x) = κN (x)T (KN + σ2I)−1yN , σ2(x) = cov(x,x),

where κN (x) = [κ(x1,x), ..., κ(xN ,x)]
T and KN is the

gram matrix with KN [i, j] = κ(xi,xj).
We assume that the robot is equipped with a pre-computed

library of trajectories {τ1, ..., τK}, where each trajectory τi
consists of L segments (Fig. 1). Assume that at time step
t, the robot’s state is denoted as xt. Starting at xt, for
each trajectory τi, the L + 1 waypoints are represented
as {xit,0,xit,1, ...,xit,L}, where xit,0 = xt, for all i ∈
{1, 2, ...,K} (Fig. 1).

At step t, located at state xt, the robot needs to pick a
trajectory indexed at It ∈ {1, 2., ...,K} and execute τIt .
Then the robot will traverse along τIt and end at state xItt,L.
At the beginning of next around t+ 1, we set xt+1 = xItt,L,
and repeat the above process. At every step t, each trajectory
τi is equipped with a reward function ft,i, which measures
the reward of executing trajectory τi at step t. The reward
function depends on the uncertain variables v along the
trajectory and we denote ft,It({v(x

It
t,j)}Lj=0) : RL+1 → R.

Throughout this paper, we assume that ft,i is Lipschitz
constant with respect to `1 norm with Lipschitz constant l.

1It is straightforward to extend to multi-variable case where variables can
be modeled by multiple independent GPs

The ideal goal of the robot is to pick a sequence of trajec-
tories {I∗1 , ..., I∗T } from iteration t = 1 to T , so that it can
maximize the cumulative reward

∑T
t=1 ft,It({g(x

It
t,j)}Lj=0)

(Here we focus on maximizing with respect to g(x), which
is the expectation of v(x)). Note that computing the optimal
sequence of decisions {I∗1 , ..., I∗T } requires the full knowl-
edge of the underlying map g, which is not available.

It is not easy for the robot to pre-plan a sequence of the
decisions since the robot does not have the exact information
about g except a prior, which could be non-informative. To
refine its knowledge about g(x), the robot needs to explore
the area near x to collect observations of v and update the GP.
Hence the robot needs to plan on the fly while collecting new
information and refining its knowledge about g for future
planning. The robot essentially faces the tradeoff between
exploration and exploitation: the robot needs to explore by
choosing difference trajectories to get the information about
the uncertain variables at different regions of its state space
while it also needs to exploit by picking temporally high-
reward trajectories to maximize its total reward.

IV. ALGORITHM

We leverage the strategy of optimism in the face of
uncertainty to design our algorithm for robot to perform
online replanning. Especially, we design an algorithm that is
similar to UCB, where we maintain a confidence interval of
the true reward for each trajectory. To design the confidence
interval for each trajectory’s reward at every step, we first
extract a confidence interval of the uncertain variable v from
GP. We then use the Lipschitz continuity of the reward
function of each trajectory to transfer the confidence interval
of the uncertain variable v to the confidence interval of the
reward of each trajectory. We finally choose the trajectory
with the highest upper confidence bound of the reward
estimation. The detailed algorithm is presented in Alg. 1. In
round t, Alg. 1 first use the current GP model (µt−1, σt−1) to
compute the means and the standard deviations of v along the
waypoints of all K trajectories (Line. 4 and 5). Then for each
trajectory τk, Alg. 1 using the Lipschitiz constant (l) and a
scaling parameter βt (will be defined later in analysis) to
compute the upper confidence bound of the reward function
as shown in Line 6. It then picks the trajectory τIt that has
the highest upper confidence bound. During the execution of
τIt , the robot receives observations of v along the waypoints
and online updates the GP model (Line. 9).

A. Analysis

We analyze the performance of Alg. 1. Particularly, we are
interested in analyzing the regret, which measures the differ-
ence between Alg. 1’s cumulative reward and the cumulative
reward if one always picks the best trajectories along the
states that the robot traversed when executing Alg. 1. More
formally, let us assume that the the sequence of states that
the robot visited at all T rounds as: {x1,x2, ...,xT } and
the indexes of the trajectories that the robot picked at all T

Algorithm 1 UCB-Replanning

1: Input: A library of K trajectories {τk}Kk=1, sequence
of parameters βt ∈ R+. A GP (µ0, σ0) that models the
variable v over the state space X.

2: for t = 1 to T do
3: for k = 1 to K do
4: Compute the sequence of means of g on the way-

points on τk as {µt−1(xkt,j)}Lj=0.
5: Compute the sequence of standard deviations of g

on the waypoints as {σt−1(xkt,j)}Lj=0.
6: Compute the upper confidence bound of the reward

function ft,k as: bk := ft,k({µt−1(xkt,j)}Lj=0) +

lβ
1/2
t

∑L
j=0 σt−1(x

k
t,j).

7: end for
8: Choose index It = argmaxk∈{1,...,K} bk and execute

trajectory τIt .
9: Observe samples of g along the waypoints as

{v(xItt,j)}
L−1
j=0 and use these L samples to online

update GP to obtain µt and σt.
10: end for

rounds as {I1, ..., IT }. We define the regret as:

RT =
1

T

[T∑
t=1

max
I∗t ∈[K]

ft,I∗t
(
{g(xI

∗
t
t,j)}

L
j=0

)
−

T∑
t=1

ft,It
(
{g(xItt,j)}

L
j=0

)]
(2)

Namely, at each round t, we measure how much more reward
the robot could gain if it could pick I∗t instead of It at xt. The
goal is to make regret converges to zero so that in average
the robot has little regret in terms of choosing It.

We remark that our regret definition measures the dif-
ference between the rewards of an optimal decision maker
with full access to latent information and the rewards of the
learning algorithm along the states taken by the learning
algorithm. Ideally one would be interested in the regret of
the learning algorithm in respect to the rewards of the optimal
decision maker along the states generated from the optimal
decision maker itself. It turns out that the latter definition
of regret is impossible to achieve without any assumptions
about the reachability of the systems and the ability to reset
[24]. Consider the MDP shown in Fig. 2 with 3 states and 2
actions. Once the agent makes the mistake of taking action
a2 at x0, possibly due to the lack of the full knowledge
of the model, it will be stuck in x2 forever and the regret
with respect to the optimal decision maker on the optimal
sequence {x0, x1, x1, ...} will grow linearly. It is also worth
mentioning that our definition of regret in Eqn. 2 is similar
to the classic sample complexity definition of exploration
in reinforcement learning [24], in the sense that the sample
complexity of exploration measures the number of mistakes
the learning algorithm makes on the sequence of states
generated from the algorithm, instead of the sequence of the
states resulting from the optimal policy.

Fig. 2: A decision making problem with three states and
two possible actions. The agent starts from x0 and upon
taking action a1 (a2) reaches x1 (x2). The reward structure
is such that the agent receives a reward 1 upon landing at
state x1 and no reward elsewhere. Once the agent lands in
either x1 or x2, there is no way for it to move to any other
state. Hence the optimal sequence of state for this problem
is {x0, x1, x1, ...}.

Now we are ready to show that Alg. 1 is no-regret:
Rt → 0, as T → ∞. Let us define Dt as the states of
all waypoints on all K trajectories: Dt = {{xkt,j}Lj=0}Kk=1,
where |Dt| = (L + 1)K. The following lemma builds the
confidence interval over g on all waypoints in Dt at all
rounds t:

Lemma 1: With βt = 2 log(|Dt|πt

δ) and any πt that
satisfies

∑
t 1/πt = 1, πt > 0, with probability at least 1− δ

we have:

∀t,∀x ∈ Dt, |g(x)− µt−1(x)| ≤ β1/2
t σt−1(x). (3)

The above lemma is essentially the same as Lemma 5.1 in
[21]. For completeness we include the proof in the appendix.

The next lemma builds a confidence interval over the
rewards of all K trajectories, at all rounds.

Lemma 2: Set βt = 2 log(|Dt|πt

δ) and
∑
t 1/πt = 1, πt >

0, we have with probability at least 1− δ:

∀k ∈ [K],∀t, |ft,k({g(xkt,j)}Lj=0)− ft,k({µt−1(xkt,j)}Lj=0)|

≤ lβ1/2
t

L∑
j=0

σt−1(x
k
t,j). (4)

Proof: Let us define event A as ∀t,∀x ∈ Dt, |g(x) −
µt−1(x)| ≤ β

1/2
t σt−1(x) and from the previous lemma, we

know that event A happens with probability at least 1 − δ.
We now condition on event A. Below we show that event A
will imply the inequality in the above lemma.

Since we assume that the reward functions ft,k is Lipschitz
continuous, we must have for any t and k:

|ft,k({g(xkt,j)}Lj=0)− ft,k({µt−1(xkt,j)}Lj=0)|

≤ l
L∑
j=0

|g(xkt,j)− µt−1(xkt,j)|,

where l is the Lipschitz constant. Conditioned on the fact
that event A happens, we have that at any round t and for
any trajectory τk, we have that:

|ft,k({g(xkt,j)}Lj=0)− ft,k({µt−1(xkt,j)}Lj=0)|

≤ l
L∑
j=0

|g(xkt,j)− µt−1(xkt,j)| ≤ l
L∑
j=0

β
1/2
t σt−1(x

k
t,j),

where we use the assumption that f is l-Lipschitz continuous
in `1 norm. To this end, we have already shown that event
A implies the inequality in the above lemma. Since the
probability that the event A happens is at least 1 − δ, we
must have with probability at least 1− δ, ∀t, k

|ft,k({g(xkt,j)}Lj=0)− ft,k({µt−1(xkt,j)}Lj=0)|

≤ l
L∑
j=0

β
1/2
t σt−1(x

k
t,j). (5)

Hence we prove the lemma.
Now we present the main theorem. We consider two types

of Kernels: (1) linear kernel as κ(x,x′) = xTx′, and (2)
square exponential kernel as κ(x,x′) = exp(−c‖x−x′‖2).

Theorem 3: With βt = 2 log(|Dt|πt

δ) and
∑
t 1/πt =

1, πt > 0, we will have with probability at least 1− δ:

RT /T ≤ O(d log(LT)/T)→ 0, T →∞, (6)

for linear kernel as κ(x,x′) = xTx′, and

RT /T ≤ O
(
(log(LT))d+1/T

)
→ 0, T →∞, (7)

for squared exponential kernel κ(x,x′) = exp(−c‖x−x′‖2).
Proof: [Proof Sketch] For the sake of brevity, we pro-

vide the complete proof in the appendix and an abbreviated
sketch below. Let us define event B as the inequality 4 shown
in Lemma 2. From Lemma. 2 we know that the probability
of event B happens is at least 1 − δ. Below we show that
event B implies the two equalities in the above theorem. For
the rest of the proof, we assume we condition on that event
B happens. Consider round t. Note that It is defined as:

It = arg max
k∈[K]

ft,k({µt−1(xkt,j)}Lj=0)

+ lβ1/2
L∑
j=0

σt−1(x
k
t,j), (8)

and I∗t is defined as:

I∗t = arg max
k∈[K]

ft,k({g(xkt,j)}Lj=0), (9)

namely the best trajectory one would pick at this round t if
g is known. Now let us define the single step regret rt as:

rt = ft,I∗t
(
{g(xI

∗
t
t,j)}

L
j=0

)
− ft,It

(
{g(xItt,j)}

L
j=0

)
, (10)

namely the regret one has by choosing It instead of I∗t at
round t. Similar to classic analysis of UCB based algorithms,
we can upper bound rt using Eqn. 8 and 9:

rt ≤ 2lβ
1/2
t

L∑
j=0

σt−1(x
It
t,j). (11)

Square both sides of the above inequality and use similar
techniques from [21], we have for r2t :

r2t = 4l2βt(

L∑
j=0

σt−1(x
It
t,j))

2 ≤ 4l2βtL

L∑
j=0

σt−1(x
It
t,j)

2

≤ 4l2βTLσ
2C1

L∑
j=0

log
(
1 + σ−2σt−1(x

It
t,j)

2
)

(12)

where C1 = σ−2/ log(1 + σ−2) ≥ 1.
Since the regret RT =

∑T
t=1 rt, we must have R2

T ≤
T
∑
t r

2
t . Using Lemma 5.3 and Lemma 5.4 from [21], we

can link RT to the maximum information gain as follows:

R2
T ≤ 4l2βTL

2σ2C1T

T∑
t=1

L−1∑
j=0

log(1 + σ−2σt−1(x
It
t,j)

2)

≤ 4l2βTL
2σ2C1TγT ,

where γT is the maximum information gain defined as

γT = max
A⊆X,|A|=LT

I(vA; g)

= max
A⊆X,|A|=LT

H(vA)−H(vA|g),

where H(x) is the entropy of the random variable x, H(x|y)
is the conditional entropy, vA = {g(x) + ε}x∈A is the set
of observations of g(x) for all states x in set A. Namely
γT quantifies the maximum reduction in uncertainty about g
from revealing the observations of g on LT states.

Theorem 5 from [21] shows γT ≤ O(d logLT) if
κ(x,x′) = xTx′ and γT ≤ O((logLT)d+1) if κ(x,x′) =
exp(−c‖x − x′‖2). Substitute these results to the above
inequality, we prove the theorem.

The above theorem shows that as the number of rounds
approaches infinity, in average, the policy presented at Alg. 1
performs almost as well as the best policy which can always
choose the best trajectory at every round. Note that the
average regret of using squared exponential kernel (e.g., RBF
kernel) shrinks more slowly than the average regret of linear
kernel. This indicates that in general if the wind map g is
complicated (i.e., requiring RBF kernel to model it), Alg. 1
requires more rounds to achieve good performance.

V. CASE STUDY: AIRCRAFT NAVIGATION UNDER
WIND UNCERTAINTY

We conduct a case study of aircraft nagiviation under
wind uncertainty and show how UCB-Replanning can be
applied. Let us define the state space of the aircraft X ∈ R2

(2D position) where we assume that X is compact. We fix
the norm of airplane’s speed to v0 ∈ R2. At a particular
position x, the speed of the wind v ∈ R2 is computed from
an unknown mapping g : X → R2, subject to Gaussian
noise as v(x) = g(x) + ε, ε ∼ N (0, σ2I). We assume that
range of the speed of wind is bound as ‖v‖2 ∈ [vmin, vmax],
where vmin, vmax ∈ R+, and we further assume that vmax =
‖v0‖2/2. Give the position x of the aircraft, the real speed
of the aircraft can be computed as follows:

ṽ(x) = v0 +
〈v0, v(x)〉
‖v0‖22

v0, (13)

where the second part of the RHS of the above equation is
the projection of the wind speed v(x) at location x onto the
airplane’s speed. Overall the goal of the aircraft is to leverage
the speed of the wind to decrease its traveling time.

We use Gaussian Process with squared exponential kernel
κ(x,x′) = α exp(−c‖x − x′‖2) (c, α ∈ R+) to model the
wind speed. At every round, the aircraft chooses a trajectory

(a) Wind field 1 (Tail Wind) (b) Wind field 1 (Head Wind)

Fig. 3: Trajectories (solid lines) resulting from Oracle, Mean
and UCB, in the synthetic wind field, with different start
(green dot) and goal position (red dot) settings

from a pre-computed library of K = 48 trajectories [1]. Each
trajectory is a spline with L segments, each segment having
a length d.

Given the start position and the final position, the goal
of the aircraft is to minimize the total traveling time. Hence
our reward function is related to the traveling time. Let us
assume that at round t, the robot is at state xt. For each
trajectory τk, k ∈ [K], we design the reward function with
respect to the speed of the wind as:

ft,k({v(xkt,j)}Lj=0) = −
(L−1∑
i=0

d

‖ṽ(xkt,i)‖2
+ λttg

)
, (14)

where λt ∈ (0, 1]. The first part of the RHS of the above
equation is the total time for traversing the trajectory τk while
the second part tg serves as an estimation of the left time
for traveling from the the end of the trajectory τk and the
final position. In this work, we use the total time of traveling
along the Great Circle Route for tg (Note that tg could also
be regarded as a scaled shortest distance to goal). 2

To apply UCB-Replanning, we first set πt = π2t2/6.
It is straightforward to compute the Lipschitz continuous
constant l of ft,k as l = 4d

‖v0‖22
. Hence we can set

lβ
1/2
t = O

(
4d
‖v0‖22

√
log(KLπ

2t2/6
δ)

)
. Throughout the exper-

iments, we set δ = 0.05. Namely we want the inequalities in
Theorem 3 to hold with probability at least 95%. For specific

values of lβ1/2
t , we set lβ1/2

t = c 4d
‖v0‖22

√
log(KLπ

2t2/6
δ),

where c ∈ R+. We test different values of c in experiments.

VI. EXPERIMENTS

We test our UCB-Replanning algorithm (UCB) on the
application of aircraft flight path planning with partially
observed wind. We compare our algorithm to there baselines:
(1) receding horizon based Oracle (Oracle), (2) receding
horizon based Plan by Mean (Mean) and (3) Great Circle
Rout (GCR), namely following the shortest path in geodesic

2We experimentally verified that incorporating wind estimation into the
computation of tg significantly worsen the performance. This is because the
wind estimation around the area that is far away from the airplane’s current
position is usually low-quality.

Tail Wind Head Wind

Oracle 18.8% 88.2%
UCB 5.4% 84.0%
Mean 2.9% 75.2%

TABLE I: Percentage improvement of Oracle, UCB and
Mean compared to simply traveling along the straight line,
under the synthetic wind filed setup. The percentage is
computed as the difference between traveling time on straight
line and traveling time of UCB (Oracle, Mean) divided by
the traveling time on straight line.

distance. The Oracle, which has access to the true wind
information (i.e., it knowns g(x)), picks trajectory using
wind map g(·). Namely Oracle replace bk in Alg. 1 using
ft,k(g(x

k
t,0), ..., g(x

k
t,L)). Mean doesn’t have access to the

true wind information. Instead, Mean exactly follows the
same structure of UCB-Replanning, but replace bk in Line 6
of Alg. 1 using ft,k(µt−1(xkt,0), ..., µt−1(x

k
t,L)) (i.e., use the

mean µt−1 but ignore the standard deviations σt−1).

A. Synthetic Wind Field

We created a wind field as shown in Fig. 3. The arrow
indicates the direction of the wind filed and the length of the
arrows indicates the strength of the wind. We pre-computed
25 trajectories, where each trajectory is simply a straight
line with 30 segments. We set the length of each segment
to be 0.2, the norm of the airplane’s speed to 2.0, and the
maximum norm of wind speed to 1.0.

When the airplane is traveling downwind, the strategy is
to leverage the stronger wind to shorten the traveling time,
as show by the trajectory of Oracle (blue) and the trajectory
of UCB (red) in Fig. 3 (a). When the airplane is traveling
upwind, one strategy to save traveling time is to identify
the regions where the wind is not strong, which is exactly
what Oracle, UCB and Mean performed in Fig. 3 (b). Also
as we can see from Fig. 3, UCB’s trajectory and Oracle’s
trajectory are usually different due to possible exploration at
the beginning, but then gradually converges to each other.
On the other hand, Mean may perform quite sub-optimally
as shown in Fig. 3 (a).

Table I shows the percentage improvement of Oracle,
UCB and Mean over GCR. The data used to compute
the numbers in Table I is collected from 100 trials with
different wind speed, and start/goal positions. As we can
see, UCB consistently outperforms Mean, especially in the
head wind case. Oracle generally performs the best since
it has access the true underlying wind field (not available in
practice). In summary, the comparison clearly shows that the
tradeoff in exploration and exploitation introduced by UCB
strategy is beneficial for Receding Horizon Control, while
pure exploitation based strategy (i.e., Mean) in some cases
can perform sub-optimally.

(a) South Carolina to Utah (Head Wind)

(b) Seattle to Miami (Tail Wind)

Fig. 4: Examples of trajectories resulting from Mean (Yel-
low) and UCB (Blue) for a short rout from South Caroline
to Utah (a), and a long rout from Seattle to Miami (b). We
also plot the Great Circle Rout (black).

B. Real Wind Field

We also tested our algorithm on wind map constructed
from real data. We define boundaries to be the Continental
United States. The Northwest boundary was set as (49.5N,
125.0W) and the Southeast as (25.0N, 67.5W). The simulated
aircraft, maintains a constant cruising speed of 250 knots
at an altitude of 39000 feet (11887 m). Winds encountered
at this altitude could go upto upwards of 100 knots. Using
realistic data provided by NOAA we construct wind maps
by fitting a Gaussian Process over wind data from all
176 stations that NOAA maintains (e.g., Fig. 4 shows one
instance of generated routs). Since it is impossible to get true
wind map over US, we simply use the mean of the fitted GP
as an estimation of ground truth of the wind speed. We refer
readers to [25] for details of wind map construction.

We use an existing pre-computed library of trajectories
from [1]. We test UCB and Mean on two different routes:
(1) a short route from South Carolina to Utah (around 1300
nautical miles), and (2) a long route from Seattle to Miami
(around 2700 nautical miles). As we can see from Fig. 4
(a), when flying with head wind, both UCB (and Mean in
this case) exhibits another strategy to save traveling time:
it guides the aircraft to fly in the direction that is nearly
perpendicular to the wind speed in order to cancel the wind
effect when the wind is strong. When flying with good tail
wind as shown in Fig. 4 (b)), UCB almost identifies the

South Carolina to Utah Seattle to Miami

UCB 21079.7±1109.0 31333.1±1269.0
Mean 21183.3±1263.1 31716.5±1016.0
GCR 33712.5±1852.1 48195.7±1952.7

TABLE II: Average traveling time (seconds) with standard
deviation resulting from UCB, Mean and GCR under the real
wind field setup.

shortest path (Great Circle Rout) and follow it. Note that the
trajectory resulting from UCB shown in Fig. 4 (b) is still a
little bit different from GCR.

We simulate 11 days of real wind data by dividing each
day into 6 hour time slots and simulating both paths for
every slot (Fig. 4 shows one instance of the constructed wind
maps). This in total give us 80 different trials for UCB and
Mean, 40 for head wind and 40 for tail wind. We report the
average traveling time and standard deviation in Table II. As
we can see, in average UCB outperforms, and both UCB and
Mean significantly outperform GCR.

We tested a variant of UCB and Mean, where we incor-
porated the estimation of wind speed to compute the time
to goal (tg) as shown in Eqn. 14. Due to the low quality
estimation of wind speed at the areas far away from the
aircraft’s current position, using wind estimation to compute
tg actually worsen the performance of both UCB and Mean.

VII. CONCLUSION

We present UCB-Replanning, an online receding horizon
based path planner that operates in an environment with la-
tent information that can be modeled by Gaussian Processes.
Equipped with a pre-computed trajectory library, at every
iteration UCB-Replanning algorithm picks a trajectory to ex-
ecute while collecting observations of the latent information
on the fly to update the Gaussian Process. UCB-Replanning
leverages the idea of optimism in the face of uncertainty
to tradeoff exploration and exploitation in a near-optimal
manner and achieve no-regret property with respect to an
optimal decision maker that has full access to the latent
information of the environment.

APPENDIX

A. Proof of Lemma 1

Proof: The proof is essentially the same as Lemma
5.1 in [21]. For completeness we present the proof here.
Fix t and x ∈ Dt. Note that under our assumption
that f is a sample from the prior of GP, we have
g(x) ∼ N (µt−1(x), σt−1(x)

2). Hence we have (g(x) −
µt−1(x))/σt−1(x) ∼ N (0, 1). The proof of Lemma 5.1 in
[21] shows that if r ∼ N (0, 1), we have P (|r| ≥ c) ≤
exp(−c2/2),∀c > 0. This gives us the following result:

Pr
(
|g(x)− µt−1(x)| ≤ β1/2

t σt−1(x)
)
≥ 1− exp(−βt/2).

We choose any sequence πt such that
∑

1
πt

= 1. For instance
we can set πt = π2t2/6. Now let us set exp(−βt/2) =

δ
πt|Dt| , namely we set βt = 2 log(|Dt|πt

δ). Now use union
bound over all rounds from 1 to T and over all LK waypoints
in Dt, we can prove the above lemma.

B. Proof of Theorem 3

Proof: Let us define event B as

∀k ∈ [K],∀t, |ft,k({g(xkt,j)}Lj=0)− ft,k({µt−1(xkt,j)}Lj=0)|

≤ lβ1/2
t

L∑
j=0

σt−1(x
k
t,j),

and from Lemma. 2 we know that the probability of event
B happens is at least 1 − δ. Below we show that event B
implies Theorem. 3. For the rest of the proof, we assume we
condition on that event B happens. Consider round t. Note
that It is defined as:

It = arg max
k∈[K]

ft,k({µt−1(xkt,j)}Lj=0)

+ lβ1/2
L∑
j=0

σt−1(x
k
t,j), (15)

and I∗t is defined as:

I∗t = arg max
k∈[K]

ft,k({g(xkt,j)}Lj=0), (16)

namely the best trajectory one would pick at this round t if
g is known. Now let us define the single step regret rt as:

rt = ft,I∗t
(
{g(xI

∗
t
t,j)}

L
j=0

)
− ft,It

(
{g(xItt,j)}

L
j=0

)
, (17)

namely the regret one has by choosing It instead of I∗t at
round t. We can upper bound rt using Eqn. 15 and 16 as
follows:

rt = ft,I∗t ({g(x
I∗t
t,j)}

L
j=0)− ft,It({g(x

It
t,j)}

L
j=0)

≤ ft,I∗t ({µt−1(x
I∗t
t,j)}

L
j=0) + lβ

1/2
t

L∑
j=0

σt−1(x
I∗t
t,j)

− (ft,It({µt−1(x
It
t,j)}

L
j=0)− lβ

1/2
t

L∑
j=0

σt−1(x
It
t,j))

(event B happens)

≤ ft,It({µt−1(x
It
t,j)}

L
j=0) + lβ

1/2
t

L∑
j=0

σt−1(x
It
t,j)

− (ft,It({µt−1(x
It
t,j)}

L
j=0)− lβ

1/2
t

L∑
j=0

σt−1(x
It
t,j))

(Definition of It from Eqn. 15)

= 2lβ
1/2
t

L−1∑
j=0

σt−1(x
It
t,j). (18)

The square of rt can be bounded as follows:

r2t = 4l2βt(

L∑
j=0

σt−1(x
It
t,j))

2 ≤ 4l2βtL

L∑
j=0

σt−1(x
It
t,j)

2

≤ 4l2βTLσ
−2

L∑
j=0

σt−1(x
It
t,j)

2σ2

= 4l2βTLσ
2

L∑
j=0

[σ−2σt−1(x
It
t,j)

2

log(1 + σ−2σt−1(x
It
t,j)

2)
log
(
1

+ σ−2σt−1(x
It
t,j)

2
)]

≤ 4l2βTLσ
2 σ−2

log(1 + σ−2)

L∑
j=0

log
(
1 + σ−2σt−1(x

It
t,j)

2
)

= 4l2βTLσ
2C1

L−1∑
j=0

log
(
1 + σ−2σt−1(x

It
t,j)

2
)

(19)

where C1 = σ−2/ log(1+σ−2) ≥ 1 and the third inequality
comes from the fact that the function x/ log(1 + x) is non-
decreasing when x > 0, and σ−2σ2

t−1 ≤ σ−2 because we
assume σt−1(x)2 ≤ κ(x,x) ≤ 1 for any x.

Since the regret RT =
∑T
t=1 rt, we must have R2

T ≤
T
∑
t r

2
t . Using Lemma 5.3 and Lemma 5.4 from [21], we

can link RT to the maximum information gain as follows:

R2
T ≤ 4l2βTL

2σ2C1T

T∑
t=1

L∑
j=0

log(1 + σ−2σt−1(x
It
t,j)

2)

≤ 4l2βTL
2σ2C1TγT ,

where γT is the maximum information gain defined as

γT = max
A⊆X,|A|=LT

I(vA; g)

= max
A⊆X,|A|=LT

H(vA)−H(vA|g),

where H(x) is the entropy of the random variable x, H(x|y)
is the conditional entropy, vA = {g(x) + ε}x∈A is the set
of observations of g(x) for all states x in set A. Namely
γT quantifies the maximum reduction in uncertainty about g
from revealing the observations of g on LT states.

Theorem 5 from [21] shows that γT ≤ O(d logLT)
when κ(x,x′) = xTx′ and γT ≤ O((logLT)d+1) when
κ(x,x′) = exp(−c‖x−x′‖2). Substitute these results to the
above inequality, we prove the theorem.

REFERENCES

[1] C. Green and A. Kelly, “Toward optimal sampling in the space of
paths,” in 13th International Symposium of Robotics Research, 2007.

[2] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal
of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[3] D. Dey, K. S. Shankar, S. Zeng, R. Mehta, M. T. Agcayazi, C. Eriksen,
S. Daftry, M. Hebert, and J. A. Bagnell, “Vision and learning for
deliberative monocular cluttered flight,” in Field and Service Robotics.
Springer, 2015, pp. 391–409.

[4] S. Arora, S. Choudhury, D. Althoff, and S. Scherer, “Emergency
maneuver library-ensuring safe navigation in partially known envi-
ronments,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 6431–6438.

[5] C. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Math. Oper. Res., vol. 12, no. 3, pp. 441–450,
Aug. 1987. [Online]. Available: http://dx.doi.org/10.1287/moor.12.3.
441

[6] J. Pineau, G. Gordon, S. Thrun, et al., “Point-based value iteration:
An anytime algorithm for pomdps,” in IJCAI, vol. 3, 2003, pp. 1025–
1032.

[7] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces.”
in RSS, vol. 2008. Zurich, Switzerland, 2008.

[8] T. Smith and R. Simmons, “Heuristic search value iteration for
pomdps,” in UAI. AUAI Press, 2004, pp. 520–527.

[9] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,”
in Advances in Neural Information Processing Systems 23,
J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010,
pp. 2164–2172. [Online]. Available: http://papers.nips.cc/paper/
4031-monte-carlo-planning-in-large-pomdps.pdf

[10] B. Bonet and H. Geffner, “Solving POMDPs: RTDP-Bel vs. point-
based algorithms,” in IJCAI, 2009.

[11] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in
belief space by factoring the covariance,” The International Journal
of Robotics Research, 2009.

[12] R. Platt Jr et al., “Belief space planning assuming maximum likelihood
observations,” in Proceedings of the Robotics: Science and Systems
Conference, 6th, 2010.

[13] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” IJRR,
vol. 31, no. 11, pp. 1263–1278, 2012.

[14] S. Patil, G. Kahn, M. Laskey, J. Schulman, K. Goldberg, and P. Abbeel,
“Scaling up gaussian belief space planning through covariance-free
trajectory optimization and automatic differentiation,” in Algorithmic
Foundations of Robotics XI. Springer, 2015, pp. 515–533.

[15] W. Sun, J. Van Den Berg, and R. Alterovitz, “Stochastic extended lqr:
Optimization-based motion planning under uncertainty,” in Algorith-
mic Foundations of Robotics XI. Springer, 2015, pp. 609–626.

[16] W. Sun, S. Patil, and R. Alterovitz, “High-frequency replanning under
uncertainty using parallel sampling-based motion planning,” IEEE
Transactions on Robotics, vol. 31, no. 1, pp. 104–116, 2015.

[17] D. Dey, A. Kolobov, R. Caruana, E. Kamar, E. Horvitz, and A. Kapoor,
“Gauss meets canadian traveler: shortest-path problems with correlated
natural dynamics,” in AAMAS, 2014, pp. 1101–1108.

[18] A. Olsen, “Pond-hindsight: Applying hindsight optimization to
partially-observable markov decision processes,” Master’s thesis, Utah
State University, 2011.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[20] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002.

[21] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in ICML. Omnipress, 2010.

[22] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic
and nonstochastic multi-armed bandit problems,” Foundations and
Trends R© in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[23] R. I. Brafman and M. Tennenholtz, “R-max-a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, no. Oct, pp. 213–231, 2002.

[24] L. Li, “Sample complexity bounds of exploration,” in Reinforcement
Learning. Springer, 2012, pp. 175–204.

[25] A. Kapoor, Z. Horvitz, S. Laube, and E. Horvitz, “Airplanes aloft
as a sensor network for wind forecasting,” in Proceedings of the
13th international symposium on Information processing in sensor
networks. IEEE Press, 2014, pp. 25–34.

http://dx.doi.org/10.1287/moor.12.3.441
http://dx.doi.org/10.1287/moor.12.3.441
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf
http://papers.nips.cc/paper/4031-monte-carlo-planning-in-large-pomdps.pdf

	I INTRODUCTION
	II RELATED WORK
	III PRELIMINARIES
	IV ALGORITHM
	IV-A Analysis

	V CASE STUDY: AIRCRAFT NAVIGATION UNDER WIND UNCERTAINTY
	VI EXPERIMENTS
	VI-A Synthetic Wind Field
	VI-B Real Wind Field

	VII CONCLUSION
	VII-A Proof of Lemma 1
	VII-B Proof of Theorem 3

	References

