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3D Lidar-IMU Calibration based on Upsampled Preintegrated

Measurements for Motion Distortion Correction

Cedric Le Gentil, Teresa Vidal-Calleja and Shoudong Huang

Abstract— In this paper, we present a probabilistic frame-
work to recover the extrinsic calibration parameters of a lidar-
IMU sensing system. Unlike global-shutter cameras, lidars do
not take single snapshots of the environment. Instead, lidars
collect a succession of 3D-points generally grouped in scans.
If these points are assumed to be expressed in a common
frame, this becomes an issue when the sensor moves rapidly in
the environment causing motion distortion. The fundamental
idea of our proposed framework is to use preintegration over
interpolated inertial measurements to characterise the motion
distortion in each lidar scan. Moreover, by using a set of planes
as a calibration target, the proposed method makes use of lidar
point-to-plane distances to jointly calibrate and localise the
system using on-manifold optimisation. The calibration does
not rely on a predefined target as arbitrary planes are detected
and modelled in the first lidar scan. Simulated and real data
are used to show the effectiveness of the proposed method.

I. INTRODUCTION

Autonomous cars and Unmanned Aerial Vehicles (UAVs)

are currently transforming the transport and service indus-

tries. These systems rely on multiple sensors to achieve

any level of autonomy. In the past few years, the robotics

community has proposed various multi-sensor fusion algo-

rithms for localisation and mapping. From visual-inertial

navigation [1] to visual-lidar odometry and mapping [2],

all these techniques rely on accurate extrinsic calibration

and synchronisation between the sensing devices. To our

knowledge, despite the current popularity of lidars and IMUs

([3] [4]), an automatic procedure to directly calibrate a 6-

DoF-IMU/3D-lidar sensor pair has not been proposed in the

literature. This work presents a probabilistic framework to

estimate the extrinsic calibration between a 3D-lidar and a

6-DoF-IMU.

Despite apparent similarities with the problem addressed

in [5], [6], and [7], our work considers a simpler set-up. The

cited contributions propose techniques to estimate the relative

transformation between a 3D-lidar and an inertial navigation

system making use of accurate position information provided

by a GNSS or odometry. Considering accelerometers and

gyroscopes only, accurate localisation information is not

readily available. Therefore, when it comes to determining

the relative transformation between a lidar and an IMU, a

visual sensor is often used. In fact a variety of camera-

IMU and camera-lidar extrinsic calibration procedures can

be found in the literature.
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Fig. 1: Lidar point clouds of a room corner with and without motion
distortion. In the left column, the lidar is static whereas, in the right
one, it moves during the sweep. The motion distortion appears when
considering the raw 3D readings as being expressed in a shared
“scan frame”. The two rows correspond to different viewpoints.

Over the years, visual-inertial extrinsic calibration became

more accurate while getting less restrictive concerning the

set-ups needed. Ref. [8] and [9] are examples of complex

calibration rigs using actuators and external sensors, such as

spinning tables and shaft encoders, to recover the inter-sensor

spatial transformation. Free from complex installations, [10]

and [11] solve the same problem using only a checkerboard

as a calibration target. As for more complex rigs, the accu-

racy of the estimated calibration parameters depends on the

precision with which the target has been built.

The same problem persists when aligning camera images

and lidar point clouds as in [12] and [13] for 2D, and in [14]

and [15] for 3D scenarios. Accurately built planar visual

targets are used for their “visibility” in both modalities.

Nonetheless, approaches like [16] and [17] propose target-

less calibration pipelines. Both techniques rely on the as-

sumption that high colour gradients in the visual sensor data

correspond to high spatial gradients in the 3D-point clouds.

In this paper, we propose a calibration method that does

not require a predefined target. Instead, we use a set of arbi-

trary planes which are automatically extracted and modelled

from the first lidar scan to become what we called the map.

For instance, in our experiments, we opted to use the three

planes of a room corner to calibrate our hand-held system.

But for outdoor systems, such as large UAVs or cars, a corner

of a building and the ground can be used instead.

The first and main issue when it comes to dealing with

most of today’s lidars is the sequential nature of the sweeps.



Unlike global-shutter cameras, lidars do not take snapshots

of the environment but “progressively scan” the surrounding

space. Consequently, every 3D-point is measured from a

temporally unique frame. Directly dealing with the lidar

points of a scan as being expressed in a shared “scan frame”

is equivalent to consider the system static during the sweep.

This assumption is commonly made and causes what we

know as motion distortion (see Fig. 1). Ideally, each lidar

point should be considered as an independent measurement.

However, this produces a sensor with an extremely high data

rate. Not even the IMU data rate would suffice to characterise

motion at the frequency of the ranging measurements.

An additional problem that arises when dealing with multi-

sensor systems is the data synchronisation. The work in

[11] uses a continuous representation of the state based

on basis functions to temporally calibrate a group of sen-

sors. Motivated by this approach, we chose to continuously

model our inertial data, instead of the actual state. Gaussian

Process (GP) regression [18] is used to interpolate inertial

data addressing the issue of “low-frequency” IMU readings

compared to the high-frequency point acquisition of the lidar.

Another approach based on continuous-time state estima-

tion is presented in [19]. An efficient form of GP regression

is derived to characterise continuous-time trajectories from

discrete measurements. This way the state can be queried

at any arbitrary timestamp using GP inference. Although

appealing, this method cannot be directly applied to our

problem because an accurate trajectory cannot be estimated

using only IMU readings.

The main contribution of this work is the probabilistic for-

mulation to jointly calibrate and localise lidar-IMU systems.

Based on preintegrated measurements [20] over interpolated

IMU readings, our formulation provides a temporally precise

procedure to remove motion distortion from 3D-point clouds.

Each lidar point is reprojected in the first lidar frame where a

point-to-plane distance can be computed. An optimisation on

manifold is formulated to recover the calibration parameters

as well as the IMU poses, velocities, biases, and time-shift.

The remainder of the paper is as follows. Section II details

the development of our novel calibration-localisation frame-

work. Both front-end and back-end techniques are explained

here. Section III provides key-points of our implementation

while Section IV gives evidence of the proposed method

performance through simulated and real data experiments.

Conclusions and future work are presented in Section V.

II. METHOD

Let us consider a system with a rigidly mounted 3D

lidar and a 6-DoF IMU, where Rc and pc respectively

represent the relative rotation and translation between the

two sensors. Rc and pc are used to project lidar points to

the corresponding IMU frames as later shown in (7). The

ranging device moves in the environment and provides N

3D-points xi at time ti (i = 1, · · · , N ), grouped into M

scans. The inertial data include a 3-axis accelerometer and a

3-axis gyroscope, that provide respectively the raw readings

fq and ωq at time tq (q = 1, . . . , Q). Based on the first lidar

Im : Rm
W

vm
W

pm
W

C : Rc

pc

I0

I1 I2 Im IM

C

Fig. 2: Factor graph representation of the joint calibration and
localisation optimisation. The nodes Im represent the IMU poses
and velocities at time tm. The node C is the set of calibration
parameters. The lidar factor, represented by squares, account for
reprojected-point-to-target-plane distances. The black circles are the
IMU preintegrated factors. Biases and timeshift have been omitted
for the sake of readability.

scan, a map composed of P planes is built and considered

fixed. After the first scan, each lidar point is associated to one

of these planes. The plane associated to xi is characterised

by its normal unit vector ni and its distance wi to the origin.

There are only P possible distinct values for ni and wi, in

other words, if xi and xj belong to the same map plane,

ni = nj and wi = wj . To associate individual lidar points

with IMU readings, GP regression is used to independently

infer inertial readings on each IMU DoF at any given time

t: f̂(t) and ω̂(t).
The proposed method aims to estimate the calibration

parameters Rc and pc, as well as, the IMU biases, the

IMU orientation Rm
W , position pm

W and velocity vm
W per

lidar scan, and the time-shift δt between the two sensors.

The subscript W represents the earth-fixed world frame. The

superscript m denotes the mth scan from the lidar and τm
corresponds to the timestamp of the first lidar point in the mth

scan. In the following, S indicates the state to be estimated:

S = (Rc,pc, R0
W , · · · ,RM

W , p1
W , · · · ,pM

W , v0
W , · · · ,vM

W ,

b̂f , b̂ω , δ̂t) with b̂f , b̂ω , and δ̂t the biases and time-shift

corrections (more details are given in Section II-D). Note

that p0
W is not part of the state as one IMU position needs

to be set arbitrarily to define the world frame.

The calibration problem is formulated as a Maximum

Likelihood Estimation (MLE):

S∗ = argmin
S

− log(p(S|Z)) = argmin
S

F (S), (1)

with Z representing the available measurements and F

the optimisation cost function. Represented as the factor

graph in Fig. 2, and under the assumption of zero-mean

Gaussian noise, it can be solved by minimising the point-

to-plane distances di corresponding to the lidar factors and

the residuals rmI associated to the IMU factors. That is

F (S) =

M
∑

m=1

‖rmI ‖2Σrm
I

+

N
∑

i=1

‖di‖
2
Σdi

. (2)

The following notation is utilised in the rest of the paper:

• Σ• is the covariance matrix of the variable •.

• g is the known gravity vector in the earth-fixed world

frame.

• ∆tk = tk+1 − tk, ∆τm = τm+1 − τm and ∆ςim =
ti − τm.
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• Exp(.) is the exponential mapping from axis-angle

representations (so(3)) to rotation matrices (SO(3))1.

• Log(.) is the logarithmic mapping from rotation matri-

ces (SO(3)) to axis-angle representations (so(3))1.

In order to avoid repetitive integration when the lineari-

sation point changes, the proposed method utilises the IMU

preintegrated measurements defined in [1] and [20] as

∆pi
m =

i−1
∑

k=κ

∆vk
m∆tk +∆Rk

m(f(tk − δt)− bf )∆tk
2

∆vi
m =

i−1
∑

k=κ

∆Rk
m(f(tk − δt)− bf )∆tk

∆Ri
m =

i−1
∏

k=κ

Exp
(

(ω(tk − δt)− bω)∆tk
)

, (3)

with {κ ∈ N|tκ = τm}. Then

pi
W = pm

W +∆ςimvm
W +

1

2
∆ςim

2
g +Rm

W∆pi
m (4)

vi
W = vm

W +∆ςimg +Rm
W∆vi

m (5)

Ri
W = Rm

W∆Ri
m, (6)

where bf and bω are the accelerometer and gyroscope biases

respectively, and δt is the time-shift between the lidar and

IMU data. Note that both biases and time-shift are considered

as constant along the sequence of readings.

Sections II-A to II-D describe the method’s back-end.

The data association detailed in Section II-E represents our

method’s front-end.

A. Lidar factors

The reprojection error of the lidar points into the map,

defined by point-to-plane distances, is used in the lidar

factors. As a point xi is expressed in the lidar frame F i
L, it

needs to be reprojected in the first lidar frame F0
L according

to S and the IMU preintegrated measurements (Fig. 3).

First, xi is projected into the IMU frame F i
I

xi
I = Rcxi + pc. (7)

1The expressions for these mapping transformations can be found in [1].

Then with (4) and (6), xI
i is projected into the world frame

xi
W =Ri

WxI
i + pi

W , (8)

with τm ≤ ti < τm+1. Finally,

xi
L0

= Rc
⊤

(

R0
W

⊤(

xW
i − p0

W

)

− pc

)

(9)

expresses the point in F0
L. And the point-to-plane distances

di = ni
Txi

L0
+ wi (10)

for i = 1, · · · , N , are used as residuals.

B. IMU factors

The IMU factors can be seen as constraints on the IMU

poses and velocities. The associated residuals are obtained

directly by manipulating (4), (5), and (6):

rmp =Rm
W

⊤
(

pm+1
W − pm

W −∆τmvm
W −

∆τm
2

2
g
)

−∆pm+1
m

rmv =Rm
W

⊤
(

vm+1
W − vm

W −∆τmg
)

−∆vm+1
m

rmR =Log
(

∆Rm+1
m

⊤
Rm

W
⊤
Rm+1

W

)

and rmI = [rmR ; rmv ; rmp ]. (11)

C. Preintegration on upsampled IMU measurements

As per (8), the proposed method requires preintegrated

measurements ∆Ri
m, ∆vi

m, and ∆pi
m for each 3D-point.

Because the lidar points have a higher data rate than the

IMU, and because the sensors are not synchronised, we

need to interpolate the raw IMU readings fq and ωq . GP

regression [18] is used independently on each IMU’s DoF to

obtain f̂(t) and ω̂(t) at any time t. Constant mean functions

and isometric Matern covariance functions have been chosen

for our application. GP regression is not only useful for

estimating upsampled measurements with their associated

uncertainty, but also for filtering high-frequency noises from

the actual readings due to the chosen smooth kernel. The

six GPs are trained in temporal windows as the number of

inertial readings in a sequence can be very high.

This interpolation allows computation of synchronised

preintegrated measurements, as per (3), with very fine time

increments. The preintegrated measurements uncertainty is

calculated iteratively as derived in [21] (Section 1.1). Our

method uses timestamp-dependent, uncorrelated covariance

matrices built from the 6 independent GP-inferred variances

at given times. This is different from [21], where a constant

covariance matrix is used to represent the noise of the IMU

readings at any given time.

D. Biases and time-shift

The preintegration terms in (3) are pre-processed assuming

perfect knowledge of the biases and time-shift before any

optimisation. This assumption does not hold in general. To

address this problem, we adopted the first-order expansion

presented in [1] to include a bias correction into our method.
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We extended it to consider a variable time-shift. With bf =
b̄f + b̂f , bω = b̄ω + b̂ω , and δt = δ̄t+ δ̂t,

∆Ri
m(bω,δt) ≈∆Ri

m(b̄ω,δ̄t)Exp

(

∂∆Ri
m

∂bω

b̂ω

+
∂∆Ri

m

∂t
δ̂t

)

∆vi
m(bf ,bω,δt) ≈∆vi

m(b̄f ,b̄ω,δ̄t) +
∂∆vi

m

∂bf

b̂f

+
∂∆vi

m

∂bω

b̂ω +
∂∆vi

m

∂t
δ̂t

∆pi
m(bf ,bω,δt) ≈∆pi

m(b̄f ,b̄ω,δ̄t) +
∂∆pi

m

∂bf

b̂f

+
∂∆pi

m

∂bω

b̂ω +
∂∆pi

m

∂t
δ̂t,

(12)

Here •̄ denotes the prior knowledge of the value and •̂
represents the correction. The state to be estimated includes

b̂f , b̂ω , and δ̂t. The derivation of the bias-related Jacobians,

as an iterative calculation, can be found in [21]. The time-

shift Jacobians can be calculated numerically using a finite

difference method.

E. Plane segmentation and data association

The RANSAC-based plane-fitting algorithm [22] is used

at each lidar scan to detect the P planes that constitute the

calibration target. The distance-threshold between a plane

and an inlier point must be large enough to account for the

motion distortion and the sensor noise. It is assumed that

the sensors system is static during the first scan. This is to

ensure the accuracy of the plane equations that will form

the map of our joint calibration and localisation problem.

The point-to-plane data association is an iterative process

dealing with the normal vectors of the planes detected in two

consecutive scans. For a limited movement between scans,

a simple nearest neighbour search links the corresponding

planes together. We propose to use a room corner or a

building as a calibration target. Exploiting the map geometry

for a set of three near-orthogonal planes (Fig. 4), we reinforce

the tracking process by subtracting the centroid of the normal

vectors before looking for the nearest neighbour.

This iterative procedure relates each lidar point to one of

the map planes as shown in Fig. 5. We denote ni and wi

the parameters of the initial plane associated to the point xi.

Having the point-to-plane associations for each scan allows
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Fig. 5: Plane association in real data. The proposed method asso-
ciates lidar points from each scan to the map planes. The photo (c)
has been colourised to show the data association.

a rough estimation of the lidar poses assuming motionless

sweeps. Minimising

Rm
L0

∗
,pm

L0

∗ = argmin
Rm

L0
,pm

L0

̺
∑

i=κ

(

ni
⊤
(

Rm
L0
xi + pm

L0

)

+ wi

)2

(13)

with {κ, ̺ ∈ N|tκ = τm, t̺+1 = τm+1}, returns the lidar

pose expressed in the first lidar frame F0
L. This information

is used to compute the initial guess for the optimisation in

(2).

III. IMPLEMENTATION

A. Noise propagation on lidar factors

In standard MLE problems [23], the error function ex-

plicitly calculates the difference between the predicted mea-

surement at the current state estimate and the actual noisy

measurement. However, the proposed lidar factors’ point-to-

plane distance function is not bijective. Therefore we cannot

utilise an explicit measurement model that provides lidar and

IMU preintegrated measurements as a function of the state.

Consequently, di provides the implicit error function that

relates the state and the measurements.

To comply with the zero-mean Gaussian noise assumption

from our MLE framework, the noise on di is computed

by propagating the measurement uncertainties (Σxi
, Σ∆Ri

m
,

and Σ∆pi
m

) through the Jacobians of the reprojection chain

and the distance function. Therefore, Σdi
depends on the

state S . To prevent extensive Jacobian derivations and save

processing time, we assume that Σdi
is locally constant. We

first solve the problem with all the measurements covariance

matrices set to identity to provide a good initial guess for

the noise propagation and to reduce the global optimisation

time. In the end, the optimisation pipeline starts with this

rough estimation followed by refinement steps in which: Σdi

is computed with the state estimate from the previous step

and several optimisation iterations are executed.

B. Factor balance

Perfect knowledge of the IMU nodes provides very ac-

curate estimates of the calibration parameters. However,

wrongly fixed IMU poses affect the calibration accuracy

greatly. In practice, the IMU preintegrated measurements



uncertainty is very small compared to the point-to-plane

distance uncertainty. Therefore, if there are not enough points

per scan, the optimisation in (2) will trust the preintegrated

measurements between the IMU nodes over the lidar factors.

To a certain extent it is similar to use inexact fixed IMU

poses (as the preintegration measurements are not flawless:

measurements and integration noise). This leads to poor

calibration parameter estimates.

To “naturally balance” the optimisation problem, a large

number of points per scan would be needed. Commonly used

3D-lidars do not have the required density, and that number

of points would come along with prohibitive processing

times. On the other hand, lowering down the IMU fac-

tors importance reduces the observability of the calibration

parameters. We overcame this problem by independently

weighting the IMU residuals covariance matrices in (2):

F (S) =

M
∑

m=1

λR‖r
m
R ‖2Σrm

R

+λv‖r
m
v ‖2Σrmv

+λp‖r
m
p ‖2Σrmp

+
N
∑

i=1

‖di‖
2
Σdi

, (14)

with λ• empirically defined as 3×N×M−1×mean(Σ−1
di

)×
mean(tr(Σrm

•
)).

C. Other implementation choices

The optimisation problem was implemented using

Manopt’s trust-region solver [24]. This Matlab toolbox pro-

vides tools to implement non-linear optimisation on mani-

folds.

We used gpml toolbox [18] to upsample the IMU mea-

surements. The six GP models are trained on M temporal

windows as mentioned above. Each of these windows is

centred around one lidar scan with an overlap of half a lidar

scan period on both the previous and the next scan.

To shorten the processing time we also reduced the number

of points used in the optimisation by setting a maximum

number of points used per plane per scan (referred as pt/pl/sc

in the rest of the paper).

The lidar field-of-view has been reduced to ±45◦ as our

real system is hand-held. Thus, the person carrying the sensor

suite does not interfere with the lidar data.

IV. EXPERIMENTS AND RESULTS

To demonstrate the performance of the proposed method

and to confirm the rightfulness of the assumptions made,

experiments on simulated and real data have been conducted.

A. Simulation

The parameters of the simulated data used in this section

have been chosen to represent the real system used in Section

IV-B:

• 16-channel (±15◦) rotating lidar providing scans at

10Hz with a density of 240k point per second.

• 3-axis accelerometer and 3-axis gyroscope providing

readings at 100Hz.
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Fig. 6: Calibration accuracy for different noise configurations of
simulated data. IMU and lidar can be simulated with either no noise
or realistic noise.

• System motion built from sine functions between 0.2

and 0.53Hz with a peak-to-peak amplitude of ±12◦.

• Simulated sequences of 20 seconds.

In the following, the term realistic noise refers to the actual

specification of the sensor noise from the manufacturer

datasheets. The results are evaluated over a 10-runs Monte

Carlo simulation. The relative rotation Rci and translation

pci represent the calibration parameters obtained from the ith

run. The evaluation metrics are the mean error on translation

and rotation between the ground-truth and the estimated

calibration parameters:

eR =
1

10

10
∑

i=1

√

Log
(

Rc
∗

iR
GT
c

⊤
)⊤

Log
(

Rc
∗

iR
GT
c

⊤
)

,

ep =
1

10

10
∑

i=1

√

(pc
∗
i − pGT

c )⊤(pc
∗
i − pGT

c ) (15)

with the superscript GT representing the ground-truth values.

For convenience, in the rest of the paper, the metric eR is

converted into degrees.

1) Noise sensitivity: This set-up studies the impact that

different sensor noise combinations have on the overall

accuracy of the approach. In this set of experiments, each

device is either perfectly deterministic or contains realistic

noisy data, depending on the experiment. Fig. 6 presents the

results of the different combinations of noise. This figure

shows how the method loses much of its accuracy when

the lidar uncertainty is considered even if the IMU noise is

null. As a matter of fact, GP regression and high frequency

preintegration reduce the impact of the inertial noise on the

estimated calibration parameters.

2) Lidar noise sensitivity: This set-up aims to quantify the

lidar noise impact on the estimated calibration parameters.

These series of experiments have been run using different

values for the lidar’s range standard deviation. The results,

shown in Fig. 7, are obtained using 100pt/pl/sc. For small

standard deviation values, the curve suggests a linear rela-

tionship between the proposed method accuracy and the lidar

noise.

3) IMU pose sensitivity: This set-up aims to analyse the

factor balance by studying the impact of errors in the IMU

poses. As Rc and pc do not intervene in the IMU residuals,

strongly unbalanced factors (e.g. small IMU uncertainty with

small pt/pl/sc) is somewhat equivalent to have (almost) fixed
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Fig. 7: Calibration accuracy for different lidar noise amplitudes of
simulated data. In these experiments, the inertial data is simulated
with realistic noise.

Translational error ep (m) Rotational error eR (◦)
Normal motion Fast motion Normal motion Fast motion

(i) 5.7e−4 9.5e−4 0.016 0.013

(ii) 1.0e−2 7.97e−2 0.23 0.34

TABLE I: Calibration accuracy with exact known poses and noise-
free measurements. The model (i) uses the upsampled preintegrated
measurements whereas the model (ii) doesn’t.

IMU poses and velocities. We modified our framework to

consider the IMU poses and velocities as fixed (i.e. pm
W , vm

W ,

and Rm
W excluded from S). We compare two cases: one with

exact values and the other with approximate values of the

IMU poses and velocities. Both experiments used 100pt/pl/sc

and realistic noise for the range and inertial measurements.

In the first experiment, the ground-truth IMU poses and

velocities are used. The second experiment adds a relatively

small uniform noise to each ground-truth position, velocity,

and orientation axis: ±0.01m, ±0.01m/s, and ±1.15◦.

Perfect knowledge of the IMU poses and velocities allows

an accurate estimation of the calibration parameters with

ep = 0.0057m and eR = 0.02◦. However, a slight pertur-

bation in the IMU states produces large errors ep = 0.34m

and eR = 0.96◦ in the calibration, showing the need for

accurate estimation of the IMU nodes.

4) Upsampled-preintegrated measurements: This set-up

aims to demonstrate the importance of using the upsampled-

preintegrated measurements to correct the motion distortion.

These series of experiments have been run using fixed exact

values for the IMU poses and noise-free sensor data. Two

versions of our method are opposed: (i) uses the preintegrated

measurements as explained in the previous section, (ii) does

not. The values presented in Table I demonstrate better ac-

curacy when using upsampled preintegrated measurements.

We also highlight that without the upsampled preintegrated

measurements, the system accuracy severely suffers from

fast motion (normal motion has been described above, fast

motion differs only by its higher frequency: 1.53Hz).

B. Real data

The hardware used for the real data experiments comprises

a Velodyne VLP-16 and a Xsens MTi3 IMU (Fig. 8 top

left). ROS Xsens driver2 and the snark driver3 were used

2http://wiki.ros.org/xsens driver
3https://github.com/acfr/snark

LidarIMU

RGB-D
camera

Fig. 8: Top: Experimental set-up and room corner. The camera is not
used in the proposed method. Real data have been collected moving
the sensor suite approximately a meter away from the room corner.
Bottom left: Reprojection of lidar points in the camera image after
lidar-camera extrinsic calibration. Bottom right: Reprojection of the
lidar points through the chain lidar-IMU (proposed method), IMU-
camera.

to collect the IMU and lidar data respectively. Lidar points

and IMU measurements were logged with their associated

timestamps. Note that these experimental settings do not

ensure synchronisation between lidar and IMU data.

A 60-second dataset has been recorded moving the system

in front of a room corner (Fig. 8 top right). Particular

attention has been given to stimulate the three rotation-axis

of the sensing suite. Even though the recording included 577

scans, the optimisation used only 442 scans. This is due to

partial observations of the target, not leaving enough lidar

points on each plane for the plane segmentation to succeed.

Given the absence of a direct lidar-IMU calibration method

in the literature, we decided to benchmark our results

with a “chained” calibration: IMU-camera/camera-lidar. The

toolbox Kalibr [11] was used to estimate the IMU-camera

calibration. Although solutions for the camera-lidar calibra-

tion exist in the literature, [14] and [15], the low vertical

resolution of the VLP-16 makes very challenging the direct

use of these solutions. Instead, we opted for a straightforward

and simple implementation of a point-to-plane optimisation

across multiple lidar-camera static snapshots of a checker-

board. The checkerboard plane equations in the camera frame

were estimated thanks to the RADOCC toolbox [25].

The proposed lidar-IMU approach using 150pt/pl/sc esti-

mated Rc = [2.90 -1.11 179.9]◦ (Euler angles) and pc =
[-0.080 0.089 -0.053]m. The “chained” calibration computed

Rc = [1.85 -0.50 -179.3]◦ and pc = [-0.068 0.118 -0.034]m.

The difference between the two pipelines is summarised with

ep = 0.036m and eR = 1.45◦. The estimated mean linear

and angular velocities were respectively 0.7m/s and 26◦/s.

To provide a qualitative result, Fig. 8 (bottom) shows a

comparison of the projected lidar points into the camera

images using two different paths: direct lidar-camera and

chained lidar-IMU/IMU-camera transformations. These re-

sults show that the proposed method can provide accurate



extrinsic calibration with real data. It also demonstrates

the robustness of the calibration pipeline regarding partial

observation of the target and unsynchronised sensor readings.

Regarding the absence of ground-truth and the difference

between the two pipelines, it is difficult to draw strong

conclusions from this experiment. The reprojection image,

Fig. 8 (bottom left), shows a relatively accurate lidar-camera

calibration. Because the motion distortion phenomenon is

more pronounced in the lidar data than in the camera images

(the Realsense colour camera is a rolling-shutter, not a

global-shutter), the camera-IMU calibration is potentially

more precise than our lidar-IMU method. Nonetheless, even

though two different calibration results have been com-

pounded, Fig. 8 (bottom right) shows a relatively good

performance of the proposed method.

V. CONCLUSION

This paper proposes a novel extrinsic calibration frame-

work for 3D lidars and 6 DoF IMUs. This method models the

motion distortion in lidar point clouds using preintegration

over upsampled IMU readings. The spatial transformation

between the two asynchronous sensors and the IMU poses,

velocities, biases, and time-shift are jointly estimated by

minimising point-to-plane distances between reprojected 3D-

points and a set of planes that represents the calibration the

target. Our implementation with a hand-held sensing suite

uses a room corner as target. We conducted a range of

simulated experiments to analyse the impact of the sensor

noise on the calibration accuracy. On real data using a

low-cost IMU, our framework compares with a chained

calibration using a camera in the loop.

The proposed calibration procedure can easily be extended

to a lidar-IMU pair mounted under a UAV or on a vehicle.

For such systems, the calibration target could be the floor,

ceiling and walls (indoor or outdoor) of a warehouse or an

underground car park. Such systems could also benefit from

using the full field-of-view of the lidar.

Moreover, the approach also considers the use of Gaus-

sian process regression on IMU readings to provide high-

frequency preintegrated measurements. The interpolation-

preintegration pipeline could benefit other techniques such

as visual inertial navigation by filtering the raw data noise,

reducing the integration noise thanks to the artificially gen-

erated higher frequency, and, in general, for synchronising

other sensors’ measurements.

Future work includes a C++ implementation, with a solver

such as Ceres4, to speed-up the optimisation. Allowing the

use of more lidar points, our method would gain in accuracy

as the ranging noise is currently the largest source of error.

We are also interested in extending this work to a tripartite

extrinsic calibration including visual, ranging, and inertial

sensors in a single optimisation.
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