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Abstract— We consider the problem of dense depth prediction
from a sparse set of depth measurements and a single RGB
image. Since depth estimation from monocular images alone is
inherently ambiguous and unreliable, to attain a higher level of
robustness and accuracy, we introduce additional sparse depth
samples, which are either acquired with a low-resolution depth
sensor or computed via visual Simultaneous Localization and
Mapping (SLAM) algorithms. We propose the use of a single
deep regression network to learn directly from the RGB-D raw
data, and explore the impact of number of depth samples on
prediction accuracy. Our experiments show that, compared to
using only RGB images, the addition of 100 spatially random
depth samples reduces the prediction root-mean-square error
by 50% on the NYU-Depth-v2 indoor dataset. It also boosts
the percentage of reliable prediction from 59% to 92% on
the KITTI dataset. We demonstrate two applications of the
proposed algorithm: a plug-in module in SLAM to convert
sparse maps to dense maps, and super-resolution for LiDARs.
Software2 and video demonstration3 are publicly available.

I. INTRODUCTION

Depth sensing and estimation is of vital importance in
a wide range of engineering applications, such as robotics,
autonomous driving, augmented reality (AR) and 3D map-
ping. However, existing depth sensors, including LiDARs,
structured-light-based depth sensors, and stereo cameras, all
have their own limitations. For instance, the top-of-the-range
3D LiDARs are cost-prohibitive (with up to $75,000 cost per
unit), and yet provide only sparse measurements for distant
objects. Structured-light-based depth sensors (e.g. Kinect) are
sunlight-sensitive and power-consuming, with a short ranging
distance. Finally, stereo cameras require a large baseline and
careful calibration for accurate triangulation, which demands
large amount of computation and usually fails at featureless
regions. Because of these limitations, there has always been
a strong interest in depth estimation using a single camera,
which is small, low-cost, energy-efficient, and ubiquitous in
consumer electronic products.

However, the accuracy and reliability of such methods
is still far from being practical, despite over a decade
of research effort devoted to RGB-based depth prediction
including the recent improvements with deep learning ap-
proaches. For instance, the state-of-the-art RGB-based depth
prediction methods [1–3] produce an average error (measured
by the root mean squared error) of over 50cm in indoor
scenarios (e.g., on the NYU-Depth-v2 dataset [4]). Such

1F. Ma and S. Karaman are with the Laboratory for Information &
Decision Systems, Massachusetts Institute of Technology, Cambridge, MA,
USA. {fcma, sertac}@mit.edu

2https://github.com/fangchangma/sparse-to-dense
3https://www.youtube.com/watch?v=vNIIT_M7x7Y
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Fig. 1: We develop a deep regression model to predict dense
depth image from a single RGB image and a set of sparse
depth samples. Our method significantly outperforms RGB-
based and other fusion-based algorithms.

methods perform even worse outdoors, with at least 4 meters
of average error on Make3D and KITTI datasets [5, 6].

To address the potential fundamental limitations of RGB-
based depth estimation, we consider the utilization of sparse
depth measurements, along with RGB data, to reconstruct
depth in full resolution. Sparse depth measurements are
readily available in many applications. For instance, low-
resolution depth sensors (e.g., a low-cost LiDARs) provide
such measurements. Sparse depth measurements can also
be computed from the output of SLAM4 and visual-inertial
odometry algorithms. In this work, we demonstrate the
effectiveness of using sparse depth measurements, in addition
to the RGB images, as part of the input to the system.
We use a single convolutional neural network to learn a
deep regression model for depth image prediction. Our
experimental results show that the addition of as few as
100 depth samples reduces the root mean squared error by
over 50% on the NYU-Depth-v2 dataset, and boosts the
percentage of reliable prediction from 59% to 92% on the
more challenging KITTI outdoor dataset. In general, our
results show that the addition of a few sparse depth samples
drastically improves depth reconstruction performance. Our
quantitative results may help inform the development of

4A typical feature-based SLAM algorithm, such as ORB-SLAM [7],
keeps track of hundreds of 3D landmarks in each frame.
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sensors for future robotic vehicles and consumer devices.
The main contribution of this paper is a deep regression

model that takes both a sparse set of depth samples and RGB
images as input and predicts a full-resolution depth image.
The prediction accuracy of our method significantly outper-
forms state-of-the-art methods, including both RGB-based
and fusion-based techniques. Furthermore, we demonstrate
in experiments that our method can be used as a plug-in
module to sparse visual odometry / SLAM algorithms to
create an accurate, dense point cloud. In addition, we show
that our method can also be used in 3D LiDARs to create
much denser measurements.

II. RELATED WORK

RGB-based depth prediction Early works on depth
estimation using RGB images usually relied on hand-crafted
features and probabilistic graphical models. For instance,
Saxena et al. [8] estimated the absolute scales of different
image patches and inferred the depth image using a Markov
Random Field model. Non-parametric approaches [9–12]
were also exploited to estimate the depth of a query image
by combining the depths of images with similar photometric
content retrieved from a database.

Recently, deep learning has been successfully applied to
the depth estimation problem. Eigen et al. [13] suggest a
two-stack convolutional neural network (CNN), with one
predicting the global coarse scale and the other refining
local details. Eigen and Fergus [2] further incorporate other
auxiliary prediction tasks into the same architecture. Liu et al.
[1] combined a deep CNN and a continuous conditional
random field, and attained visually sharper transitions and
local details. Laina et al. [3] developed a deep residual
network based on the ResNet [14] and achieved higher
accuracy than [1, 2]. Semi-supervised [15] and unsupervised
learning [16–18] setups have also been explored for disparity
image prediction. For instance, Godard et al. [18] formulated
disparity estimation as an image reconstruction problem,
where neural networks were trained to warp left images to
match the right.

Depth reconstruction from sparse samples Another line
of related work is depth reconstruction from sparse samples.
A common ground of many approaches in this area is the
use of sparse representations for depth signals. For instance,
Hawe et al. [19] assumed that disparity maps were sparse
on the Wavelet basis and reconstructed a dense disparity
image with a conjugate sub-gradient method. Liu et al.
[20] combined wavelet and contourlet dictionaries for more
accurate reconstruction. Our previous work on sparse depth
sensing [21, 22] exploited the sparsity underlying the second-
order derivatives of depth images, and outperformed both
[1, 19] in reconstruction accuracy and speed.

Sensor fusion A wide range of techniques attempted to
improve depth prediction by fusing additional information
from different sensor modalities. For instance, Mancini et al.
[23] proposed a CNN that took both RGB images and
optical flow images as input to predict distance. Liao et al.
[24] studied the use of a 2D laser scanner mounted on

a mobile ground robot to provide an additional reference
depth signal as input and obtained higher accuracy than
using RGB images alone. Compared to the approach by Liao
et al. [24], this work makes no assumption regarding the
orientation or position of sensors, nor the spatial distribution
of input depth samples in the pixel space. Cadena et al. [25]
developed a multi-modal auto-encoder to learn from three
input modalities, including RGB, depth, and semantic labels.
In their experiments, Cadena et al. [25] used sparse depth
on extracted FAST corner features as part of the input to the
system to produce a low-resolution depth prediction. The
accuracy was comparable to using RGB alone. In compari-
son, our method predicts a full-resolution depth image, learns
a better cross-modality representation for RGB and sparse
depth, and attains a significantly higher accuracy.

III. METHODOLOGY

In this section, we describe the architecture of the convo-
lutional neural network. We also discuss the depth sampling
strategy, the data augmentation techniques, and the loss
functions used for training.

A. CNN Architecture

We found in our experiments that many bottleneck archi-
tectures (with an encoder and a decoder) could result in good
performance. We chose the final structure based on [3] for
the sake of benchmarking, because it achieved state-of-the-
art accuracy in RGB-based depth prediction. The network is
tailed to our problem with input data of different modalities,
sizes and dimensions. We use two different networks for
KITTI and NYU-Depth-v2. This is because the KITTI image
is triple the size of NYU-Depth-v2 and consequently the
same architecture would require 3 times of GPU memory,
exceeding the current hardware capacity. The final structure
is illustrated in Figure 2.

The feature extraction (encoding) layers of the network,
highlighted in blue, consist of a ResNet [14] followed by a
convolution layer. More specifically, the ResNet-18 is used
for KITTI, and ResNet-50 is used for NYU-Depth-v2. The
last average pooling layer and linear transformation layer
of the original ResNet have been removed. The second
component of the encoding structure, the convolution layer,
has a kernel size of 3-by-3.

The decoding layers, highlighted in yellow, are composed
of 4 upsampling layers followed by a bilinear upsampling
layer. We use the UpProj module proposed by Laina et al.
[3] as our upsampling layer, but a deconvolution with larger
kernel size can also achieve the same level of accuracy.
An empirical comparison of different upsampling layers is
shown in Section V-A.

B. Depth Sampling

In this section, we introduce the sampling strategy for
creating the input sparse depth image from the ground truth.

During training, the input sparse depth D is sampled
randomly from the ground truth depth image D∗ on the fly.
In particular, for any targeted number of depth samples m



Fig. 2: CNN architecture for NYU-Depth-v2 and KITTI datasets, respectively. Cubes are feature maps, with dimensions
represented as #features@height×width. The encoding layers in blue consist of a ResNet [14] and a 3×3 convolution. The
decoding layers in yellow are composed of 4 upsampling layers (UpProj) followed by a bilinear upsampling.

(fixed during training), we compute a Bernoulli probability
p = m

n , where n is the total number of valid depth pixels in
D∗. Then, for any pixel (i, j),

D(i, j) =

{
D∗(i, j), with probability p
0, otherwise

(1)

With this sampling strategy, the actual number of non-
zero depth pixels varies for each training sample around the
expectation m. Note that this sampling strategy is different
from dropout [26], which scales up the output by 1/p during
training to compensate for deactivated neurons. The purpose
of our sampling strategy is to increase robustness of the
network against different number of inputs and to create
more training data (i.e., a data augmentation technique). It
is worth exploring how injection of random noise and a
different sampling strategy (e.g., feature points) would affect
the performance of the network.

C. Data Augmentation

We augment the training data in an online manner with
random transformations, including

• Scale: color images are scaled by a random number
s ∈ [1, 1.5], and depths are divided by s.

• Rotation: color and depths are both rotated with a
random degree r ∈ [−5, 5].

• Color Jitter: the brightness, contrast, and saturation of
color images are each scaled by ki ∈ [0.6, 1.4].

• Color Normalization: RGB is normalized through mean
subtraction and division by standard deviation.

• Flips: color and depths are both horizontally flipped
with a 50% chance.

Nearest neighbor interpolation, rather than the more com-
mon bi-linear or bi-cubic interpolation, is used in both
scaling and rotation to avoid creating spurious sparse depth
points. We take the center crop from the augmented image
so that the input size to the network is consistent.

D. Loss Function

One common and default choice of loss function for
regression problems is the mean squared error (L2). L2 is
sensitive to outliers in the training data since it penalizes

more heavily on larger errors. During our experiments we
found that the L2 loss function also yields visually undesir-
able, over-smooth boundaries instead of sharp transitions.

Another common choice is the Reversed Huber (denoted
as berHu) loss function [27], defined as

B(e) =

{
|e|, if |e| ≤ c
e2+c2

2c , otherwise
(2)

[3] uses a batch-dependent parameter c, computed as 20%
of the maximum absolute error over all pixels in a batch.
Intuitively, berHu acts as the mean absolute error (L1)
when the element-wise error falls below c, and behaves
approximately as L2 when the error exceeds c.

In our experiments, besides the aforementioned two loss
functions, we also tested L1 and found that it produced
slightly better results on the RGB-based depth prediction
problem. The empirical comparison is shown in Section V-
A. As a result, we use L1 as our default choice throughout
the paper for its simplicity and performance.

IV. EXPERIMENTS

We implement the network using Torch [28]. Our models
are trained on the NYU-Depth-v2 and KITTI odometry
datasets using a NVIDIA Tesla P100 GPU with 16GB
memory. The weights of the ResNet in the encoding layers
(except for the first layer which has different number of
input channels) are initialized with models pretrained on the
ImageNet dataset [29]. We use a small batch size of 16 and
train for 20 epochs. The learning rate starts at 0.01, and is
reduced to 20% every 5 epochs. A small weight decay of
10−4 is applied for regularization.

A. The NYU-Depth-v2 Dataset

The NYU-Depth-v2 dataset [4] consists of RGB and depth
images collected from 464 different indoor scenes with a
Microsoft Kinect. We use the official split of data, where
249 scenes are used for training and the remaining 215 for
testing. In particular, for the sake of benchmarking, the small
labeled test dataset with 654 images is used for evaluating
the final performance, as seen in previous work [3, 13].

For training, we sample spatially evenly from each raw
video sequence from the training dataset, generating roughly



48k synchronized depth-RGB image pairs. The depth values
are projected onto the RGB image and in-painted with a
cross-bilateral filter using the official toolbox. Following [3,
13], the original frames of size 640×480 are first down-
sampled to half and then center-cropped, producing a final
size of 304×228.

B. The KITTI Odometry Dataset

In this work we use the odometry dataset, which includes
both camera and LiDAR measurements . The odometry
dataset consists of 22 sequences. Among them, one half is
used for training while the other half is for evaluation. We
use all 46k images from the training sequences for training
the neural network, and a random subset of 3200 images
from the test sequences for the final evaluation.

We use both left and right RGB cameras as unassociated
shots. The Velodyne LiDAR measurements are projected
onto the RGB images. Only the bottom crop (912×228) is
used, since the LiDAR returns no measurement to the upper
part of the images. Compared with NYU-Depth-v2, even the
ground truth is sparse for KITTI, typically with only 18k
projected measurements out of the 208k image pixels.

C. Error Metrics

We evaluate each method using the following metrics:

• RMSE: root mean squared error
• REL: mean absolute relative error
• δi: percentage of predicted pixels where the relative

error is within a threshold. Specifically,

δi =
card

({
ŷi : max

{
ŷi

yi
, yi

ŷi

}
< 1.25i

})
card ({yi})

,

where yi and ŷi are respectively the ground truth and
the prediction, and card is the cardinality of a set. A
higher δi indicates better prediction.

V. RESULTS

In this section we present all experimental results. First,
we evaluate the performance of our proposed method with
different loss functions and network components on the
prediction accuracy in Section V-A. Second, we compare
the proposed method with state-of-the-art methods on both
the NYU-Depth-v2 and the KITTI datasets in Section V-B.
Third, In Section V-C, we explore the impact of number
of sparse depth samples on the performance. Finally, in
Section V-D and Section V-E, we demonstrate two use
cases of our proposed algorithm in creating dense maps and
LiDAR super-resolution.

A. Architecture Evaluation

In this section we present an empirical study on the impact
of different loss functions and network components on the
depth prediction accuracy. The results are listed in Table I.

Problem Loss Encoder Decoder RMSE REL δ1 δ2 δ3

RGB L2 Conv DeConv2 0.610 0.185 71.8 93.4 98.3
berHu Conv DeConv2 0.554 0.163 77.5 94.8 98.7
L1 Conv DeConv2 0.552 0.159 77.5 95.0 98.7

Conv DeConv3 0.533 0.151 79.0 95.4 98.8
Conv UpConv 0.529 0.149 79.4 95.5 98.9
Conv UpProj 0.528 0.144 80.3 95.2 98.7

RGBd L1 ChanDrop UpProj 0.361 0.105 90.8 98.4 99.6
DepthWise UpProj 0.261 0.054 96.2 99.2 99.7

Conv UpProj 0.264 0.053 96.1 99.2 99.8

TABLE I: Evaluation of loss functions, upsampling layers
and the first convolution layer. RGBd has an average sparse
depth input of 100 samples. (a) comparison of loss functions
is listed in Row 1 - 3; (b) comparison of upsampling layers
is in Row 2 - 4; (c) comparison of the first convolution layers
is in the 3 bottom rows.

1) Loss Functions: To compare the loss functions we use
the same network architecture, where the upsampling layers
are simple deconvolution with a 2×2 kernel (denoted as
DeConv2). L2, berHu and L1 loss functions are listed in
the first three rows in Table I for comparison. As shown in
the table, both berHu and L1 significantly outperform L2.
In addition, L1 produces slightly better results than berHu.
Therefore, we use L1 as our default choice of loss function.

2) Upsampling Layers: We perform an empirical evalua-
tion of different upsampling layers, including deconvolution
with kernels of different sizes (DeConv2 and DeConv3), as
well as the UpConv and UpProj modules proposed by Laina
et al. [3]. The results are listed from row 3 to 6 in Table I.

We make several observations. Firstly, deconvolution with
a 3×3 kernel (i.e., DeConv3) outperforms the same compo-
nent with only a 2×2 kernel (i.e., DeConv2) in every single
metric. Secondly, since both DeConv3 and UpConv have
a receptive field of 3×3 (meaning each output neuron is
computed from a neighborhood of 9 input neurons), they
have comparable performance. Thirdly, with an even larger
receptive field of 4×4, the UpProj module outperforms the
others. We choose to use UpProj as a default choice.

3) First Convolution Layer: Since our RGBd input data
comes from different sensing modalities, its 4 input channels
(R, G, B, and depth) have vastly different distributions
and support. We perform a simple analysis on the first
convolution layer and explore three different options.

The first option is the regular spatial convolution (Conv).
The second option is depthwise separable convolution (de-
noted as DepthWise), which consists of a spatial convolution
performed independently on each input channel, followed
by a pointwise convolution across different channels with
a window size of 1. The third choice is channel dropout
(denoted as ChanDrop), through which each input channel
is preserved as is with some probability p, and zeroed out
with probability 1− p.

The bottom 3 rows compare the results from the 3 options.
The networks are trained using RGBd input with an average
of 100 sparse input samples. DepthWise and Conv yield
very similar results, and both significantly outperform the
ChanDrop layer. Since the difference is small, for the sake



of comparison consistency, we will use the convolution layer
for all experiments.

B. Comparison with the State-of-the-Art

In this section, we compare with existing methods.
1) NYU-Depth-v2 Dataset: We compare with RGB-based

approaches [3, 13, 30], as well as the fusion approach [24]
that utilizes an additional 2D laser scanner mounted on a
ground robot. The quantitative results are listed in Table II.

Problem #Samples Method RMSE REL δ1 δ2 δ3

RGB 0 Roy et al. [30] 0.744 0.187 - - -
0 Eigen et al. [2] 0.641 0.158 76.9 95.0 98.8
0 Laina et al. [3] 0.573 0.127 81.1 95.3 98.8
0 Ours-RGB 0.514 0.143 81.0 95.9 98.9

sd 20 Ours-sd 0.461 0.110 87.2 96.1 98.8
50 Ours-sd 0.347 0.076 92.8 98.2 99.5
200 Ours-sd 0.259 0.054 96.3 99.2 99.8

RGBd 225 Liao et al. [24] 0.442 0.104 87.8 96.4 98.9
20 Ours-RGBd 0.351 0.078 92.8 98.4 99.6
50 Ours-RGBd 0.281 0.059 95.5 99.0 99.7
200 Ours-RGBd 0.230 0.044 97.1 99.4 99.8

TABLE II: Comparison with state-of-the-art on the NYU-
Depth-v2 dataset. The values are those originally reported
by the authors in their respective paper

Our first observation from Row 2 and Row 3 is that, with
the same network architecture, we can achieve a slightly
better result (albeit higher REL) by replacing the berHu
loss function proposed in [3] with a simple L1. Secondly,
by comparing problem group RGB (Row 3) and problem
group sd (e.g., Row 4), we draw the conclusion that an
extremely small set of 20 sparse depth samples (without color
information) already produces significantly better predictions
than using RGB. Thirdly, by comparing problem group sd
and proble group RGBd row by row with the same number
of samples, it is clear that the color information does
help improve the prediction accuracy. In other words, our
proposed method is able to learn a suitable representation
from both the RGB images and the sparse depth images.
Finally, we compare against [24] (bottom row). Our proposed
method, even using only 100 samples, outperforms [24] with
225 laser measurements. This is because our samples are
spatially uniform, and thus provides more information than
a line measurement. A few examples of our predictions with
different inputs are displayed in Figure 3.

2) KITTI Dataset: The KITTI dataset is more challenging
for depth prediction, since the maximum distance is 100
meters as opposed to only 10 meters in the NYU-Depth-v2
dataset. A greater performance boost can be obtained from
using our approach. Although the training and test data are
not the same across different methods, the scenes are similar
in the sense that they all come from the same sensor setup on
a car and the data were collected during driving. We report
the values from each work in Table III.

The results in the first RGB group demonstrate that RGB-
based depth prediction methods fail in outdoor scenarios,
with a pixel-wise RMSE of close to 7 meters. Note that we

(a)

(b)

(c)

(d)

(e)

Fig. 3: Predictions on NYU-Depth-v2. From top to bottom:
(a) rgb images; (b) RGB-based prediction; (c) sd prediction
with 200 and no rgb; (d) RGBd prediction with 200 sparse
depth and rgb; (e) ground truth depth.

Problem #Samples Method RMSE REL δ1 δ2 δ3

RGB 0 Make3D [3] 8.734 0.280 60.1 82.0 92.6
0 Mancini [23] 7.508 - 31.8 61.7 81.3
0 Eigen et al. [13] 7.156 0.190 69.2 89.9 96.7
0 Ours-RGB 6.266 0.208 59.1 90.0 96.2

RGBd ∼650 full-MAE [25] 7.14 0.179 70.9 88.8 95.6
50 Ours-RGBd 4.884 0.109 87.1 95.2 97.9

225 Liao et al. [24] 4.50 0.113 87.4 96.0 98.4
100 Ours-RGBd 4.303 0.095 90.0 96.3 98.3
200 Ours-RGBd 3.851 0.083 91.9 97.0 98.6
500 Ours-RGBd 3.378 0.073 93.5 97.6 98.9

TABLE III: Comparison with state-of-the-art on the KITTI
dataset. The Make3D values are those reported in [13]

use sparsely labeled depth image projected from LiDAR, in-
stead of dense disparity maps computed from stereo cameras
as in [13]. In other words, we have a much smaller training
dataset compared with [13, 23].

An additional 500 depth samples bring the RMSE to 3.3
meters, a half of the RGB approach, and boosts δ1 from only
59.1% to 93.5%. Our performance also compares favorably
to other fusion techniques including [24, 25], and at the same
time demands fewer samples.

C. On Number of Depth Samples

In this section, we explore the relation between the pre-
diction accuracy and the number of available depth samples.
We train a network for each different input size for optimal



(a)
color

(b)
sparse
input
depth

(c)
RGBd-

500

(d)
ground
truth

Fig. 4: Example of prediction on KITTI. From top to bottom:
(a) RGB; (b) sparse depth; (c) RGBd dense prediction; (d)
ground truth depth projected from LiDAR.

performance. We compare the performance for all three
kinds of input data, including RGB, sd, and RGBd. The
performance of RGB-based depth prediction is independent
of input sample size and is thus plotted as a horizontal line
for benchmarking.
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Fig. 5: Impact of number of depth sample on the prediction
accuracy on the NYU-Depth-v2 dataset. Left column: lower
is better; right column: higher is better.

On the NYU-Depth-v2 dataset in Figure 5, the RGBd
outperforms RGB with over 10 depth samples and the per-
formance gap quickly increases with the number of samples.
With a set of 100 samples, the RMSE of RGBd decreases to
around 25cm, half of RGB (51cm). The REL sees a larger
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Fig. 6: Impact of number of depth sample on the prediction
accuracy on the KITTI dataset. Left column: lower is better;
right column: higher is better.

improvement (from 0.15 to 0.05, reduced by two thirds). On
one hand, the RGBd approach consistently outperforms sd,
which indicates that the learned model is indeed able to ex-
tract information not only from the sparse samples alone, but
also from the colors. On the other hand, the performance gap
between RGBd and sd shrinks as the sample size increases.
Both approaches perform equally well when sample size goes
up to 1000, which accounts for less than 1.5% of the image
pixels and is still a small number compared with the image
size. This observation indicates that the information extracted
from the sparse sample set dominates the prediction when the
sample size is sufficiently large, and in this case the color
cue becomes almost irrelevant.

The performance gain on the KITTI dataset is almost
identical to NYU-Depth-v2, as shown in Figure 6. With 100
samples the RMSE of RGBd decreases from 7 meters to a
half, 3.5 meters. This is the same percentage of improvement
as on the NYU-Depth-v2 dataset. Similarly, the REL is
reduced from 0.21 to 0.07, again the same percentage of
improvement as the NYU-Depth-v2.

On both datasets, the accuracy saturates as the number
of depth samples increases. Additionally, the prediction has
blurry boundaries even with many depth samples (see Fig-
ure 8). We believe both phenomena can be attributed to the
fact that fine details are lost in bottleneck network architec-
tures. It remains further study if additional skip connections
from encoders to decoders help improve performance.

D. Application: Dense Map from Visual Odometry Features

In this section, we demonstrate a use case of our proposed
method in sparse visual SLAM and visual inertial odometry
(VIO). The best-performing algorithms for SLAM and VIO



are usually sparse methods, which represent the environment
with sparse 3D landmarks. Although sparse SLAM/VIO
algorithms are robust and efficient, the output map is in
the form of sparse point clouds and is not useful for other
applications (e.g. motion planning).

(a) RGB (b) sparse landmarks

(c) ground truth map (d) prediction

Fig. 7: Application in sparse SLAM and visual inertial
odometry (VIO) to create dense point clouds from sparse
landmarks. (a) RGB (b) sparse landmarks (c) ground truth
point cloud (d) prediction point cloud, created by stitching
RGBd predictions from each frame.

To demonstrate the effectiveness of our proposed methods,
we implement a simple visual odometry (VO) algorithm
with data from one of the test scenes in the NYU-Depth-
v2 dataset. For simplicity, the absolute scale is derived
from ground truth depth image of the first frame. The 3D
landmarks produced by VO are back-projected onto the RGB
image space to create a sparse depth image. We use both
RGB and sparse depth images as input for prediction. Only
pixels within a trusted region, which we define as the convex
hull on the pixel space formed by the input sparse depth
samples, are preserved since they are well constrained and
thus more reliable. Dense point clouds are then reconstructed
from these reliable predictions, and are stitched together
using the trajectory estimation from VIO.

The results are displayed in Figure 7. The prediction map
resembles closely to the ground truth map, and is much
denser than the sparse point cloud from VO. The major
difference between our prediction and the ground truth is
that the prediction map has few points on the white wall,
where no feature is extracted or tracked by the VO. As a
result, pixels corresponding to the white walls fall outside
the trusted region and are thus removed.

Fig. 8: Application to LiDAR super-resolution, creating
denser point cloud than the raw measurements. From top
to bottom: RGB, raw depth, and predicted depth. Distant
cars are almost invisible in the raw depth, but are easily
recognizable in the predicted depth.

E. Application: LiDAR Super-Resolution

We present another demonstration of our method in super-
resolution of LiDAR measurements. 3D LiDARs have a low
vertical angular resolution and thus generate a vertically
sparse point cloud. We use all measurements in the sparse
depth image and RGB images as input to our network. The
average REL is 4.9%, as compared to 20.8% when using
only RGB. An example is shown in Figure 8. Cars are much
more recognizable in the prediction than in the raw scans.

VI. CONCLUSION

We introduced a new depth prediction method for pre-
dicting dense depth images from both RGB images and
sparse depth images, which is well suited for sensor fu-
sion and sparse SLAM. We demonstrated that this method
significantly outperforms depth prediction using only RGB
images, and other existing RGB-D fusion techniques. This
method can be used as a plug-in module in sparse SLAM
and visual inertial odometry algorithms, as well as in super-
resolution of LiDAR measurements. We believe that this new
method opens up an important avenue for research into RGB-
D learning and the more general 3D perception problems,
which might benefit substantially from sparse depth samples.
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