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Abstract— When a space robot accidentally or voluntarily
comes in contact with a target object, a workspace shift happens
due to exchange of momentum between the objects. The
problem of workspace adjustment is addressed herein. A novel
controller is derived to simultaneously adjust the workspace
and control the end-effector pose. The controller is based on a
center-of-mass (CoM) regulation which fixes the workspace in
the inertial space while leaving the base free to move, resulting
in fuel efficiency. The control is validated on hardware using a
robotic simulator composed of a seven degree-of-freedom (DOF)
arm mounted on a 6DOF moving base.

I. INTRODUCTION

The design of efficient control strategies for space robots
is a key point for a sustainable development of orbital
robotic systems. Improved coordination of satellite-arm mo-
tion would reduce fuel consumption of such systems, thus
increasing the operational life or equivalently, decreasing the
launch weight due to fuel load. The search for efficient space
robot control systems in the past has led to the concept of
free-floating robot, for which the satellite base is left free
to move during robot maneuvers. According to this strategy,
the satellite thrusters are completely turned off to conserve
precious, nonrenewable fuel [1], [2].

Today, some limitations of a completely free-floating ap-
proach are recognized [3],[4],[5],[6]. Namely, any voluntary
or accidental contact induces an inertial drift in the free-
floating system with respect to the given target location.
This risky situation can only be recovered by using external
actuators to stop the drift and restore the proper robot-target
location. For this purpose, in [5], the robot-target position is
restored using a switching strategy. The robot is first operated
in free-floating mode to achieve a desired impedance on the
end-effector. Then the drift in the base-target position due to
the contact is stopped by switching to a base position control
strategy, which brings the base back to the desired position.
A drawback of this approach is that, because the drift is
relatively fast even for small contact forces, the strategy
would require very frequent switching between controllers.
In [3] a momentum-dumping strategy was derived to remove
linear and angular drift. The inertial drift is stopped by dump-
ing the accumulated momentum using external actuators.
By exploiting the triangular structure of the momentum-arm
dynamics highlighted therein, momentum dumping and end-
effector control are accomplished simultaneously, thereby
avoiding controller switching.
The strategy in [3] is effective for stabilizing the motion but
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Fig. 1. Rendered workspace of multiple contacts experiment. The system
CoM moves after each impulse and the target satellite exits the robot
workspace.
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Fig. 2. Snapshot sequence of a space robot in response to repeated contacts
with momentum dumping but without CoM control.

does not fix the inertial position of the space robot. After
each impulse the robot converges to an inertial position that
is farther from the target. Thus, after repeated contacts a
repositioning maneuver is needed to recover the workspace.
This situation is exemplified in Figs. 1 and 2. A solution to
such behavior would be not only to stop the inertial drift, but
also to stabilize the inertial location of the workspace while
the manipulator operates. Since the maximum reachable
workspace is centered at the CoM of the whole system [7],
controlling this point around a suitable position would guar-
antee that the target object always remains in the reachable
workspace while the manipulator operates. Additionally, this



would result in a fuel efficient strategy. In fact, for all robot
operations not involving contacts, the consumption of the
CoM control would ideally be zero. When contacts happen,
fuel would be consumed only to stop the inertial drift and
restore the proper CoM location, leaving the floating-base
behavior of the system unaltered.

In this paper, the momentum approach in [3] is further
extended to additionally stabilize the workspace around a de-
sired inertial location in an efficient way. First, the triangular
momentum-effector dynamics in [3] is developed to further
detail, then a new unified controller is derived to simul-
taneously regulate the end-effector, dump any accumulated
angular momentum, and stabilize the CoM location. Finally,
the controller is validated via experiments on a facility
consisting of a redundant torque-controlled robot mounted
on a satellite robotic simulator. The paper is structured as
follows: Section II introduces the notation and the main space
robot equations. Section III derives a triangular form for
the CoM, momentum and end-effector dynamics. Section IV
presents the proposed controller and addresses the stability.
The experimental results are given in Section V.

II. PRELIMINARIES

A. Problem statement

A serial-link space robot composed of n + 1 bodies is
considered, where n is the number of joints of the arm. A
generalized force wb ∈ R6 is exerted on the robot base by
satellite actuators. No orbital or environmental disturbances
are considered, because they are considerably less than the
actuation forces.

The operational scenario is one of capturing or manip-
ulating a target object in orbit in the presence of motion
or geometrical uncertainties. In this situation, accidental or
voluntary contact may occur between end-effector and target.
This would transfer momentum and accordingly create a drift
between the robot and the target which would compromise
the operations. Assuming that the target object is stationary
in the inertial space, the problem is to command the robot
end-effector to reach a desired pose in the inertial space while
simultaneously ensuring no drift and maintaining a favorable
relative position between robot and target.

B. Main notation

The body frame of the satellite around its CoM is denoted
by B, E is the end-effector frame, T is a target frame fixed
in the inertial space, and C is a frame with nonrotating axes
placed on the CoM of the whole system. We use the so-called
Adjoint transformation [8], which is defined as

Axy =

[
Rxy [pxy]∧Rxy

0 Rxy

]
∈ R6×6, (1)

where pxy ∈ R3 and Rxy ∈ R3×3 generically indicate the
position vector and the rotation matrix from a frame X to a
frame Y , respectively. The operator [ · ]∧ indicates the skew-
symmetric matrix of the vector argument. The symbols 0 and
E are respectively the zero and identity matrices of suitable
dimensions.

C. Kinematics and dynamics

The dynamics of the space robot [2], [9] is described by Mt Mtr Mtm

MT
tr Mr Mrm

MT
tm MT

rm Mm


︸ ︷︷ ︸

M(q)

v̇bω̇b
q̈

+

+

 Ct Ctr Ctm
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
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C(q,vb,ωb,q̇)

vbωb
q̇

 =

fbτb
τ

 (2)

where vb,ωb ∈ R3 are the base linear and angular velocity
in body frame; q ∈ Tn are the joint angles1; q̇ ∈ Rn are the
joint velocities; fb, τb ∈ R3 are the base force and torque
in body frame; τ ∈ Rn are the joint torques; Mm ∈ Rn×n
is the inertia matrix of the manipulator; and Mt ∈ R3×3,
Mtr ∈ R3×3, Mtm ∈ R3×n, Mrm ∈ R3×n are defined in
Appendix VII.
The end-effector body velocity νe ∈ R6 is given by

νe = Aeb(q)

[
vb
ωb

]
+ Jm(q)q̇, (3)

where Jm(q) ∈ R6×n is the manipulator Jacobian. Hence-
forth the functional dependence is dropped out. Denoting
with hb ∈ R6 the total generalized momentum around B,
this can be written as

hb =

[
Mt Mtr

MT
tr Mr

]
︸ ︷︷ ︸

Mb

[
vb
ωb

]
+

[
Mtm

Mrm

]
︸ ︷︷ ︸

Mbm

q̇. (4)

The total momentum h ∈ R6 around C is then found as
h = A−Tcb hb, which results in

h =

[
ht
hr

]
=

[
mRcb −mRcb[pbc]

∧ mRcbJ̄v
0 IcRcb IcRcbJ̄ω

]vbωb
q̇

 ,
(5)

where pbc and J̄v, J̄ω ∈ R3×n are given in Appendix VII
and where m, Ic are respectively the mass and the rotational
inertia around C of the whole body. In the following section
a task space is defined and an advantageous task space
dynamics is obtained thanks to the inherent decoupling
properties of the momentum.

III. TRIANGULAR DYNAMICS

In [3] the motion of the floating multibody system was
decomposed into an internal end-effector motion due to the
joints and an external motion of the whole system floating in
the inertial space. This was done by introducing the concept
of end-effector internal velocity

νe,int = J∗mq̇ ∈ R6, (6)

where J∗m = Jm − AebM
−1
b Mbm ∈ R6×n is the well-

known generalized Jacobian of the end-effector. Inserting

1Tn = S× · · · × S︸ ︷︷ ︸
n

is the n-torus.



h = A−Tcb hb and (4) into (3) and further using (6), the
absolute end-effector velocity can be expressed as

νe = νe,int +AebM
−1
b AT

cbh. (7)

Notice that in the literature h = 0 is normally assumed,
leading to νe = νe,int. However, here h 6= 0, so in general
νe 6= νe,int.
Let us assume now for the sake of simplicity and without
loss of generality that the manipulator is nonredundant, i.e.
n = 6. In [3] it was shown that transforming the dynamics
(2) to a new task space vnew =

[
hT νTe,int

]T
, the resulting

momentum/effector dynamics can be put in triangular form:

ḣ = wc, (8a)
M∗

e ν̇e,int +C∗eνe,int +Cehh = we,int, (8b)

where M∗
e =

(
J∗mM

∗−1
m J∗Tm

)−1 ∈ R6×6 with M∗
m =

Mm − MT
bmM

−1
b Mbm ∈ Rn×n, and where wc ∈ R6,

we,int ∈ R6 are new control inputs2, namely the net
centroidal wrench and end-effector internal wrench, respec-
tively. This form has the special property of enabling the
design of controllers in a cascade fashion, using wc to stabi-
lize the global motion and we,int to control the end-effector.
Here we aim at developing a similar cascade structure to
control the CoM, to stabilize the net angular motion and to
control the end-effector. Toward this end, the same procedure
as in [3] will be applied to obtain a triangular form using a
new task space vnew =

[
vTc hTr νTe,int

]T
.

A. CoM, angular momentum end-effector dynamics

The CoM velocity is related to the linear momentum by

vc =
1

m
ht. (9)

Based on (9), a transformation Γ ∈ R12×(6+n) can defined
as  vc

hr
νe,int

 =

Rcb −Rcb[pbc]
∧ RcbJ̄v

0 ICRcb ICRcbJ̄ω
0 0 J∗m


︸ ︷︷ ︸

Γ

vbωb
q̇

 ,
(10)

where (5),(6) and (9) have been used. The generalized forces
transform as fbτb

τ

 = ΓT

 fc
ar
we,int

 , (11)

where fc ∈ R3,ar ∈ R3,we,int ∈ R6 are the new control
inputs, dual respectively to vc, hr and νe,int. More precisely,
fc is the total centroidal force, ar is the angular acceleration
of the whole system and we,int is the end-effector internal
wrench. The equation of motion (2) can be transformed to the
new state [10],[11] by using an energy-preserving coordinate

2Strictly speaking, in [3] the global acceleration ah was equivalently
used instead of wc. They are related by ah = M−1

c wc.

transformation. For nonsingular J∗m it is possible to invert
(10) and transform (2) as:mE 0 0

0 I−1C 0
0 0 M∗

e

 v̇c
ḣr
ν̇e,int

+

+

 0 −CT
rc −CT

ec

Crc Cr −CT
er

Cec Cer C∗e

 vc
hr
νe,int

 =

 fc
ar
we,int

 ,
(12)

Notice that the end-effector equation is inertially decoupled
from the rest of the system thanks to the use of νe,int. With
no surprise, notice also that the centroid and the angular
momentum are also inertially decoupled, because hr is
around C.
Further simplifications can be done by considering that the
Coriolis and centrifugal vector terms can be shown to be
identically zero for the centroid and angular momentum
equations [3], simplifying (12) to

mv̇c = fc, (13a)

ḣr = τc, (13b)
M∗

e ν̇e,int +C∗eνe,int +Cecvc +Cerhr = we,int, (13c)

where the quantity τc ∈ R3 is the net torque around the
centroid, obtained as ar = I−1C τ c. By exploiting the trian-
gular structure it is possible to design controllers in a cascade
fashion, using τc to stabilize the global angular motion and
we,int to control the end-effector. Finally, the input fc can
be used independently to design a CoM controller.
Although in (13a),(13b) we recover the classical conservation
of momentum principle, the novelty of the formulation lies
instead in (13c). Indeed, the machinery (10), (11), (12) used
to obtain (13) has the advantage of straightforwardly yielding
the property3:

νTe,int

(
Ṁ∗

e − 2C∗e

)
νe,int = 0 ∀νe,int ∈ R6. (14)

Last but not least, it suggests the use of we,int for control,
resulting in better actuator coordination, as highlighted in
Section IV-B. The next section shows how to design a
cascade controller for CoM, angular momentum and end-
effector and prove its stability.

IV. CONTROL

The end-effector task consists in regulating the end-
effector frame E around a desired pose T , which is fixed in
the inertial space. Let us define the error x̃e ∈ R6 between
the frames E and T as [12]

x̃e =

[
pet
2ε

]
, (15)

3Since the passivity holds [9] for M ,C in (2), it also holds for the
transformed matrices [12, Lemma 3.2] in (12) and for every submatrix on
the diagonal.



being ε ∈ R3 is the vector part of the quaternion ψ =

[
ε
η

]
extracted from the rotation matrixRet, and let η be the scalar
part. The time derivative ˙̃xe can be expressed as

˙̃xe = Jx̃eνeνe, (16)

where Jx̃eνe ∈ R6×6 is the so-called coordinates represen-
tation Jacobian and is defined by [13, p.140]

Jx̃eνe =

[
E 0
0 ηE − [ε]∧

]
. (17)

The end-effector controller can be defined as

we,int = −JTx̃eνeKex̃e −Deνe, (18)

where Ke ∈ R6×6 is a symmetric positive definite stiffness
matrix and De ∈ R6×6 is a positive definite damping matrix.
The CoM task is defined similarly. Given respectively the
current and the desired centroidal position in the inertial
frame pc,pcd ∈ R3, the centroidal error is defined as
p̃c = pc−pcd . Then, the centroidal controller can be defined
as

fc = −Kcp̃c −Dcvc, (19)

where Kc ∈ R3×3 is a symmetric positive definite stiffness
matrix and Dc ∈ R3×3 is a positive definite damping matrix.
In order to stabilize the system for an indefinite time, any
accumulated angular momentum must be extracted to avoid
persistent internal movements that may bring the robot to
singularity or to the joint limits. Then, momentum dumping
is commanded by

τc = −Dhrhr, (20)

where Dh ∈ R3×3 is a positive definite momentum gain
matrix. The closed-loop dynamics is obtained as follows. Let
us first explicitly rewrite (7) in translational and rotational
components. By algebraic manipulation using (5), (9) and
(34), it is obtained

νe = νe,int +Gcvc +Grhr, (21)

where Gc =

[
Rec

0

]
, Gr =

[
[pec]

∧RecI
−1
c

RecI
−1
c

]
∈ R6×3.

The resulting closed-loop dynamics is obtained by inserting
(18),(19),(20),(21) into (13), inserting (21) into (16), and
inverting (6), as:

m¨̃pc +Dc
˙̃pc +Kcp̃c = 0, (22a)

ḣr +Dhrhr = 0, (22b)

M∗
e ν̇e,int +C∗eνe,int +Deνe,int + JTx̃eνeKex̃e =

= − (Cec +DeGc) ˙̃pc − (Cer +DeGh)hr,
(22c)

˙̃xe = Jx̃eνe

(
νe,int +Gc

˙̃pc +Grhr

)
, (22d)

q̇ = J∗−1m νe,int. (22e)

The state can be partitioned as z =
[
zTwhole zTarm

]T ∈
D = R21 × Tn, with zwhole =

[
p̃Tc ˙̃p

T

c hTr

]T
∈ R9

and zarm =
[
νTe,int x̃Te qT

]T ∈ R12 × Tn. Then, the
dynamics (22) is in the state-space form

żwhole = gw (zwhole) , (23a)
żarm = ga (zarm, zwhole) , (23b)

where gw is obtained from (22a),(22b) and ga from (22c),
(22d),(22e). Notice that the dynamics of the whole system
(23a) is linear and is totally decoupled from the robot state.

A. Controller stability

The stability of the closed-loop (23) can be addressed in
a cascade fashion, as follows. Let us first define a region
Ω that excludes the singularities of the generalized Jacobian
J∗m(q)

Ω = {z ∈ D : σmin (J∗m(q)) > 0} , (24)

where σmin(� · �) is the minimum singular value of the
matrix � · �. In the region Ω the Jacobian J∗m is well-
defined together with the dynamics matrices M∗

e , C∗e , Ceh.

Proposition IV.1. The set of equilibria z0 = {z ∈ Ω : p̃c =
˙̃pc = hr = 0, x̃e = νe,int = 0} is asymptotically stable.

Proof. z0 is compact because Tn is compact. Then, cascade
theorems for compact invariant sets [14] apply.

1) The systems (22a) and (22b) are asymptotically stable,
having chosen Kc, Dc and Dhr as positive definite.
Therefore the whole system żwhole = gw (zwhole) is
asymptotically stable.

2) The stability of the system żarm = ga (zarm,0) can be
addressed using the Lyapunov function

V =
1

2
νTe,intM

∗
e νe,int +

1

2
x̃TeKex̃e > 0, (25)

which is always defined in Ω. The time derivative along
system trajectories is

V̇ = νTe,intM
∗
e ν̇e,int +

1

2
νTe,intṀ

∗
e νe,int+

νTe,intJ
T
x̃eνeKex̃e =

1

2
νTe,int

(
Ṁ∗

e − 2C∗e

)
νe,int+

− νTe,intDeνe,int = −νTe,intDeνe,int ≤ 0, (26)

where (22c),(22d)(22e) and (14) have been used. Ap-
plying LaSalle x̃e → 0 is obtained and the asymptotic
stability of żarm = fa (zarm,0) is thus proven.

From 1) and 2) then follows the asymptotic stability of the
closed-loop (23).

B. Controller discussion

Writing explicitly (11) and using ar = I−1c τc, the actuator
commands can be related to the task level controllers as:fbτb

τ

 =

 RT
cb 0 0

[pbc]
∧RT

cb RT
cb 0

J̄v
T
RT
cb J̄ω

T
RT
cb J∗Tm

 fc
τc

we,int

 . (27)

In this form, the actuation distribution is seen to follow a
triangular pattern. The base force fb is only commanded



to control the CoM position. Conversely, the base torque
τb is used to realize a net centroidal torque τc and to
counterbalance the torque induced by the CoM force fc
due to the lever arm between B and C. Finally, the joint
torques are used to realize an internal end-effector wrench
we,int and at the same time to counterbalance the torques
induced into the joints both by fc and τc. One important
advantage of this triangular structure is that no end-effector
force is counterbalanced by external actuators, leading to
considerable fuel saving. Here, the base actuators are used
only to stabilize the outer system, i.e., the motion component
that strictly requires their use. This advantageous decoupling
is obtained thanks to the use of we,int and does not apply
when using the absolute wrench we. In fact, with we the
actuators would be detrimentally used to counteract the
manipulator torques.

Another important feature of the proposed controller is
concluded as follows. After contact, the system converges
to a stationary situation in which the CoM remains fixed
in the inertial space and the angular momentum is zero.
Therefore, during the entire time of robot maneuvers that
does not involve contact, it will remain p̃c = vc = hr = 0.
In this nominal situation the controller given by the equations
(18),(19), (20),(27) simply reduces to:

fb = 0, (28a)
τb = 0, (28b)

τ = −J∗Tm
(
JTx̃eνeKex̃e +Deνe

)
, (28c)

which is the classical transposed Jacobian free-floating con-
troller [2]. In conclusion, with the proposed controller all
the robotic operations require no fuel when no contact is in-
volved and are performed in a free-floating fashion. External
actuators are turned on only when contact occurs and their
use is limited to extracting the accumulated momentum and
to restoring the CoM location for the workspace need.

As a conclusive remark, note that the proposed controller
(27) shares singularity properties similar to those of the
transposed Jacobian free-floating controller: a) it is subject
to dynamic singularities [15], b) when a singularity of J∗m is
encountered, it does not fail computationally but only results
in loss of actuation in a singular direction.

V. EXPERIMENTAL VALIDATION

A. Experimental facility description

The CoM control strategy was validated on the On-Orbit
Servicing Simulator (OOS-Sim) hardware-in-the-loop facil-
ity at the DLR [16] (see Fig. 2). The OOS-Sim is a robotic
simulator for space robots, which enables testing space ma-
nipulators on ground before their actual deployment in orbit.
The test manipulator is mounted on a simulator manipulator
in a micro-macro configuration. The simulator manipulator
reproduces the satellite’s dynamics based on a real-time
model integration. The test manipulator is a KUKA KR4+
lightweight robot with seven degrees of freedom. This arm is
equipped with torque sensors and can be controlled both in
position and torque. The simulator manipulator is a KUKA

KR120 industrial robot, which is controlled in position and
has no torque sensing. The microgravity conditions in the
test arm are replicated by actively compensating the joint
gravity torques based on an identified model. The external
forces are reconstructed by using joint torque measurements
in the test arm. The simulated satellite dynamics runs on a
VxWorks real-time computer at 4ms, whereas the space robot
controller runs on a separate VxWorks real-time computer at
1ms. Further information regarding the hardware setup is
available in [16].
With this system, the space robot controller can be simulated
taking into account real dynamics, sensor noise, time delay,
control discretization, and model uncertainties of the test
manipulator. Conversely, the satellite dynamics simulation is
model-based. The parameters of the satellite can be adapted
depending on the specific scenario. In the present work,
the satellite parameters are m = 150 kg, Ix = 21.8 kgm2,
Iy = 15.0 kgm2, Iz = 18.88 kgm2.

B. Controller implementation

The end-effector controller in (18) requires feedback of
x̃e,νe. In the experiment they are obtained from the kinemat-
ics of the simulator and test arms. The CoM and momentum
controllers in (19) and (20) require feedback of p̃c, vc, hr. In
the experiments they are obtained by using the inertia model
of the robot together with the kinematics of the manipulator.
In the real implementation, the required information might
be estimated by fusion of the measurements from cameras
(or LIDARs) and IMU.

C. Experimental results

Two experiments are conducted to highlight the benefit
of regulating the CoM position as a means to maintain
a favorable workspace location during robotic operations.
To portray the situation in which the robot accidentally or
voluntarily collides with a heavy target satellite, a series of
impulses is given manually to its end-effector by using a
rod. In a first experiment, the momentum dumping strategy
in [3] is used. In this strategy, the end-effector pose is
regulated around a desired inertial position while the linear
and angular momenta are extracted from the system. In
a second experiment, the proposed CoM control strategy
(Eq. (18),(19),(20)(27)) is used. Here, the additional task of
restoring the proper CoM location is commanded.
To quantify the deterioration of the manipulation capability
due to workspace shift, the manipulability measure in [7] is
used:

manipulability =
√

det (J∗m(q)J∗Tm (q)) (29)

The gains used for the end-effector stiffness are ke,trasl =
1000 N m−1, ke,rot = 70 N m rad−1. The end-effector damp-
ing gains have been designed by using the method in [12].
The gains used for the CoM control are kc = 700 N m−1,
dc = 1080 N s m−1, dhr = 16 m2s−1rad−1. For the momen-
tum dumping, equivalent gains were used (dht = dc/m

2).
Fig. 3, Fig. 4 show the results for the momentum-dumping
experiment. Fig. 5, Fig. 6, Fig. 7, Fig. 8 show those of the



CoM control experiment. Additionally, the experiments can
be seen in the accompanying video attachment.

1) Momentum Dumping experiment: Fig. 3 shows respec-
tively the reconstructed external force at the end-effector,
the CoM position and the manipulability measure after
repeated impulses on the end-effector. Fig. 4 shows the end-
effector position and the momentum. Fig. 4 shows how
the momentum is successfully extracted from the system
after each impulse. At the same time, the impulses induce
a displacement in the CoM position, as seen in Fig. 3.
Thanks to the extraction of the accumulated momentum in
the system, the CoM position converges to new stationary
positions. However, after each contact the CoM is displaced
farther from the initial location. Accordingly, the manipulator
is in a more stretched position, in an attempt to maintain
a constant inertial position. This leads to a deterioration
of the workspace conditions. In particular, in Fig. 3 the
manipulability is reduced after each contact, resulting in a
practically singular configuration around tsing = 140sec. As
a matter of fact, Fig. 4 further shows that at tsing the end-
effector steady state error gets bigger after every impulse
due to the low manipulability. This is explained by the fact
that the low commanded torques near the singularity are
counterbalanced by the static friction in the joints. In this
situation, the end-effector control is lost and a repositioning
maneuver of the whole system would be needed to restore
the workspace.
To better visualize the workspace displacement, a series of
snapshots of the experiment at t0 = 0 sec, t1 = 110 sec, t2 =
170 sec, t3 = 220 sec is shown in Fig. 2. Additionally,
in Fig. 1 a workspace rendering at the same instants is
done based on the actual experiment measurements of the
satellite pose and manipulator joint. The workspace shown
therein is the Maximum Reachable Workspace [7] of the
robot manipulator. Fig. 1 shows that after some contacts, the
target satellite exits the reachable workspace.

2) CoM Control experiment: Fig. 5 shows the
reconstructed external force at the end-effector, the
CoM position and the manipulability measure when the
CoM control is used. First, observe in Fig. 5 that after each
contact the correct CoM location is restored to the initial
value. Accordingly, the manipulability measure in Fig. 5
does not drop to zero but remains in a favorable position
thanks to the restored correct CoM-target location. Second,
observe the end-effector position error in Fig. 6. It can be
seen that, during contacts, the end-effector is displaced as a
consequence of the compliance law (18). When the contacts
are removed, the end-effector error converges to zero up to
a precision of 1.5 cm due to static friction. Note that the
end-effector position is restored after every contact, because
no singularity is reached. Finally, note that the angular
momentum in Fig. 6 is properly dumped and any rotational
drift of the system is removed. The base actuator forces
and torques are conclusively shown in Fig. 7. Note that the
satellite forces act in reaction to the external force in Fig. 5.
In particular, as soon as one CoM displacement is generated
along a direction, the satellite forces react in the same
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Fig. 3. Momentum Dumping Control - Workspace shift due to external
contacts.
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Fig. 4. Momentum Dumping Control - End effector position and momenta.
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Fig. 5. CoM Control - Workspace restore after external contacts.

direction but opposite sign. For the sake of completeness,
the base attitude is reported in Fig. 8. Therein it is seen
that the attitude is not controlled. After each impulse, it
converges to new values, which are not known in advance.
The results confirm the effectiveness of the proposed
control method in regulating the end-effector inertial pose,
regulating the CoM location and stabilizing the rotational
drift of the system induced by contacts. Furthermore, they
show the usefulness of the strategy in ensuring a favorable
workspace during robotic operations without the need to
switch to a rigid base positioning approach.

D. Discussion and controller limitations

The main feature of the proposed controller is to fix
the workspace without rigid positioning of the satellite. For
the classical base-arm coordinated control [17], the satellite
actuators persistently work against the arm’s actuators. Con-
versely, with the proposed method the satellite is left free
to move and the actuators are not used to counterbalance
any manipulator force. In the absence of contact, the base
actuators are automatically turned off. When contact occurs,
they are used only to restore the workspace.

As previously acknowledged, a consequence of the pro-
posed strategy is that the base attitude converges to new
values after every impulse. Depending on the direction of
the impulses this attitude may cancel or accumulate. In the
latter case, a reorientation maneuver might be needed to
avoid arm-satellite collisions or to avoid singularity. In fact,
zero manipulability could still be achieved for unfavorable
base attitudes. Note that the methodology developed herein
does not restrain the inclusion of an additional simultaneous
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Fig. 6. CoM Control - End effector position and momenta.
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reorientation task, which could be realized by exploiting the
remaining three degrees of freedom in the system.

VI. CONCLUSIONS AND FUTURE WORKS
The problem of the workspace shift due to contacts was

addressed in this paper. A novel control method was derived
to simultaneously restore the proper CoM location, stop the
rotational drift and control the end-effector. By avoiding rigid
base positioning, the base exhibits a floating behavior that
leads to a reduced use of the base actuators. The control
was validated with experiments.
Future work may extend the strategy to superimpose addi-
tional tasks exploiting the remaining 3DOF redundancy.

APPENDIX
VII. MOMENTUM EXPRESSION

In terms of classical mechanics, an expression of the total
momentum hb around B is available in [2]. Here, it is
reported in compact form by using a body twist formulation
[8]. The momentum hi ∈ R6 of the body i around its CoM
is given by:

hi = Miνi, (30)

where Mi = blkdiag(miE, Ii) ∈ R6×6 is the generalized
inertia of the body i, Ii is its rotational inertia, mi is its
mass and νi ∈ R6 is its body velocity. The latter can be
expressed as a function of the base and joint velocities as

νi = Aibνb + Jiq̇, (31)

being Ji =

[
Jvi
Jωi

]
∈ R6×n the Jacobian mapping q̇ into νi.

The total momentum of the system around B is given by

hb =

n∑
i=0

AT
ibhi =

n∑
i=0

AT
ibMiAib︸ ︷︷ ︸
Mb

[
vb
ωb

]
+

n∑
i=0

AT
ibMiJi︸ ︷︷ ︸

Mbm

q̇.

(32)
where (30),(31) have been used. Further developing Mb and
Mbm in (32), gives

Mb =

[
Mt Mtr

MT
tr Mr

]
, Mbm =

[
Mtm

Mrm

]
, (33)

where

Mt = mE ∈ R3×3, (34a)

Mtr = −m[pbc]
∧ ∈ R3×3, (34b)

Mr = Ib ∈ R3×3, (34c)

Mtm = mJ̄v ∈ R3×n, (34d)

Mrm =

n∑
i=0

RT
ibIiJω,i +mi[pbi]

∧RT
ibJvi ∈ R3×n, (34e)

with Ib is the inertia of the whole system around B and

pbc =
1

m

n∑
i=0

mipbi, (35)

J̄v =
1

m

n∑
i=0

miR
T
ibJv,i ∈ R3×n. (36)

The momentum around C is conclusively obtained as h =
A−Tcb hb, which, using (32),(33),(34), results in

h =

[
ht
hr

]
=

[
mRcb −mRcb[pbc]

∧ mRcbJ̄v
0 ICRcb ICRcbJ̄ω

]
v, (37)

where

J̄ω = RT
cbI
−1
C Rcb

n∑
i=0

RT
ibIiJωi +mi[pbi]

∧ (Jvi − J̄v) .
(38)
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