
An Energy-Based Approach for the Multi-Rate Control of a

Manipulator on an Actuated Base

Marco De Stefano1,2, Ribin Balachandran1, Alessandro M. Giordano3, Christian Ott1 and Cristian Secchi2

Abstract— In this paper we address the problem of con-
trolling a robotic system mounted on an actuated floating
base for space applications. In particular, we investigate the
stability issues due to the low rate of the base control unit.
We propose a passivity-based stabilizing controller based on
the time domain passivity approach. The controller uses a
variable damper regulated by a designed energy observer. The
effectiveness of the proposed strategy is validated on a base-
manipulator multibody simulation.

I. INTRODUCTION

Robotic controllers are usually designed to run on a single

control unit with a high-enough rate to disregard the effects

of discretization. Unfortunately, there are many applications

for which this assumption is not valid anymore. This is the

case of robotic systems composed of multiple parts that are

physically coupled. In these cases, each part is controlled by

its own control unit that runs at its own control rate. Some

humanoid robots belong to this class of systems [1].

In several space applications, high manipulation capabili-

ties are becoming necessary and a possible solution is given

by a manipulator mounted on an actuated floating base (see

Fig. 1). The control of the floating base (satellite) enables

coarse positioning while the control of the manipulator

enables fine dexterous control for complex tasks (e.g. debris

recovery). Typically, the control system of the floating base

runs at a low rate (between 1 Hz and 10 Hz) while the

controller of the manipulator runs at a much higher rate

(usually 1000 Hz), since the latter has to interact with

the environment [2]. Thus, the overall system is composed

by two physically coupled mechanical systems with one

controlled by a low-rate and the second by a high-rate loop.

This mix of frequencies, the presence of zero order holds and

possible delays in the communication between the control

units can jeopardize the stability of the overall system if not

properly taken into account.

Discretization, quantization and delay effects have been

investigated in the field of haptics and teleoperation [3], [4].

Effects of discretization were analyzed in [5] for reproducing

satellite dynamics on a robotic simulator. An optimal solution

for coping with destabilizing effects of time delay has

been proposed in [6]. In [1] the wave variables concept

was successfully implemented for coordinated control of

1 The authors are with the Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), 82234 Wessling, Germany.

2 The authors are with the University of Modena and Reggio Emilia,
41100 Modena, Italy.

3 The authors are with the Department of Informatics, Technical Univer-
sity of Munich (TUM), Garching, 85748, Germany

Contact: marco.destefano@dlr.de

Fig. 1: Space scenario: a controlled spacecraft equipped with

a manipulator during a satellite recovery-task.

robots but considering only time delay. The interaction be-

tween satellite control and manipulator control of a vehicle-

mounted manipulator has been first studied in the context of

the Shuttle Remote Manipulator [7]. A computed momentum

strategy for the coordinated control of reaction wheels and

manipulator has been proposed in [8]. A centralized control

strategy for vehicle attitude, vehicle position and arm end-

tip control has been studied in [9], resolving the redundancy

of the whole system at the velocity level. At torque level,

a centralized control strategy has been proposed in [10],

based on a transposed Jacobian algorithm. A resolved-rate

control problem was proposed in [11], however the base

was not actuated. To avoid fuel consumption, a free-floating

strategy has been derived in [12] based on a transposed Jaco-

bian algorithm, assuming no contacts and zero momentum.

The problem of the impedance control of a free-floating

robot was treated in [13] using feedback linearization. More

recently, the transposed Jacobian free-floating strategy has

been extended to the nonzero momentum case [14], adding

a disturbance compensation term. In [15], the transposed

Jacobian free-floating control is extended to stabilize the

system even in presence of contacts. This is achieved using

actuators only to damp any accumulated momentum in the

system. None of the actuated-base strategies [7], [8], [9],

[10], [15] addressed the problem of multi-rate control.

In this paper we address the multi-rate control problem

of a manipulator on an actuated floating base system from

an energy-based perspective. We develop a passivity-based

control strategy that guarantees the stabilization of the system

independently of the different rates of the controllers. We

consider the scenario represented in Fig. 1, where the floating



base controller runs at 2 Hz, and the manipulator’s control

unit runs at 1000 Hz. We will show that the presence of

multiple control rates leads to a loss of passivity and then

we will re-establish a passive behavior and, as a consequence,

stability, exploiting the Time Domain Passivity Approach

(TDPA) [16].

The contribution of the paper is twofold. First, we identify

the energy that can render the system unstable using a

network representation. Second, exploiting TDPA [16] we

recover a proper energetic behavior and, consequently, sta-

bility using a variable control input.

The paper is organized as follows: Sec. II introduces the

space robot control and the classical control in continuous-

time with the problem statement due to different rate control.

The new strategy is presented in Sec. III and proved by

simulations in Sec. IV. Conclusions and future works can

be found in Sec. V.

II. SPACE ROBOT CONTROL AND PROBLEM STATEMENT

In this section, the model of a manipulator on a floating

base is introduced. We present the controllers acting on the

base and the manipulator. The classical controller results to

be stable in continuous time, but when controllers act with

different rates, the system may become unstable.

A. Space robot dynamics

Let us consider a robot with n-joints. The general equa-

tions of motion for a robot mounted on a moving base [17],

are defined as:
[

Hb Hbm

HT
bm Hm

][
ẍb

q̈

]

+

[
cb

cm

]

=

[
Fb

τττ

]

, (1)

where Hb ∈ R
6×6, Hm ∈ R

n×n, Hbm ∈ R
6×n are the inertia

matrices of the whole system, manipulator and the coupling

between the base and the manipulator, respectively. The

vectors ẍb ∈R
6 and q̈ ∈ R

n are the acceleration of the base

(linear and angular) and the acceleration of the robot joints;

cb ∈ R
6 and cm ∈ R

n are the non-linear Coriolis/centrifugal

terms of the base and of the manipulator, respectively. Fb ∈

R
6 is the force-torque wrench acting on the center of mass

of the base-body and τττ ∈ R
n is the input torque vector.

The end-effector body velocity ẋm ∈ R
6 is given by:

ẋm = Jbẋb + Jmq̇, (2)

where Jb ∈ R
6×6 and Jm ∈ R

6×n are the Jacobian matrices

of the base and manipulator, respectively.

The goal is to control the base of the satellite and the

manipulator in the inertial frame. We use a quaternion

representation in order to define the rotational error. We

define Rm ∈ R
3×3 to be the rotational matrix of the end

effector with respect to the inertial frame and Rd ∈R
3×3 to

be the desired rotational matrix, expressed in the same frame.

The error matrix is then defined as Rφ =RdRT
m. By using the

quaternion representation, a scalar η and a vector ε̂εε ∈R
3 can

be defined, such that the orientation error ∆φφφ ∈ R
3 is then

defined as:

∆φφφm = 2ETε̂εε , (3)

where E ∈R
3×3 is defined as E = I3η − ε̃εε and where ε̃εε is the

known skew-symmetric matrix of the vector ε̂εε . Analogously,

for the position error:

∆pm = pdm −pm, (4)

where pm is the position of the end effector in the inertial

frame and pdm is the desired position. The error vector in

position and orientation can be expressed as the vector ∆x ∈

R
6, given by:

∆xm = [∆pm;∆φφφ m]. (5)

Analogously for the base, the error can be defined using (3)

and (4). Therefore the error vector for the base will be:

∆xb = [∆pb;∆φφφb]. (6)

This representation will be used in the following subsection

in order to design the controllers. We assume that the desired

pose (i.e. position and orientation) for the manipulator and

the base are constant in the inertial frame.

B. Torque controller for the end-effector and the satellite-

base

We consider a manipulator controlled in torque mode with

the simple transposed Jacobian:

τττ = JT
mFm, (7)

where Fm ∈R
6 is the virtual control force applied at the end-

effector.

In this paper we use the coordinated control approach [10]

and we report the controller in explicit form. Therefore, the

virtual Cartesian force Fm at the end-effector is modeled like

a PD (Proportional Derivative) behavior, defined as:

Fm = KPm∆xm −KDmẋm, (8)

where KPm and KDm ∈ R
6×6 are positive definite matrices,

representing stiffness and damping gains of the manipulator

controller.

The satellite-base is controlled by the following control law:

Fb = KPb∆xb −KDbẋb + JT
b Fm, (9)

where KPb and KDb ∈ R
6×6 are positive definite matrices,

representing stiffness and damping gains of the base con-

troller and JT
b Fm is a coupling term between manipulator

and base.

Considering a non-redundant manipulator and a non-

singular Jm, it can be proven that

[ẋb, ẋm,∆xb,∆xm] = 0 (10)

is asymptotically stable using the following energetic argu-

ment.

Proposition 1: The equilibrium point (10) of (1) is asymp-

totically stable using the control laws (8) and (9).



Proof: Consider the total positive definite energy of the

system as a candidate Lyapunov function:

W = 1
2

[
ẋT

b q̇T
]
[

Hb Hbm

HT
bm Hm

]

︸ ︷︷ ︸

H

[
ẋb

q̇

]

+ 1
2
∆xm

T KPm∆xm+

+ 1
2
∆xb

T KPb∆xb.

(11)

By computing the derivative and considering the well-known

passivity property of the Euler Lagrange systems:

1

2

[
ẋT

b q̇T
]

Ḣ

[
ẋb

q̇

]

−
[
ẋT

b q̇T
]
[

cb

cm

]

= 0, (12)

we get:

Ẇ = ẋT
b Fb + q̇T τττ − ẋT

mKPm∆xm − ẋT
b KPb∆xb. (13)

Substituting τττ from (7)-(8), Fb from (9) into (13) and

considering the end-effector velocity as in (2), we get:

Ẇ =−ẋT
b KDbẋb − ẋT

mKDmẋm ≤ 0. (14)

Therefore, using standard LaSalle arguments, the statement

of the proposition is proven.

Thus, we have that in continuous time the system behaves

in a dissipative way. In fact stability is achieved by the

control laws (8) and (9). As an example we run a simulation

in continuous time (see Fig. 2) where the end-effector and

the base of the satellite have an initial error.1 It can be seen

that the error converges in continuous time.

Notice that although we have a control acting on the base,

actuators models are not considered.

1The orientation error is represented by ψ ,θ ,φ (yaw, pitch and roll)
angles in the plots.
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Fig. 2: Stable system with continuous-time controllers: Error

of the base in position and orientation (top) and error of the

manipulator in position and orientation (bottom).

C. Problem Statement

The problem arises when the control laws are computed

in discrete-time with different sampling rates. Let Tm and Tb

be the sampling times of the controllers of the manipulator

and of the base respectively. We consider the case where

the sampling time of the slow rate controller is an integer

multiple of the rate of the fast controller, i.e. Tb = nTm.

Therefore at discrete time k, we have k = kmTm = kbTb where

km and kb are the discrete steps in each of the controllers.

The discrete control laws are given by:

Fm(km) = KPm∆xm(km)−KDmẋm(km), (15)

Fb(kb) = KPb∆xb(kb)−KDbẋb(kb)+ JT
b (kb)Fm(kb). (16)

It can be proven that the two controllers can interfere due

to different sampling rates which may lead to instability.

This can be seen with the following example shown in

Fig. 3. We consider common control frequencies for the

considered scenario which are Tm = 0.001 s and Tb = 0.5 s

[2]. We run the simulation considering the discrete laws (15)

and (16), with the same conditions of the continuous-case.

As it can be seen in Fig. 3, clearly the error in position

∆p and in orientation ∆φ of both controllers diverge. It is

worth comparing Fig. 2 (continuous-time control) and Fig. 3

(different rate control) to see the different behaviors of the

systems.

This means that the presence of different-rate controllers

destroy the dissipative effect shown in Proposition 1 and,

therefore, some energy is produced. This implies that the

passivity of the system is lost.

In the next section we will design an energy observer in

order to identify the energy produced and to dissipate it using

a passivity controller.
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end-effector in position and orientation (bottom).



III. ENERGY-BASED COORDINATED CONTROL

In this section a port-representation of the mechanical

system is proposed in order to perform an energy analysis.

The energy produced in the system is identified and it is

passivated using a passivity controller. We will exploit the

Time Domain Passivity Approach (TDPA) which provides

flexibility due to its port-based approach as it does not

depend on system modeling [16].

A. Time Domain Passivity

TDPA is widely used for system stability in practical

teleoperation systems which are affected by delays in the

communication channel. Delays and packet losses in the

communication channel introduce energy in the system and

make the system active [18]. An interaction between two

processors running at different rates is equivalent to having

delays and packet losses between the systems. Therefore,

the concept of TDPA is extended in this work to stabilize

the system. The underlying principle of TDPA is to observe

the input and output energy flows, with a Passivity Observer

(PO), of a single-port network, (the virtual environment, in

case of haptics) or a 2-port network (the communication

channel with delay, in case of teleoperation) [19].

For a one-port system with sample time T , the discrete

passivity condition is given by:

m

∑
k=0

(F(k)T v(k)T )+E(0)≥ 0, (17)

where (F,v) and E(0) are the power correlated variable set

and the initial energy storage of the system respectively. If

condition (17) holds, the system is passive. The extra energy

generated in the port that violates the passivity condition is

dissipated with a time-varying damper, the Passivity Con-

troller (PC). This is done in order to ensure that the system

is an interconnection of passive ports. This condition will be

used to design the controller.

B. Passive coordinated control

In order to identify the energy introduced into the system

by controllers running at different rates, a network repre-

sentation is derived as shown in Fig. 4. Notice that S is

the dynamic system represented by the left hand side of

(1), Cb is the controller at the base expressed in (16) and

Cm is the controller of the manipulator (15). The controller

Cb is represented by electrical elements with impedance

Zcb and a dependent voltage source which represents the

coupling term of the manipulator, i.e. JT
b Fm. The control rate

of the manipulator Cm is high and, therefore, its behavior is

similar to that of an equivalent system controlled by a spring-

damper controller (8) in continuous time. This means that

the behavior of the controlled manipulator is stable. Thus,

the main source of energy is the low rate control which acts

on the base (dashed box in Fig. 4).

We observe possible energy injections through the port

(Fb, ẋb). We design an energy observer which runs at the

faster rate controller to obtain a greater accuracy. If we

render the controlled base passive at this port, then the

ẋb ẋm

Fb Fm Cm

Cb

Zcb

JT
b Fm

S

Tb

Tm

Fig. 4: Network representation of the satellite- manipulator

set-up.

overall controlled system will be interconnection of passive

systems and, consequently, will be passive [20]. Then all the

regenerative and destabilizing effects would be compensated.

The PO is designed to observe the energy flowing in and out

of this port using (17) with power variables (Fb, ẋb). In the

following description of the TDPA implementation for the

multi-dof (degree of freedom) system of the satellite and

the manipulator, the PO and PC are applied for each dof

separately. It can be mathematically shown that if passivity

can be guaranteed for all the dof separately, the overall multi-

dof system is also passive. For a n-dof system with initial

energy storage E(0) = 0, the passivity condition for each dof

separately leads to:

m

∑
k=0

(F(k)T v(k)T ) =
m

∑
k=0

n

∑
i=1

Fi(k)vi(k)T , (18)

which proves that (17) can be split into a sum of the n-dof

components. Therefore, if the passivity condition holds for

each component, then the overall system would be passive.

We implement the energy observer in the system running at

faster rate, as:

Eobs(km) = Eobs(km − 1)+Fb(km)ẋb(km)Tm

+β (km − 1)ẋb(km − 1)2Tm. (19)

We assume that the satellite-base velocity ẋb is available with

sampling rate Tm (eg., using a high-rate position sensor). The

energy flowing through the port is updated at each Tm and the

values Fb changes every Tb. Between two values of Fb, the

observer holds the last received value. Thus, the second term

in (19) computes the energy flow of the slow-rate controller.

The last term considers the effect of the PC.

The variable damper β is derived as:

β (km) =

{

−
Eobs(km)

ẋb(km)2Tm
Eobs(km)<−E(0)

0 else.
(20)

Notice that the bold notation has been omitted because

we are considering the components of the vectors. The

impedance correction due to the PC is given by the following

quantity:

Fpc(km) =−β (km)ẋb(km). (21)

It has to be noted that although the calculation for the PO and

PC are implemented at fast rate with a sampling period Tm,

the calculated values of the passivity controller Fpc(km) are

sent to the base controller which runs at Tb and it will modify



the output force Fb(kb). Thus, if the passivity condition is

violated (e.g. Eobs(km) < −E(0)), the force commanded to

the base will be varied as follows:

F ′
b(kb) = Fb(kb)+Fpc(kb). (22)

As a result, the energy will be restored and the observer

will be Eobs(k) ≥ −E(0) making the network passive. The

network representation modified with the passivity controller

can be seen in Fig. 5. The benefit of the method is that the

control forces depend only on the correlated variables at the

port (Fb, ẋb). Notice that the action of the PC might require

high forces at the base and it can be a limitation for the

actuator system (e.g. thrusters) which can not fire arbitrarily

fast.

ẋb
ẋb ẋm

Fb Fm Cm

Cb

Tb

Tm

F ′
b

PC
Zcb

JT
b Fm

S

Fig. 5: Network representation scheme modified with PC.

IV. RESULTS

This section shows simulation results performed with the

proposed method. The simulation environment considers the

servicer robot of the OOS-SIM facility [21] able to simulate

the dynamics of a free-floating robot on ground, see Fig. 6.

The servicer robot is composed of an industrial robot which

simulates the dynamics of the satellite and a LWR (Light

Weight Robot) mounted at its end-effector. The motion of

the satellite-base is related to the dynamic model described in

(1). The considered mass of the satellite is 150 kg with Inertia

Ix = 38kgm2, Iy = 20 kgm2, Iz = 23 kgm2. The manipulator

arm considered is a 7 dof robot, whose mass and inertia

parameters are reported in Table 1.

The simulation runs considering Tm = 0.001 s and Tb =
0.5 s. The problem described in Sec. II-C is here resolved

by applying the proposed method. Indeed, the destabilizing

effects described in Fig. 3 are due to the active observed

energy which is shown in Fig. 7 for the linear and angular

Fig. 6: Simulation environment OOS-SIM.

Mmlink[kg] Ix[kgm2] Iy[kgm2] Iz[kgm2]

2.71 0.023 0.023 0.005
2.71 0.024 0.005 0.024
2.54 0.013 0.013 0.005
2.50 0.023 0.005 0.002
1.30 0.023 0.022 0.003
1.57 0.003 0.003 0.003
4.1 0.024 0.002 0.024

TABLE I: Mass and inertia properties of the manipulator arm
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components. The negative trend of energy shows the activity

of the system as the violation of (17) confirms. The proposed

approach is then applied. Therefore, the passivity controller

will provide the variable force-torque as shown in Fig. 8.

This will lead to a passive system as the energy plot shows

in Fig. 9. The positive trend indicates that no active energy

is pushed into the system. Therefore the error for both

systems, i.e. manipulator and base, converges (see Fig. 10)

and the system results to be passive. It is worth comparing

Fig. 3 (before applying the method) with Fig. 10 (proposed

method). The results prove the validity of the method.

Notice that the controller is based on the observability of

the port (Fb, ẋb) and it requires the knowledge of ẋb at high

rate as discussed in Sec. III.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we showed the destabilizing effects of

a low-rate control acting on an actuated base which is

equipped with a manipulator controlled at high-rate. A

network representation has been designed to monitor the

energy of the multi-body system and a new control strategy

has been proposed. The strategy guarantees passivity thanks

to the passivity observer and the passivity controller which

dissipates the active energy generated by low-rate control.

The method is applied to a multi-body system composed

of an actuated space satellite with a robotic manipulator,

controlled with different sampling rates. The approach aims

at generality so that it can be applied in other domains. Future

works aim at extending the approach to the tracking case.
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