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Abstract— Coverage Path Planning (CPP) describes the pro-
cess of generating robot trajectories that fully cover an area
or volume. Applications are, amongst many others, mobile
cleaning robots, lawn mowing robots or harvesting machines
in agriculture. Many approaches and facets of this problem
have been discussed in literature but despite the availability of
several surveys on the topic there is little work on quantitative
assessment and comparison of different coverage path planning
algorithms. This paper analyzes six popular off-line coverage
path planning methods, applicable to previously recorded maps,
in the setting of indoor coverage path planning on room-sized
units. The implemented algorithms are thoroughly compared
on a large dataset of over 550 rooms with and without furniture.

I. INTRODUCTION

In this work we analyze the performance of several cover-
age path planning algorithms. Coverage path planning (CPP)
is the computation of a path that fully covers a given map. It
is relevant, for example, to mobile cleaning robots for floor
cleaning [1], [2], lawnmowers [3], or autonomously driving
agricultural machines [4]. Our motivation to engage in this
comparison is the application of professional office cleaning
robots [5], which have to fulfill several purposes. On the one
hand, such a robot shall be capable of exhaustively cleaning
larger areas, e.g. with a wet cleaning machine. On the other
hand, the robot must be capable of quickly inspecting larger
areas for the occurrence of waste bins to clear or local floor
pollutions to clean. Because of its complexity, the coverage
path planning problem is usually not computed on complete
maps but rather on individual parts of a map [5], [6]. In
our previous work, we already set up a pipeline for the
automatic segmentation of a map into single room units
and the computation of an efficient visiting order of these
rooms in the sense of a Traveling Salesman Problem [5], [7].
The work in this paper is concerned with the generation of
efficient coverage paths within the resulting room-level units
with methods that can handle both robot footprint-based path
coverage as well as sensor-based coverage with real sensors
of wider but limited range.

The paper is intended to supplement recent surveys on
coverage path planning [6], [8] with experimental validation
in common building maps and provides open source imple-
mentations to 6 different algorithms. Coverage planning can
have various requirements such as finding the shortest path,
avoiding collisions, trading maximal coverage with time
budgets, or just generating attractive and intuitive movement
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Fig. 1. A cleaning robot needs systematic inspection or cleaning patterns
for working efficiently.

patterns. Moreover, the problem has several variants, e.g.
the Art Gallery Problem, in which a minimal amount of
stationary sensors has to be placed in an environment such
that complete observability is provided, or the Watchman
Tour Problem, which tries to maximize observability with a
minimum costs tour through the environment [9]. All of these
problems are NP-hard and hence obtaining optimal solutions
is only feasible for very limited problem domains. Beyond
this barrier, appropriate heuristics have to be employed. This
paper provides implementations and a thorough analysis of a
broad range of coverage path planning approaches including
one exact cell decomposition method, three cell grid-based
planners, one contour line-driven approach and one variant of
the art gallery problem. Literature distinguishes between on-
line algorithms (sensor-based coverage algorithms) and off-
line algorithms, which require a complete map for computing
the coverage path [8]. The work in this paper focuses on off-
line algorithms that can utilize a readily available floor plan
of the environment. In particular, the main contributions of
this paper are:

1) an overview on indoor CPP for room-sized units;
2) the paper is accompanied by open source implementa-

tions of six coverage planning algorithms 1;
3) with the Contour Line-based method we propose a new

approach to coverage path planning;
4) we provide a large collection of over 550 room maps

with and without furniture;
5) a qualitative and quantitative comparison of these

algorithms.

1All six implementations are available as ROS package from
http://wiki.ros.org/ipa_room_exploration.

http://wiki.ros.org/ipa_room_exploration


The remainder of this paper is organized as follows:
Sec. II briefly summarizes several areas of related work
before Sec. III provides a description of the six implemented
methods of this paper, which become analyzed for their
performance in Sec. IV.

II. RELATED WORK

Most of the relevant work in the field of coverage path
planning has been summarized and discussed in the surveys
of Choset [8] and Galceran and Carreras [6]. Here we provide
a brief summary of the different kinds of relevant approaches
to the Coverage Path Planning problem at room-level.

One group of methods is constituted by the classical
exact cellular decompositions methods [10]–[12], the Morse-
based cellular decomposition methods [13], as well as the
Landmark-based cell decomposition algorithms [14], which
divide the original map into smaller units that can be covered
with a simple motion pattern. Whereas the classical exact
cellular decompositions usually rely on polygonal structures
and obstacles, this limitation is lifted with Morse-based
decompositions. The popular Boustrophedon cell decomposi-
tion [11], [15] belongs to the cell decomposition methods and
applies a simple back-and-forth motion inside the generated
cells. The detection of critical cell decomposition points has
been generalized by Wong and MacDonald [14] to any kind
of topological landmarks. Rotating the sweep line or cells for
optimal boustrophedon patterns has been proposed by Huang
[16].

Another type of coverage algorithms are cell grid-based
methods, i.e. methods that divide the map into a regular
grid of cells and find a path that covers all of these cells.
The Wavefront Algorithm [17] defines a starting and a goal
cell and propagates a wavefront from the goal to the start.
Cells are visited in equidistant level sets of these wave fronts
before approaching the target further. The Spanning Tree
method [18] decomposes the free space into mega cells and
constructs a spanning tree that covers all of these cells.
Inside the mega cells there are 4 smaller cells, than can
be visited by traversing the spanning tree. Both methods
guarantee coverage but yield quite erratic movement patterns.
A biologically inspired method for covering a cell grid is
the Neural Network-based coverage path planner [19] that
considers all cells as neurons and decides for the next cell
to visit by the activation state of the neighboring cells in the
network.

The floor coverage or inspection task can also be con-
sidered as an Art Gallery Problem [20], or a Watchman
Tour Problem. Arain et al. [9] provide a good overview on
optimal and approximate methods in this domain and propose
an new approach, which uses re-weighted convex relaxation
in addition to the combinatorial integer linear programming
method to scale up the size of the problems that can be
tackled.

From the plethora of algorithms, we selected a diverse set
of six approaches and implemented them for comparing their
performance. The respective algorithms are explained in the
following section.

III. METHODS

This section explains the six coverage path planning
algorithms in detail which are evaluated in this paper. We
assume that map data is available as a grid map with
sufficient resolution, i.e. at most the size of the grid cells
of the coverage planning algorithms. Furthermore, we re-
quire that the provided map is pre-processed by some room
segmentation procedure which splits larger map areas into
smaller segments at the size range of ordinary rooms. The
coverage path planning methods are supposed to operate on
these room-like working areas. For most of the implemented
coverage path planning algorithms we normalize each room
for its orientation before computing the coverage path.

A. Preparation

Both pre-processing steps, map segmentation and room
orientation normalization, are briefly outlined in the follow-
ing paragraphs. Furthermore, we discuss the modeling of the
coverage area.

1) Map Segmentation: We proposed a set of suitable map
division algorithms in our earlier work [7]. However, even the
best of these algorithms are not completely free of sporadic
errors, and moreover, the evaluation of coverage planning
algorithms within this paper shall not be biased by the use
of a certain segmentation method. Hence, we decided to
utilize the ground truth segmentations provided together with
the maps from our map segmentation dataset [21]. After
segmentation a grid map is created for each individual room
for further processing. The optimal path along the set of
segmented rooms can be found as the solution of a Traveling
Salesman Problem as described in our earlier work [7].

2) Room Orientation Normalization: All of the imple-
mented algorithms, except for the contour line-based cov-
erage planning, operate on some kind of pose grid laid
over the room area or a cell decomposition. The choice of
orientation of such a grid can have significant influence on
the performance of the coverage algorithm, specifically on
the number of cell decompositions or the number of parallel
tracks and time-intense spot turns [6], [12]. Aligning the grid
with the major direction of the enclosing walls is a commonly
applied heuristic [12], [16]. Specifically, we convert the
grid map to an image with white regions representing the
accessible room areas and dark regions at the walls and
obstacles. Then the room contours are recovered with the
Canny edge detection algorithm, followed by the Hough
straight line detector from OpenCV [22]. This procedure fits
a set of straight lines which approximate the enclosing walls
of the room and larger obstacles. We begin with minimum
required line length of 1 m and decrease this target value if
too few lines are found. The orientations of all Hough lines
are collected in a histogram with 10◦ bins. The orientation
correction for the room alignment is taken from the exact
average rotation provided by the entries in the histogram’s
maximum bin.

3) Coverage Area: All implementations support the def-
inition of the coverage area with an arbitrary quadrilateral



which may be placed off the robot’s center, or a robot-
centered circular area. Consequently, the coverage area can
model a circular footprint-based cleaning device such as a
vacuum cleaner or a lawn mower, as well as the field of view
(FOV) from a sensor mounted on a robot such as a camera
facing the ground. The definition of coverage device affects
the maximum grid cell size for the underlying coverage
planning algorithm if complete coverage is desired. In case
of a circular, robot-centered coverage device with radius rc
we use a square grid of at most l =

√
2 · rc side length to

fully cover the grid cell with the robot when located in its
center. The upper left sketch in Fig. 2 illustrates this setting.

Similarly, we find a maximal incircle that fits into the
arbitrary quadrilateral coverage area by constructing the
skeleton or Voronoi graph [23], [24] inside the quadrilateral.
The Voronoi graph departs at the corners A,B,C,D of the
quadrilateral along the angle bissectors, which meet in one
point M altogether for tangential quadrilaterals or pairwise
in two points E,F inside the quadrilateral (see Fig. 2). In
the first case, M is the circle center and its radius rq is the
closest distance to the quadrilateral sides. In the second case,
E or F is the circle center, depending which occurs with
greater distance to the quadrilateral. The distance between
circle center and quadrilateral sides can be easily obtained
in a grid map via the distance transform. Again, the square
grid for coverage planning can be at most l =

√
2 · rq in

terms of the incircle radius rq if the coverage area shall be
guaranteed to fully cover the grid cell from any perspective.

If such coverage guarantees are not necessary, e.g. because
the coverage algorithm ensures trajectories along straight
lines such that the coverage (in)circle touches all parts of
a grid cell during the linear motion, the grid spacing can be
increased to l = 2rc.

In those cases when the coverage device’s center does not
coincide with the robot center we conduct coverage planning
in two stages: first, the coverage path for the viewpoint center
is determined (as it would be a robot center), and following,
we compute suitable robot poses at the respective offsets
to the viewpoint centers. Here the favorite viewing angle
on a pose is given by the direction from the previous pose,
yielding a smooth path without unnecessary movements. If
the favored pose is not accessible in the map, another suitable
pose is found on the circle around the target viewpoint.

After these pre-processing steps we can compute a cov-
erage path on the individual room areas utilizing one of the
following approaches.

B. Boustrophedon Coverage Path Planning

The boustrophedon approach is an exact cellular decom-
position method which divides the room area into smaller
cells using a sweep line. Our implementation follows the
formulation of Choset et al. [11], [15]. W.l.o.g. we assume
that our room orientation normalization aligned the room
with its longest dimension along the x-axis and hence a
horizontal sweep line is shifted from the top to the bottom of
the room map. Whenever the sweep line hits critical points,
i.e. when one segment is separated into two by an obstacle, or

Fig. 2. Maximum grid size with a centered footprint coverage device
(upper left) or a projective sensor (right). The lower left graphic explains
how the incircle with maximum radius is found in the field of view.

Fig. 3. Boustrophedon cell decomposition (left) and generation of simple
movement patterns inside the cells (right).

when two separate segments merge together after an obstacle,
the space is divided and merged accordingly yielding a set
of cells that can be covered with a simple back-and-forth
motion pattern (see Fig. 3). Each cell is analyzed again for
its major orientation as described in Sec. III-A.2 to set up
the back-and-forth motion pattern in a way that maximizes
the length of single laps and minimizes the number of time-
taking turns.

C. Grid-based Traveling Salesman Coverage Path Planning

The Grid-based Traveling Salesman Problem (TSP) plan-
ner decomposes the room map into a regularly spaced cell
grid G with appropriate cell size l according to Sec. III-A.3,
where grid cells are only generated at accessible areas of
the map or shifted into an accessible area with a maximum
offset of l from their original location. The solution to the
coverage path planning problem is a path that visits all of
these accessible grid cells. One possible path throughout
the set of grid cells is the globally shortest traveling path.
Consequently, solving the Traveling Salesman Problem on
cell set G offers a valid solution to the original coverage
path planning problem. The traveling distances between
pairs of grid cells are approximated with the length of the
shortest path connecting them as determined by the A∗

algorithm on the original room map. The TSP is solved
exactly with the Concorde solver [25], or approximately
with a genetic algorithm or with the simple yet fast nearest
neighbor approach.



D. Neural Network-based Coverage Path Planning

In contrast to the globally optimizing grid-based TSP
planner the Neural Network-based Coverage Path Planner
[19] optimizes the path along the same cell grid G in a
semi-global fashion inspired by the activation dynamics of
neurons. All grid cells are called neurons and they have a
connecting edge to their eight direct neighbors. Dynamics of
a neuron are modeled with a shunting equation that contains
attractive terms from not yet visited neurons, repulsive terms
for obstacles and walls, as well as neutral terms for visited
cells. Activation is spread within the local 8-neighborhood.
We refer to the original publication [19] for the complete
formulae of the activation dynamics. The next neuron pn
to visit is chosen in each step according to the activation
state xj , j ∈ 1, 2, . . . , 8 of the 8 neighboring neurons and
the change in moving direction of the robot ∆θj

pn ⇐ xpn = max

{
xj + c

(
1− ∆θj

π

)}
, (1)

where c is a constant. The neighbor with highest score is
chosen, even if it has been visited before. This behavior is
necessary if the algorithm got stuck in a corner and then
needs to follow the trace of activation leading to further
unvisited neurons. After a movement the activations of all
neurons are updated and the next movement is selected until
all neurons have been visited.

E. Grid-based Local Energy Minimization

The third grid-based coverage path planning algorithm is
purely driven by local energy minimization within the current
neighborhood. It has been proposed in our earlier work on
cleaning robots [5]. Again, the room area is populated with
the regular grid G that has a spacing of l. The robot starts at
a point p0 in a corner of the room. Each visited grid cell is
appended to a list L of processed locations. The next unseen
target location is selected from the grid which minimizes the
energy functional

E(p, n) = dt(p, n) + dr(p, n) +N(n) (2)

dt(p, n) =

√
(px − nx)2 + (py − ny)2

l
(3)

dr(p, n) =
‖pθ − nθ‖angle

π/2
(4)

N(n) = 4−
∑

k∈Nb8(n)

|k ∩ L|
2

(5)

where p = (x, y, θ) denotes the current robot pose and n is
the coordinate of the potential next location. The translational
distance dt is measured in units of l, the rotational distance
dr in units of π/2. Function N(n) represents half the number
of not yet visited locations among the 8 neighbors Nb8(n)
around n and constitutes an attractive term for the robot
path to stay next to already processed grid cells. This term
results in a track following behavior. If there are unvisited
neighbors in the 8-neighborhood of p, one of these is chosen
as next robot pose. If all neighbors around p have been visited

already the potential next poses n are drawn from the set of
unvisited grid cells G\L. The algorithm never actively visits
grid cells twice (but might pass close to them) and terminates
when all grid cells have been visited. Similar to the neural
network planner, this procedure would also be applicable
online to incomplete maps and it can directly react to moving
obstacles if the cell grid is updated accordingly.

F. Contour Line-based Coverage Path Planning

The contour line-based method is the only one in our
selection that does not require any kind of cell grid or map
orientation normalization. It can be computed directly on
the room map. First, it finds the points in the map with
maximum distance to obstacles (center points) by computing
the skeleton of a Voronoi graph. Next, the Voronoi graph
is divided into individual centers at critical points. Critical
points occur at local minima on the Voronoi graph, i.e.
at narrow passages between two larger areas. The direct
connection between the critical point and the closest obstacle
points is chosen to divide the space to cover. To this end, the
division of the map is similar to a Voronoi cell decomposition
[7], [26].

Inside each Voronoi cell a distance transform is computed,
which represents the distance of each accessible map cell to
the closest obstacle or the cell border, yielding equidistant
contour lines to obstacles within the cell. Given the coverage
width wc = 2 · rc of the robot, contour levels are now
chosen as ci = rc + i · wc such that the largest contour
line cmax < dmax does not exceed the largest distance in
the Voronoi cell dmax. All points on the same contour level
sets are now connected minimizing costs, including distance
between points, direction change, and if the point was already
cleaned/visited similar to Eq. 2. Likewise do the individual
level trails become connected between each other eventually.

G. Convex Sensor Placement Coverage Path Planning

A completely different approach to the coverage planning
problem is represented by the art gallery problem, which is
originally concerned with the optimal placement of as few
sensors or guards as possible to ensure complete observation
of the target area. However, the optimal placement of a sensor
mounted on a mobile robot directly translates the art gallery
problem into a coverage path planning problem. Arain et al.
[9] propose the Convex Sensor Placement algorithm which
first selects a minimum set of candidate sensing configura-
tions from which all cells in the map are visible. Afterward,
the shortest connecting path of these observation positions is
found as the solution of a Traveling Salesman Problem. For
the first step, an integer linear program is formulated and
solved to find the poses that in sum have the least sensing
cost while covering the whole space. Assuming uniform
costs this results in choosing the fewest number of sensing
poses. An initial approximative solution to the integer linear
program is found much faster with an iterative re-weighted
convex relaxation via `1-minimization. For details of the
algorithm we refer to the original publication [9].



IV. EVALUATION

In this section the algorithms of Sec. III are evaluated
under various conditions on more than 550 different room
maps to reveal the individual strengths and weaknesses. We
utilize the 20 maps from our previous work on segmenting
maps into individual rooms [7], [21] and obtain the room
maps for this work from the ground truth segmentations
for avoiding bias with one of the possible segmentation
approaches. This yields a total of over 550 rooms that are
available either with or without furniture. The focus of this
work is on off-line algorithm performance, i.e. the full map
is already known in advance before computing the coverage
path. The simulated robot is allowed to replace inaccessible
commanded trajectory points with suitable accessible points
within a radius of 1.5 times the grid cell size l during
trajectory execution. Only if no suitable pose can be found in
the vicinity, the commanded pose is abandoned. All experi-
ments were simulated on a single core of a mobile I7 6800
HQ processor with 32 GB RAM. The evaluation is broadly
divided into a footprint coverage problem (Sec. IV-A) and a
sensor coverage problem (Sec. IV-B). Both approaches differ
in their placement and range of coverage device.

A. Footprint Coverage Problem

In this setting the coverage device is mounted at the robot
center and typically has limited extent, e.g. the robot radius.
This problem is very common for floor cleaning robots or
robotic lawnmowers. All six path planning algorithms have
been applied to all 550 rooms in the configuration of a
circular footprint with coverage radius rc = 0.3 m. For quan-
titative comparison the generated paths were analyzed with
respect to several measures. First, the algorithm computation
time was recorded. Furthermore, the average path length per
room as well as the average accumulated absolute orientation
changes of the robot base

∑
i |∆θi| were taken. The average

traveling time is composed of path length driven at a speed
of 0.3 m/s and rotations at a rotary speed of 0.52 rad/s.
Together with the percentage of actually covered ground floor
by driving the computed path, these values are summarized
in Table I, which distinguishes between the cases with and
without furniture. Table I also provides a subjective appeal
parameter that tries to assess the subjective attractiveness of
the generated paths to a cleaning professional. The parameter
is the better the higher. It contains the parallelism of the path
against walls and previously traveled parts of the path as a
positive contribution (parallelism is in range [0,1] each) and
is reduced by the following four terms:
• times of crossing the old path divided by room area,
• path length divided by room area,
• accumulated rotations divided by π and room area, and
• return time into the vicinity of already visited parts of

the robot trajectory measured in percentage of trajectory
completion (measure for local track completion).

The design of this appeal number has been influenced by
the discussion with professional cleaning service providers
and cleaning machine dealers who consistently agreed that

a client would be more happy with a robot that drives
a suboptimal but easily predictable path compared to an
optimal but hardly understandable path. Parallelism is a pos-
itive contribution in this sense, crossing the path a negative.
Longer paths and many rotations are also considered critical.

The results of Tab. I indeed indicate that each algorithm
has specific strengths and weaknesses. With respect to com-
putation time the heuristic approaches Boustrophedon, Neu-
ral Network, Grid Local Energy, and Contour Line always
achieve a high performance taking less than 4 s per room. In
contrast, the optimal solvers Grid TSP and Convex SPP are
quite slow with up to 41.6 s per room on average and few
times going beyond 30 min with rising problem complexity,
i.e. room size. Vice versa, Grid TSP and Convex SPP are
always amongst the methods which achieve the shortest
paths. The Neural Network planner takes erratic path lengths,
which are the longest in comparison, because this planner can
get temporarily trapped in cycles of already visited nodes.

The Boustrophedon algorithm always has a very low num-
ber of rotations, since it was specifically designed for few
rotations. The Grid Local Energy planner behaves similarly
since its energy term specifically minimizes rotations (esp.
visible in Tab. II). The number of rotations increases for
furnished maps for the heuristic approaches because the
regular movement patterns are interrupted more frequently
by obstacles. With respect to absolute traveling time Bous-
trophedon, Contour Line, and Grid Local Energy are the
best choices in rooms with few obstacles. With furniture, all
methods are quite close together except for Neural Network
which is always by far the slowest. All algorithms typically
achieve a very high coverage between 96 and 99% in empty
rooms, i.e. they all fulfill their major task. The best coverage
is always achieved with the Contour Line method. With
added furniture, the robot does not fit into every corner
anymore and coverage drops to 92 to 96%. The examples
in Fig. 4 indicate that uncovered areas are typically found in
inaccessible corners or behind furniture.

Especially algorithms that aim to generate long and
straight paths, like Boustrophedon, Convex SPP, Grid Local
Energy, and Contour Line (esp. with few furniture), achieve
a high appeal number. The Neural Network planner is least
appealing due to its rather erratic trajectory with many
intersections. Fig. 4 provides some qualitative impressions
on the generated paths in three different environments. The
results of all considered maps are available online [27].

We also executed the coverage trajectories obtained from
the empty room maps on furnished maps with local pose
adjustment for inaccessible path points if possible. This
procedure achieved nearly the same performance values
as reported on the unfurnished room maps in Tab. I for
each method indicating that empty-room trajectories can be
successfully applied to dynamically changing environments.

B. Sensor Coverage Problem

In contrast to the last experiment, the sensor coverage
problem is concerned with observing the room with a mid-
range sensor with larger field of view and a center far away



Fig. 4. Exemplary coverage paths: each row shows three exemplary maps processed with (a) the Boustrophedon, (b) Grid-based TSP, (c) Neural Network-
based, (d) Grid-based Local Energy Minimization, (e) Contour Line, and (f) Convex Sensor Placement coverage path planning algorithms. The robot
trajectories are displayed as dark gray lines, the covered area is white. Areas not covered are shaded with light gray.



Computation time [s] Path length [m] Rotations [rad] Traveling time [s] Coverage [%] Appeal
without furniture
Boustrophedon 1.8 (±0.8) 101.6 (±166.2) 53.5 (±64.5) 440.7 (±651.1) 98.4 (±3.9) 1.219 (±0.130)
Grid TSP 28.5 (±251.6) 95.9 (±143.7) 102.4 (±171.1) 515.2 (±780.8) 97.8 (±4.1) 0.671 (±0.392)
Neural Network 4.0 (±31.4) 158.4 (±353.0) 83.7 (±152.7) 687.8 (±1414.8) 96.4 (±5.7) 0.108 (±1.752)
Grid Local Energy 1.5 (±0.1) 93.9 (±138.2) 81.7 (±147.8) 469.0 (±719.2) 96.3 (±4.7) 0.876 (±0.360)
Contour Line 2.0 (±0.6) 98.5 (±150.7) 65.8 (±83.2) 454.2 (±636.9) 98.7 (±4.8) 0.877 (±0.136)
Convex SPP 26.0 (±215.3) 94.7 (±141.4) 99.3 (±156.6) 505.2 (±745.3) 98.4 (±4.0) 1.078 (±0.308)
with furniture
Boustrophedon 3.4 (±4.1) 127.5 (±198.0) 115.6 (±119.5) 645.8 (±856.1) 94.6 (±5.5) 0.715 (±0.382)
Grid TSP 41.6 (±259.0) 95.2 (±145.0) 168.5 (±197.5) 639.3 (±849.1) 94.4 (±5.5) 0.416 (±0.308)
Neural Network 4.0 (±32.0) 215.8 (±380.9) 171.6 (±204.1) 1046.7 (±1606.7) 92.9 (±6.9) -1.049 (±2.624)
Grid Local Energy 1.5 (±0.1) 91.9 (±139.7) 138.7 (±175.2) 571.3 (±788.8) 92.5 (±5.9) 0.694 (±0.289)
Contour Line 3.3 (±8.8) 110.6 (±159.8) 164.8 (±161.6) 683.3 (±797.6) 95.5 (±6.2) 0.414 (±0.287)
Convex SPP 39.5 (±230.9) 91.1 (±140.9) 157.2 (±182.5) 603.9 (±807.7) 94.7 (±5.5) 0.657 (±0.254)
planned in maps without furniture, executed in furnished maps
Boustrophedon 1.8 (±0.8) 105.1 (±169.3) 96.6 (±87.7) 534.7 (±700.1) 95.6 (±5.5) 0.780 (±0.402)
Grid TSP 28.5 (±251.6) 99.4 (±146.9) 138.4 (±180.4) 595.6 (±820.5) 94.9 (±5.6) 0.423 (±0.339)
Neural Network 4.0 (±31.4) 167.8 (±360.9) 143.8 (±195.8) 834.1 (±1517.2) 93.9 (±6.8) -0.228 (±1.794)
Grid Local Energy 1.5 (±0.1) 97.5 (±142.0) 121.9 (±157.6) 557.8 (±762.5) 93.4 (±6.1) 0.628 (±0.306)
Contour Line 2.0 (±0.6) 95.9 (±151.2) 82.5 (±89.9) 477.2 (±652.3) 85.6 (±10.5) 0.692 (±0.192)
Convex SPP 26.0 (±215.3) 98.5 (±144.7) 133.4 (±165.7) 583.1 (±784.9) 95.5 (±5.6) 0.744 (±0.284)

TABLE I
AVERAGE QUANTITATIVE PERFORMANCE ON THE FOOTPRINT COVERAGE PROBLEM OVER ALL ROOMS AND STANDARD DEVIATION IN BRACKETS.

Computation time [s] Path length [m] Rotations [rad] Traveling time [s] Coverage [%] Appeal
without furniture
Boustrophedon 1.8 (±1.0) 71.6 (±119.7) 62.2 (±60.1) 357.5 (±496.9) 99.6 (±4.9) 0.853 (±0.394)
Grid TSP 5.6 (±37.2) 61.4 (±93.8) 88.8 (±128.7) 374.1 (±549.4) 99.8 (±1.7) 0.796 (±0.332)
Neural Network 2.0 (±7.5) 94.2 (±276.1) 68.6 (±108.7) 444.8 (±1095.3) 99.0 (±5.4) 0.818 (±0.668)
Grid Local Energy 1.5 (±0.3) 54.7 (±82.2) 59.7 (±94.5) 296.5 (±445.1) 98.9 (±4.7) 1.082 (±0.257)
Contour Line 2.1 (±0.8) 59.8 (±103.3) 68.8 (±68.3) 330.8 (±460.0) 98.2 (±4.5) 0.849 (±0.189)
Convex SPP 3.2 (±13.0) 44.4 (±74.5) 79.6 (±115.7) 300.0 (±467.8) 91.8 (±8.2) 0.679 (±0.170)
with furniture
Boustrophedon 3.3 (±3.8) 93.7 (±154.0) 104.8 (±117.2) 512.7 (±712.9) 97.4 (±5.5) 0.523 (±0.388)
Grid TSP 9.4 (±39.6) 62.4 (±96.1) 131.4 (±152.1) 459.1 (±605.8) 98.0 (±4.4) 0.419 (±0.266)
Neural Network 2.0 (±7.5) 110.4 (±282.3) 108.0 (±152.1) 574.5 (±1179.3) 96.1 (±8.5) 0.322 (±1.289)
Grid Local Energy 1.5 (±0.3) 52.6 (±82.0) 85.9 (±106.4) 339.5 (±473.0) 95.7 (±7.8) 0.799 (±0.212)
Contour Line 2.8 (±3.9) 78.1 (±113.8) 123.9 (±120.4) 496.8 (±582.6) 98.2 (±4.1) 0.309 (±0.351)
Convex SPP 3.7 (±13.3) 40.5 (±73.4) 78.9 (±119.6) 285.8 (±471.2) 88.5 (±9.8) 0.620 (±0.179)

TABLE II
AVERAGE QUANTITATIVE PERFORMANCE ON THE SENSOR COVERAGE PROBLEM OVER ALL ROOMS AND STANDARD DEVIATION IN BRACKETS.

from the robot footprint. For this experiment an Asus RGB-
D sensor was assumed to be mounted at 65 cm height facing
downwards to the ground yielding a trapezoidal field of view
with small side length of 70 cm at 15 cm distance to the robot
center and a large side length of 1.3 m at 1.15 m distance.
Table II summarizes the performance measures for the 550
rooms with and without furniture.

Most of the aforementioned observations can be confirmed
but due to the decreased dimensionality of problem space
(via larger coverage radius) even the optimization algorithms
are quite fast compared to the footprint coverage case. Never-
theless, the standard deviations reveal that only Boustrophe-
don, Grid Local Energy, and Contour Line reliably deliver
results within their average computation times whereas the
other approaches show high variance. Path lengths, rotations
and traveling times generally decrease due to the larger
coverage area compared to the previous experiment.

C. Experiments with a Real Robot

We verified all 6 methods in our lab, which is the left
map in Fig. 4 or lab ipa in the dataset, using a modified
Metralabs Scitos G5 robot which was equipped with a wet
cleaning device. In all cases, the movement pattern of the
robot matched the computed target trajectories well so that
complete coverage with the wet cleaner could be established.
According to the consulting of a large professional cleaning
service provider the Boustrophedon planner provides the best
potential for usage with professional wet cleaning machines.
The robot and an exemplary trajectory of the Boustrophedon
planner are shown in Fig. 5.

V. CONCLUSIONS

The paper has introduced and compared several algorithms
suited for indoor coverage path planning. It became obvious
that due to varying requirements different algorithms can
be suited best for this problem, either because of their
computation speed, their high coverage, or the beauty of their
generated paths. We conclude with some general remarks



Fig. 5. The prototypical robot (left) used for verifying the computed
trajectories in our lab, map lab ipa (right).

on some of the algorithms. First, although the Boustrophe-
don planner generates the most appealing paths with good
performance for nearly empty rooms its quality degrades
with increasing clutter. The reason is the cell decomposition
which becomes too detailed in such cases. A better cell
decomposition with suitable split and merge criteria is on
our research agenda. Furthermore, complementing the Bous-
trophedon planner with the the Grid Local Energy planner,
which is very strong in cluttered areas, could be a successful
path to go. Second, the Grid-based TSP determined its
traveling costs as A∗ map distances, however, does not
yet consider the additional costs of turning the robot. In
future work it could be interesting to incorporate rotation
costs directly in the TSP path planning, enabling the direct
optimization of traveling times.

Third, using the parameters of the original publication
for the Neural Network [19] we could not observe similar
movement patterns as shown in their paper as the robot does
not intend to stay close to already visited areas. A drawback
of the Neural Network is the need for a dense grid since
it cannot jump over larger gaps as the Grid-based Local
Energy Minimization can do, for example. An extension
with a dynamic neighborhood adaptation could mitigate this
problem. An advantage of the Neural Network and Local
Energy Minimization approaches is the online applicability
to incomplete or dynamic maps.

To wrap up, if a quick heuristic is needed because of
processing constraints, the Boustrophedon, Grid-based Local
Energy Minimization and Contour Line-based Coverage Path
Planning methods are good choices with individual strengths.
If time allows, the Convex Sensor Placement is an interesting
close-to-optimal alternative especially for the sensor-based
observation use case with very short robot traveling times
if potentially erratic paths are acceptable, which is typically
the case in inspection tasks.
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