1709.06709v2 [cs.LG] 23 Mar 2018

arxXiv

Online Learning of a Memory for Learning Rates

Franziska Meier*12, Daniel Kappler*! and Stefan Schaa

Abstract— The promise of learning to learn for robotics rests on
the hope that by extracting some information about the learning
process itself we can speed up subsequent similar learning
tasks. Here, we introduce a computationally efficient online
meta-learning algorithm that builds and optimizes a memory
model of the optimal learning rate landscape from previously
observed gradient behaviors. While performing task specific
optimization, this memory of learning rates predicts how to
scale currently observed gradients. After applying the gradient
scaling our meta-learner updates its internal memory based on
the observed effect its prediction had. Our meta-learner can
be combined with any gradient-based optimizer, learns on the
fly and can be transferred to new optimization tasks. In our
evaluations we show that our meta-learning algorithm speeds
up learning of MNIST classification and a variety of learning
control tasks, either in batch or online learning settings.

I. INTRODUCTION

The remarkable ability of humans to quickly learn new skills
stems from a hierarchical learning process. Instead of learning
each new skill from scratch, a higher-level — more abstract —
meta-learner acquires information about the learning process
itself which is used to guide and speed up the learning of new
skills. For instance, it has recently been shown that humans
learn how much to correct for observed motor skill errors,
and reuse such a error sensitivity memory in subsequent skill
adaptation tasks [1]. In a sense, we are learning how to learn.
Most robotic learning tasks would benefit from being guided
by such a meta-learner, especially when we consider the
incremental learning of several skills. For example when
learning to detect and recognize certain objects, it should
become easier to learn how to recognize new object classes
over time. The same is true for learning control tasks such as
learning task-specific models of a robot’s dynamics [2]. Even
single task learning settings can benefit from such a meta-
learning process. For instance, consider robotic reinforcement
learning tasks for which data-efficiency has been a key
challenge [3]-[5], because acquiring new observations on a
real system can be extremely costly. Meta-learning processes
can help to maximize the effect of each acquired rollout.

In the machine learning community, this concept of learning-
to-learn has been explored in a variety of contexts [6]-[9] and
recently received renewed attention [10]-[14]. Recent work
on learning how to optimize [10]-[14] employs a two-phase

* both authors contributed equally

L Autonomous Motion Department, MPI-IS, Tiibingen, Germany.

QRSE—Lab, University of Washington, Seattle, USA.

SCLMC-Lab, USC, Los Angeles, USA.

Acknowledgements: This research was supported in part by National
Science Foundation grants 1IS-1205249, IIS-1017134, EECS-0926052, the
Office of Naval Research, the Okawa Foundation, and the Max-Planck-
Society.

11,3

£(3,9) £(3,9) £(G,9)

Trask; optinzer Ttasky optinizer

Fig. 1. Sequential learning of multiple task variants (lifting pringles,
lifting drill) with meta-learning. In this work, the meta-learning
process learns a memory of learning rates h, which can be transfered
between different learning problems. Transferring h leads to faster
learning of new task variations.

approach: First a meta-learner is optimized to perform well on
a priori chosen tasks. Then, once this meta-learner has been
trained, it is utilized in similar optimization tasks. In this work,
we propose an online meta-learning algorithm, that learns
to predict learning rates given currently observed gradients,
while optimizing task-specific problems. We show how we
can train such a memory of learning rates online and in a
computationally efficient manner. Our proposed approach has
several advantages: Because the meta-learning is performed
online, each observed data point is utilized for both the task
learning as well as the meta-learning. Not only does this mean
that we utilize observed data more effectively, but also that
the effect is immediate. Furthermore, online meta-learning
alleviates the need for having to collect data on which to
perform the learning-to-learn optimization process. Thus, our
meta-learner can improve when necessary, while recent work
is constrained to perform well on the task-distributions it was
trained on. Finally, the resulting memory of learning rates
can be transferred to similar optimization problems, to guide
the learning of the new task.

Here, we evaluate our approach on two supervised learning
tasks: sequential binary classification tasks on the MNIST
[15] data set, and incremental learning of a robot’s inverse
dynamics models. Our experiments show that when combining
an optimizer with our meta-learner, we generally increase
convergence speed, indicating that we utilize observed data
points more effectively to reduce errors in the learning
task. Furthermore, we show that when transferring our meta-
learner’s internal state to new learning tasks, learning progress
is faster.

In the following we start out by presenting background and
related work in Section [l We then introduce our meta-
learning approach in Section [T} Finally we both illustrate
and extensively evaluate our approach in Section [[V] before
concluding in Section

II. BACKGROUND

As mentioned above, most learning control problems use
computationally efficient variants of gradient descent

wt+1 = wt = h(VwEtask(f(w))) (1)

where L typically corresponds to some loss function,
f the model with parameters w to be optimized, and h
transforms the observed gradient according to some rule. Note,
in the remainder of this paper we sometimes suppress the
dependency of Ly on f, such that Lug(f(w)) = Lisk(w).
In this setting meta-learning can happen at several levels.
For instance, recent work [16] proposes a meta-learner that
biases the learning process towards feature representations
that supports few-shot learning of new tasks. On the other
hand, recent learning to learn approaches [10]-[14] have been
focused on learning optimizers that can be re-used for similar
optimization tasks. The focus of these approaches however
is on mitigating the issue of hyperparameter tuning instead
of learning representations that can be transferred between
(robotic) learning tasks.

Here, we present a novel meta-learning algorithm that is
aligned with this second type of meta-learning, but is focused
on maintaining an internal memory that can guide the learning
of new tasks. In the following we review related work
concerned with adaptive and learned optimizers.

A. Adaptive First-Order Methods

In the machine learning community adaptive optimizers such
as Adam [17], RMSprop [18], AdaGrad [19], AdaDelta [20]
have been developed. In essence, these optimizers extend the
gradient transform mapping h to be a function of sufficient
statistics such as the mean and variance of the observed
gradients

wi = w! - h(V,u,Etask(wt),]E[Vﬁtask(w)],]E[(Vﬁtask(w)();)])

The specific gradient transform h then depends on the
algorithm, as has been nicely summarized in [12], Table
1. These optimizers are of linear space and time complexity
with respect to the model parameters, and thus are suitable for
highly parameterized models such as deep neural networks.
Yet, choosing the initial learning rate for each of these
methods, or which base learner to choose remains a complex
manual tuning task [21], [22]. More importantly though, such
adaptive methods are not meant to extract information about
the learning process itself. Thus, while they have proven
successful at increasing convergence speed, they are not
designed to transfer knowledge to new optimization tasks.

B. Learning to Learn

More recently, the idea of meta-learning — learning to learn
— has re-gained momentum [10]-[14]. These approaches
parametrize h to be a function of parameters 6, which
determine how observed gradients are to be transformed

wil =t — R(VwLiask (w'); 0). 3)

The goal then is to learn 6 to create a well-performing
optimizer. In the most simple case, the parameter 6 simply

equals the learning rate 7, which can be adapted online, as
has been shown in [23]. Specifically, the authors propose to
compute the gradient V, A online and then perform gradient
descent on the learning rate itself. While this approach is
simple and general as well as computationally and memory
efficient, it does not retain a state — everything is forgotten.
Thus subsequent optimization tasks start from scratch.
When going from adaptive optimizers to learned optimizers
we hope to have learned something that we can reuse later
on; that we performed meta-learning on some level. Recent
work such as [10]-[12] addresses this to some extent. An
optimizer is trained to perform well on some pre-defined set
of optimization tasks and is then used to optimize similar
learning problems. While some approaches learn to transform
the gradient [10], [11], others assume h to be a scaling of
the gradient and learn to predict the learning rates [12]-[14].
Our work, falls into this second category of trying to learn
a coordinate-wise scaling of the gradient. To the best of
our knowledge, recent work either performs learning on the
step size online, but retains no memory [23], or the learning
of the optimizer is performed once at the beginning and
never updated again. In the latter setting, two learning phases
exist: In phase one h is trained, either via reinforcement
learning [11]-[14] or in a supervised manner [10]; In phase
2, the trained gradient transform h is used to optimize similar
learning problems.

These recent learning to learn approaches are mostly focused
on mitigating the issue of hyper-parameter tuning by learning
an optimizer. The goal of our approach is to learn a
representation of optimal gradient transforms that can be
transferred to new learning tasks. Furthermore, as opposed to
previous work, we learn this representation in an online
fashion while using this representation to optimize task-
specific optimization problems.

III. LEARNING A MEMORY FOR LEARNING RATES

In this work we investigate how we can learn a memory of
learning rates online, in a computationally efficient manner.
Ideally, this memory can be transferred to subsequent similar
learning tasks, and speeds up convergence of that optimization
problem. Furthermore, this memory should be continuously
updated to be able to adapt and compress new learning rate
landscapes as well.

We envision our meta-learning algorithm to be used as follows:
While our systems attempts to learn a model f(w) for a
specific task, such as a task-specific inverse dynamics model,
by minimizing the loss Lys(f(w)) it also aims at building
a model A that can predict how much to correct for observed
errors. Thus for each optimization step, we perform two
updates: a gradient descent step on the task-specific model
parameters, and an update our meta-learner’s memory h. An
overview in form of a pseudo algorithm is given in[I]

In order to develop such a meta learning approach several
challenges need to be met. One of the core challenges is the
choice of training signal to learn such a memory on. We take
inspiration from [24] and start out by showing how to derive
a simple learning algorithm to train a learning rate memory h

Algorithm 1 Online Meta Learning

Require: initial task model f(w"), initial meta-memory hgo

1. 2°=0

2: for tel,...,T do

3 2" = Vi Lus (f(w"))

4: hgt = MemoryUpdate(zt,zt_l,hgt-l) // eq.
5: wh=w = hee(2Y) // eq.[|and eq
6: end for

7: return f(w?), hyr

for one-dimensional optimization problems. Then, we discuss
a representation for h that supports computationally efficient,
incremental learning. Finally we show how to generalize our
meta learning approach to optimization problems involving
complex models such as neural networks.

A. Training Signal for the Learning Rate Memory

Let us assume that our main objective is a learning task that
requires us to minimize the objective Ls(w) with respect
to parameter w. While optimizing parameter w we also aim
to learn a function h that given gradient information of the
main objective Ly (w), can predict a learning rate 7

h(z;0) =0(2;0)z 4)

where 0 are the parameters of the learning rate memory h.
Ideally, we would like to optimize the parameters 6 with
respect to the loss Ly

Lol i(250)) = 5 (0= (z0))? ©

where 7 is the true optimal learning rate, and 7(z;6) the
predicted learning rate for input z = V., Lisk (w). To optimize
parameters ¢ via gradient descent, we would need access to
the true learning rate n

8[4;__ o on(z;0)

which is unknown to us. However, by comparing the gradient
of the current time step with the gradient of the previous time
step, we can determine whether we over or underestimated
7. If the gradient has flipped between two consecutive
optimization steps, the learning rate was too large, meaning
n—"7(z;6) > 0. On the other hand, if the signs of the gradients
are the same, then we can most likely increase the learning
rate.

With this knowledge at time step ¢, the memory parameter
updates can be approximated as

(6)

o7 t.9
gt+1 zet_g(_(nt—ﬁ(ZtQHt)))% @
~r t.pt
N ¢ sign (ZHth) M (8)

00

where ¢ is a step size parameter for the gradient descent on
0. The exact form of this gradient update depends on what
parametric form 7(z;0) takes.

B. Learning Rate Memory Representation

As mentioned previously, we aim at developing an algorithm
that can continuously update the learning rate memory h.
Designing the function approximator h, such that forgetting
of previously learned parameters is minimized, is one of the
challenges of this approach. Here we choose to use locally
weighted regression [25], which is known for computational
efficiency and which has the capability to increase model
complexity when necessary. With locally weighted regression
we decompose the memory h into M local models h,,, each
parametrized by their own parameters 6,,,.

Furthermore, in locally weighted regression, the loss function
L, also decomposes into M separately weighted losses, each
dependent on only their respective parameters 6,,:

M M
Ly, (0) = Zlﬁm(e) = lem(Z)(n-ﬁm(Zﬁm)f)

where 1, (2) is the weighting function that defines the active
neighborhood for each local model. A standard selection
of this weight function i25 the squared exponential kernel
m(2) = exp (<0.5 50,

Using this memory representation leads to following update
rule per local model

aﬁm(zt§ eqtn)

06t '
Note, how only local models that are sufficiently activated
require updating. Finally, at prediction time the predicted

learning rate is a weighted average over all local models’
predictions:

OU = !+ ¢ sign (z”lzt) U (21) (10)

Zf\y/{:l %n(z)f]m(% em)
Z%:l VYm(2)

We now have an algorithm that can train a model 7 to predict
a learning rate for one-dimensional optimization problems.
An illustration of what kind of learning rate landscapes can
be trained with this algorithm is given in the experimental
Section in Figure

As a final step, we show how this approach can be generalized
to models with multiple high-dimensional parameter groups,
as commonly encountered in deep learning models.

M= (1)

C. Multi-Dimensional Learning Problems

Above we have assumed z = V,Lyx(w) to be one-
dimensional. A key question is how to generalize to opti-
mization tasks that not only have high-dimensional gradients
z = Vg f(w), but also multiple layers of parameters
L (w?l, ... wX), where w” stands for the k' parameter
group, as is typical for deep neural networks for instance.

The straightforward extension would be to compute
sign(z'*12!) as the inner product sign(z*'’ 2t) of two
consecutive gradients, and place local models in the Dy-
dimensional gradient space. However, this has the following
consequences: We would only learn to predict one learning
rate per time step and we loose a lot of information through
the inner product of the two gradients. Furthermore, the
number of local models needed to cover the gradient space

evenly would grow exponentially with the gradient dimension
Dy, and would significantly increase memory requirements
while decreasing computational efficiency.

On the other end of the spectrum we can choose z =
Vaw,; Luask(w) to be the partial derivative with respect to
the i*" coordinate, and create a learning rate memory per
coordinate of the parameter vector w. Assuming that w € R”,
this would require D memory models, each with M local
models. This choice, would create a learning rate prediction
per gradient coordinate, and thus offers maximum flexibility.
However, it also has high memory (storage) requirements.
Here we choose a different route. First, we identify natural
parameter groups, such as parameters w* of each hidden
layer in deep neural networks. For each of these K parameter
groups, a memory h* is created. Then, for the k*" parameter
group, we pool the updates of all coordinate-wise updates,
by computing the average update per local model, across all
coordinates

ayty = sign ([2]50 [21h) vk ([2)5) (12)
1 2y O (214,13 01)

9t+1,k‘ — et,k - t,k m s m] 13

m m +§ Dk Zd:(am,d 89%) ()

where [2]s means we take the d'" coordinate of z =
Vwk Liask (W), and Dy, denotes the dimensionality of the k"
parameter group w”. At prediction time, we similarly make
predictions for each parameter group, per gradient coordinate
[2]a,x to obtain a learning rate per parameter dimension.
Intuitively, this choice means that parameters within the
same parameter group share the same learning rate memory,
expecting that they would benefit from the same scaling
behavior. With this representation our meta-learner then
requires extra memory resources in the order of O(KM).
Furthermore, the computational complexity of the memory
update as well as learning rate prediction is in the order of
O(DM).

D. Implementation Details

Finally, to implement this approach, a few design choices have
to be made: Each memory is pre-allocated with a fixed number
M of local models. Since, the localization happens in the
space of one-dimensional partial gradients - we linearly space
the local models centers within the range of the minimum
and maximum gradient value allowecﬂ The size of each local
model is determined by parameters J\,,, which are chosen to
create a reasonable amount of overlap between neighboring
local models. Thus the more local models we allow, the
smaller they become.

Furthermore, we choose local constant models, such that
7(2,0m) = 0., in our experiments. Intuitively, this means
that each 6,, corresponds to a learning rate value, localized
in gradient space. We further use z‘*'z! and clip the
resulting (absolute) value at 1 instead of the sign(z'*1z?).
We have empirically found that this significantly improves
the convergence since memory updates are less pronounced

Ithis corresponds to the choice of gradient clipping as is common in
Tensorflow implementations

in regions with small gradients. Finally, at the beginning of
a learning problem, when no previous memory of learning
rates exist, we initialize the memories to predict an initial
learning rate 7, thus at the very beginning all 6,,, = 7.
At runtime, when performing a task-specific learning problem,
we then immediately start optimizing all 2* as well. At each
time step ¢, we update both, the parameters of the task-specific
problem w and the learning rate memory parameters 6.

On a final note, we want to point out that our presented
approach here can be used on top of any base-learner. While
not explicitly noted, it is easily possible to first apply some
fixed-rule based learner, such as Adam [17] to transform
the gradient, and then apply our learned memory evaluation
on that transformed gradient. In fact, in our experimental
evaluation we include results for both basic gradient descent
with learning rate memory, and Adam with learning rate
memory.

IV. EXPERIMENTS

We evaluate our meta learning algorithm in three different
settings. We start out with illustrating our approach on the
Rosenbrock function, a well known non-convex optimization
problem. Then we show extensive results on two learning
tasks: First we investigate learning binary classifiers on the
MNIST data set, both illustrating the effect of transferring the
learning rate memory between similar tasks and showcasing
robustness to parameter choices. Finally, we extensively eval-
uate our meta-learning approach on online inverse dynamics
learning tasks for manipulators. We start out by explaining
our experimental setup and the baseline methods we compare
too.

A. Baselines and Experimental Setup

As mentioned in Section [III} our proposed meta-learning
can be combined with different base-optimizers. We need to
choose an optimizer on both hierarchies, the task specific
optimizer with base learning rate 7, and the meta optimizer
with base learning rate £. We present results for 3 variants:
basic gradient descent without meta-learning (GD), gradient
descent with meta-learning with either gradient descent to
update the memory (MetaGD) or with Adam [17] to update
the memory (MetaGDMemAdam). For results involving neu-
ral networks, a memory of learning rates per hidden layer
was learned.

We also compare to another meta-learner: L2LBGDBGD[10]
is a very recent approach which treats the optimizer itself
as a function approximator, typically represented by a two
layer recurrent LSTM network which transform the gradients
directly. L2LBGDBGD does require to learn the optimizer prior
to task-specific learning. For our binary MNIST problem
we sample initial neural network configurations (without
structural changes) and optimize on the same data as used for
evaluation. In order to avoid overfitting we run a validation
epoch with a random network instance after every second
optimization. After 16 rounds of optimizing a L2LBGDBGD
learner we take the best L2LBGDBGD network according to
the validation evaluation. All of the evaluated approaches,

P x

g 2 8 E
(I S

T
AN
WL\

107

10t

107

loss.

— & 6% 1072
Meta GO run 1 4x1073
—— Meta GD run 2 Ix1073

2x 1073

103

6x 1073

4x107?
3x1073

learning rates

— GO
META GD x_2

2x 1073

103

100 125 150 175 200 0 5 50 EE] 100 125 150 175 200

Fig. 2.

top row: (left) The Rosenbrock function with the meta-learners path. (middle) Convergence to minimum for gradient descent

with 77 = 0.001, and two consecutive runs of MetaGD with initial 1 = 0.001. The first run with a learning rate memory, starts with all
local models predicting the initial learning rate n = 0.001, but quickly builds a model of learning rates - thus this already converges faster
than without a memory. The second run of gradient descent with learning rate memory re-uses and updates the memory from run 1 and
converges even faster. (right) the predicted learning rates for both dimensions, as a function of optimization steps. bottom row: (left)
zoomed in Rosenbrock function to visualize path in the valley. The blue dots (in both top and bottom Rosenbrock plots) indicate where we
took a snapshot of the memories. (right) 3 snapshots of the memories, with x-axis representing values of the partial derivatives z, and the
y-axis the predicted learning rate values. The black horizontal lines, indicate the current partial gradient - at the time of the snapshot.

including our own, are based on tensorflow [26] implementa-
tions.

B. Rosenbrock Problem

We start off by illustrating our approach on the Rosenbrock
problem, as visualized in Figure [2fleft). This is a 2D
optimization problem, and each dimension has it’s own
memory of learning rates (as shown in Figure [2). We compare
the convergence of gradient descent with n = 0.001 and
two consecutive runs of gradient descent with a memory of
learning rates, starting from the same initial position. The
memories are initialized to predict 77 = 0.001 for the first
optimization run. For the second run, we carry over the
memories from the previous run.

The middle plot (top row) of Figure [] shows the convergence
of each of these optimization runs. Notice how already the
first optimization run benefits from the online meta-learning.
The second run converges even faster. The right plot (top row),
shows the corresponding learning rates of both dimensions
applied at each iteration of the second optimization run.
The bottom row shows a zoomed in Rosenbrock function,
centered around the path taken by the meta-learner. The blue
dots indicate where we have taken a snapshot of the learning
rate memories. In the bottom right - we show the memory of
the second dimension, at those 3 different time steps during
the first run. We see how the memories initially learn to
predict increased learning rateﬂ Once the optimization hits
the valley, it learns to predict larger learning rates as long as

ZNote, this is the case because we clip the gradients at +10 and thus it
learns to increase the learning rates even in high curvature areas

the optimization stays within a certain gradient range, at the
borders of that gradient range the learning rate is drastically
reduced to prevent jumping out of the valley.

C. Binary Mnist Problems

In our second set of experiments we look at binary MNIST
classification tasks. Specifically we choose a sequence of 3
binary classification learning tasks. This experimental setup
allows us to analyze the effect of transferring the memory
of learning rates between similar learning problems. Task 1
learns to classify digits 1 and 2, task 2 digits 1 and 3 and
task 4 digit 1 and 4. Note, that we simply chose the first 4
digits for this experiment, and did not optimize that selection.
We use a neural network with the following structure: An
input layer that takes the image as input; a convolutional layer
followed by a max pooling operation; this is followed by a
densely connected layer with dropout; finally, the output layer
is another dense layer. All hidden units activation functions
are rectified linear units. The loss function is the softmax cross
entropy loss. For all meta-learning variants the memories (one
per hidden layer) allocate a total of M =100 local models.
Training is performed in batch-mode.

We start out by illustrating the loss convergence of optimizing
the learning tasks in sequence in Figure [3] in the left three
plots. In green we see basic gradient descent without any
memory of learning rates. Convergence of MetaGD and
MetaGDMemAdam are shown in blue and red respectively.
For Task 1, no previous memory exists, thus all optimizers
start with the same learning rate (except L2ZLBGDBGD which
does not have an initial learning rate parameter). The meta
variants converge faster than basic gradient descent. In task

Task 1: Loss Task 2: Loss

Task 3: Loss convergence by learning rate and method

— @
— MetaGd

02— 20-2 { =" MetaGd new memory
— MetaGd — MetaGdMemadam
— MetaGdMemAdam
— L218GD

=== MetaGdMemAdam new memory
— L218GD

— o
— MetaGd

==+ MetaGd new memory
— MetaGdMemAdam 2

=== MetaGdMemAdam new memory
— L218GD

0 20 a0 60 £ 100 0 20 a0 60 £ 100
iterations iterations

Fig. 3.

0 20 a0 60 £ 100 01 001 0,001
iterations

Results on the 3 binary MNIST learning tasks (left 3 plots top) convergence behavior of one randomly seeded (same for all

optimizers) network on the 3 subsequent learning tasks with gradient descent based optimizers. (right): average number of iterations it took
for the loss to drop below 0.1 on task 1 for different initial learning rate choices ([0.1,0.01,0.001]). Results for meta-variants (from
left to right: L2LBGDBGD, GD, MetaGD, Adam, MetaGDMemAdam) are obtained with new memories that have been initialized with the

respective learning rate choice.

2 we deploy each meta-variant with a new memory and with
the memory trained in task 1. Meta-variants with the new
memory again convergence faster then basic gradient descent;
meta-variants initialized with the previously learned memory
converge even faster. Notice, that we continue to update the
memory of learning rates during task 2 optimization. For task
3 we see the same convergence behavior as for task 2. We
also compare against L2LBGDBGD. This learned optimizer
does not have a base learning rate, it requires costly training
on similar network instantiations prior to usage. However,
it requires a (meta) learning rate to train the optimizer.
Here we chose to depict the best L2LBGDBGD optimizer
we could train, which was achieved with a learning rate of
0.01. Furthermore, the L2LBGDBGD optimizer was trained
specifically for each task. Notice, on task 1 L2LBGDBGD
achieves faster convergence, however any subsequent learning
tasks achieve similar convergence as the Met aGDMemAdam-
variant.

Note - we have achieved similar results when using Adam
as the base optimizer. Adam itself, without any meta-learner,
performs very well on this task, and can outperform all of
the above meta-learning variants (including L2LBGDBGD).
However, when combining Adam with our meta-learner, we
achieve even better results. This confirms that our online meta-
learning approach is versatile and can speed up convergence
even when combined with an adaptive optimizer such as
Adam. These results are omitted due to space limitations.
Additionally, Adam does not perform well in the sequential
problems such as the inverse dynamics task discussed in
Sec.

In the right most plot of Figure [3] we depict how many
iterations each optimizer variant requires to achieve an error
below 0.1, as a function of initial learning rate values.
These results are averaged across 3 random seeds. Note
L2LBGDBGD is constant because after having been trained
no initial learning rate parameter is required. Here we include
Adam, with and without meta-learning. In green we see
gradient descent GD and MetaGDMemAdam, while in blue
we see Adam and MetaGDMemAdam. On average, our meta-
learning variants achieve a low error faster, irrespective of the
initial learning rate, while gradient descent does not converge
within the first 100 iterations, and Adam performs well if the
learning rate is chosen high enough. This confirms that at each
iteration, our meta-learning approach utilizes the observed

data more efficiently and as a result leads to faster learning
progress. Furthermore, our initial analysis also shows that
with the use of our meta-learner the learning frameworks
convergence speed is less dependent on the choice of the
base learning rate. In the future, we hope to transfer this to
reinforcement learning settings.

D. Inverse dynamics learning

In our final set of experiments we explore the use of our
meta-learning variants on a typical motor control learning
problem: learning of an inverse dynamics model. Learning
inverse dynamics is a function approximation problem that
maps the current joint position, velocities and accelerations
(¢, 4, g) to torques (7). This is an interesting learning problem
since this function mapping generally cannot be assumed to
be stationary due to e.g. unknown payload changes. Hence it
requires online adaptation of the learned inverse dynamics
model, which can benefit from a meta-learner that is invariant
to such changes. Another interesting aspect is the abundance
of data, typically continuously generated at very high rates
(e.g. 1 KHz). Here we consider two possibilities of processing
such a high frequency data stream: we either collect task-
specific data and update a task-specific inverse dynamics
model in a batch setting (Sec. [[V-D.I)); or we optimize the
model online, directly on the streaming data (Sec. [[V-D.2).

In both experiments we use a fixed-base manipulation
platform equipped with 7-DoF Kuka LWR IV arms and
three-fingered Barrett Hands. We learn the inverse dynamics
model for the right arm resulting in a 21-dimensional input
space with one output per joint.

1) Batch Learning: For this experiment we collect data of
two motion tasks (in simulation): Task 1 corresponds to
acceleration policies [27] trained to move along a rectangular
path in the horizontal plane, while task 2 corresponds to the
same rectangular path in the vertical plane. These movements
are performed under strong perturbations of the assumed
inverse dynamics model. Data collection consists of recording
joint position, velocities, accelerations and torques at each
time step (1ms). Each task is trained on 10000 collected data
points. Per task, we train a neural network per joint in a
single batch setting, meaning that the full dataset is used for
each optimization step. The neural network structure has 3
densely connected hidden layers with [100,50,10] hidden
units, respectively. All activation functions are rectified linear

Task 1: Loss Task 2: Loss n GD MetaGD GD MetaGD
I 10 lift noreload noreload reload reload
no object | 180.062 228.421 180.062 | 228.421
0.01 light 234.276 228.704 55.407 18.926
8w 8w heavy 220.249 167.623 0.034 0.027
— no object | 119.317 65.221 119.317 65.221
— —_— T eevenay T 0.001 light 110396 | 63.952 2233 0.692
T e T aGiemdam new merry heavy 113.62 66.958 0.618 0.454
L T N SR T s & @ w® w no object | 468.840 | 80.219 | 468.849 | 80.219
0.0001 light 489.441 78.799 10.712 0.593
heavy 513.898 82.804 6.444 0.694
Fig. 4. Learning task-specific inverse dynamics models in batch no object | 256.076 124.62 | 256.076 124.62
mode, on the 1st joint of our 7-DOF manipulator. Meta-Learning average light 278.038 | 123.818 22.784 6.737
helps to convergence faster within task 1 already, when transfer- heavy 282.589 | 105.795 2.365 0.392
ring the learned memory of learning rates to task optimization, TABLE I

convergence speed is increased.

units, and dropout prior to the output layer. The loss function
is the mean squared error (MSE) on the predicted torque
values.

We perform the two learning tasks in sequence: first we
train a dynamics model on task 1, then we learn a new
(uninitialized) dynamics model for task 2. The convergence
of each optimization task is shown in Figure [4] Notice how
using and optimizing our meta-learner while optimizing
the inverse dynamics model for task 1 already leads to
faster convergence. When transferring the meta-learner for
task 2 learning convergence to a low error is even faster.
Thus, improving the convergence by re-using the meta-
optimizer while adapting to new tasks allows to perform
faster incremental learning of task specific inverse dynamics
models.

2) Sequential Online Learning: In this experiment we con-
sider the task of lifting an object with different configurations
(no, light, heavy object) on the real manipulation platform. We
collect position, velocities, accelerations and torques at each
time step (1ms), resulting in three data sets with more then
3000 samples each. Further, we execute each task variation
10 times to assess the variance of the learning process. All
results presented are averaged across these 10 trials.

In this experiment we have 3 learning phases, first we train
an uninitialized network and meta-learner on the lifting no
object task. Then this network is further trained on the data
corresponding to task-variant 2: light object. Finally, the
same network is re-used and further adapted on task-variant
3: heavy lifting. This scenario tests, how quickly we can
adapt previously trained networks, with and without the meta-
learner.

Again, we train one network per joint. The neural network
structure consists of 3 densely connected hidden layers
with [100,50,10] hidden units, respectively. All activation
functions are rectified linear units. The loss function used
to optimize the parameters is the mean-squared-error (MSE).
For all experiments we use M = 200 local models for each
memory (per layer), a memory learning rate of 0.005, and
gradient clipping of 1.0. These values have been determined
empirically. We present results for joint 1 since it exhibits
large torque variations given payload changes. Notice, the
initial high loss values are due to the torque range which
is between 30 and 35 N/m hence the model optimized with
mean squared error loss has to first adjust for this offset.
Different to the previous experiment each learning phase is

MSE OF THE FIRST 500 MS OF EACH TASK EXECUTION.

updating the network online using sequential data batches
of size 10, meaning we take data samples collected within
the last 10 milliseconds and perform one optimization step.
Every data sample is processed exactly once. This is a very
challenging setting since gradients are highly correlated and
the overall optimization step should be faster than 10 ms.
From our empirical evaluation we found that Adam does not
perform well in these very correlated settings which is why
we omit the results. Computation times for both MetaGD
and basic GD are less then 3 ms on standard hardware, hence,
fast enough to consume a continuous data stream of inverse
dynamics data.

In Figure [5] we illustrate the convergence of the loss as we are
moving along the trajectory of each lifting task, when using
7 =0.0001. In the left most plot, we see convergence on task
1 of GD and MetaGD. The middle plot shows convergence
on task 2 (light object), comparing learning from scratch (no
reloading of network or meta-learner) with continual learning
of the previously learned network (reload), for both basic
GD and MetaGD. As we can see, when warm-starting, we
immediately start out with a lower error for both GD and
MetaGD. With MetaGD we reduce the experienced error
faster. Note, even without reloading, GD and MetaGD (net
and memory uninitialized) manage to learn a good model
by the end of the movement, however they produce larger
prediction errors at the beginning of the movement. Similar
behavior can be observed on the final task of lifting the heavy
object.

We performed this experiment for n = [0.01,0.001,0.0001]
and summarize the mean loss for the first 500 ms of the
task execution of joint 1 in Table [l We are mostly interested
in assessing fast convergence, therefore the focus on the
beginning of the task. The data clearly illustrates the benefit
of using our proposed Met aGD, that reaches a low loss faster,
meaning using less data, in almost all settings. Interesting
to note is that with a really high learning rate all methods
achieve very good results e.g. 0.01 heavy, yet, due to the
high learning rate there is a high chance that some gradient
in the sequence will drive the model into a “bad” parameter
space, resulting in poor convergence (0.01 no object).

V. DISCUSSION AND FUTURE WORK

We have presented a novel meta-learning algorithm, that can
incrementally learn a memory of learning rates as a function

Task: lift no object

Task: lift pringles

Task: lift heavy pringles

=== GD o reload
MetaGD no reload

e MSE of past 500 m:
e MSE of past 500 m:

,,,,,,,,,, -~ GD o reload
— GDreloag

. MetaGD no reload
100 . MetaGD reload

=== GD o reload

— GD reload
MetaGD no reload
MetaGD reload

average MSE of past 500 msec

[] 500 1000 0 00 3000 [] 500 1000

1500 200
time in milliseconds

Fig. 5.

0 500 3000 3 530 1000 1500 2000 500 3000

1500 20
time in millseconds time in milliseconds

Loss convergence when online learning a inverse dynamics model on the 1st joint of our 7-DOF manipulator. (left) uninitialized

network is updated online with GDand MetaGDwith an uninitialized memory. (middle) online learning convergence on task-variant 2 with
and without reloading the network and meta-learner from task-variant 1. (right) convergence on task-variant 3 with and without reloading.

of current gradient observations. We have discussed how
to learn this memory in a computationally efficient manner
and have shown that deploying such a meta-learner leads to
consistently faster convergence in the number of iterations.
Furthermore, we have shown that memories of learning rates
can be transferred between similar learning tasks, and speed
up convergence of the new — previously unseen — learning
problems.

However, thus far this effect has been constrained to base
optimizers that do not transform the gradient before updating
the learning rate memory. Thus, in future work we aim to
investigate whether we can extend the state with which the
memory is indexed beyond simple gradient information. The
hope would be that this would allow the memory to capture
even more complex learning rate landscapes. It further could
enable to maintain the underlying structure between tasks,
better coping with forgetting of learning rate memories. The
challenge here is to do so while maintaining computational
efficiency.

Another interesting avenue would be to use meta-learning
for transfer learning. This is especially interesting in robotics
since real robot experiments are very costly and in general
do not scale in comparison to simulation. Yet, simulation
results typically do not translate directly to the real world.
Thus, the meta-learner will hopefully result in less real robot
experiments required to achieve good performance since it
can optimize the problem faster, thus, transferring information
from simulation to real world experiments. Finally, we have
shown how a simple update rule as discussed in Section
can create a very effective meta-learner. Yet, it would be
interesting to combine our incremental meta-learner with
even more expressive objectives that can guide the learning
of the memory.

REFERENCES

[1] D. J. Herzfeld, P. A. Vaswani, M. K. Marko, and R. Shadmehr, “A
memory of errors in sensorimotor learning.” Science, 2014.

[2] D. Kappler, F. Meier, N. Ratliff, and S. Schaal, “A new data source
for inverse dynamics learning,” in Proc. of the IEEE/RSJ Conference
on Intelligent Robots and Systems, 2017.

[3] M. Deisenroth and C. E. Rasmussen, ‘“Pilco: A model-based and
data-efficient approach to policy search,” in Proc. of the International
Conference on machine learning (ICML), 2011, pp. 465-472.

[4] S. Gu, T. Lillicrap, Z. Ghahramani, R. E. Turner, B. Scholkopf, and
S. Levine, “Interpolated Policy Gradient: Merging On-Policy and Off-
Policy Gradient Estimation for Deep Reinforcement Learning,” ArXiv
e-prints, Jun. 2017.

[5] S. Kamthe and M. P. Deisenroth, “Data-Efficient Reinforcement
Learning with Probabilistic Model Predictive Control,” ArXiv e-prints,
Jun. 2017.

[6] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn
using gradient descent,” in Proc. Intl. Conf. On Arti. Neural Networks,
2001.

[7] J. Schmidhuber, “Evolutionary principles in self-referential learning,”
On learning how to learn: The meta-meta-... hook.) Diploma thesis,
Institut f. Informatik, Tech. Univ. Munich, 1987.

[8] N. Schweighofer and K. Doya, ‘“Meta-learning in reinforcement
learning,” Neural Networks, vol. 16, no. 1, pp. 5-9, 2003.

[9] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-
learning,” Artificial Intelligence Review, vol. 18, no. 2, 2002.

[10] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, and N. de Freitas, “Learning to learn by gradient descent
by gradient descent,” in Advances In Neural Information Processing
Systems, 2016, pp. 3981-3989.

[11] K. Li and J. Malik, “Learning to optimize,” arXiv preprint
arXiv:1606.01885, 2016.

[12] C. Daniel, J. Taylor, and S. Nowozin, “Learning step size controllers
for robust neural network training.” in AAAI 2016, pp. 1519-1525.

[13] S. Hansen, “Using deep g-learning to control optimization hyperpa-
rameters,” arXiv preprint arXiv:1602.04062, 2016.

[14] J. Fu, Z. Lin, M. Liu, N. Leonard, J. Feng, and T.-S. Chua, “Deep
g-networks for accelerating the training of deep neural networks,” arXiv
preprint arXiv:1606.01467, 2016.

[15] Y. LeCun, “The mnist database of handwritten digits.” 1998.

[16] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” arXiv e-prints:1703.03400, 2017.

[17] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
ArXiv e-prints, Dec. 2014.

[18] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude.” COURSERA: Neural
Networks for Machine Learning, 4 2012.

[19] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121-2159, 2011.

[20] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,”
ArXiv e-prints, Dec. 2012.

[21] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with
Warm Restarts,” ArXiv e-prints, Aug. 2016.

[22] P. Goyal, P. Dolldr, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour,” ArXiv e-prints, Jun. 2017.

[23] A. Gunes Baydin, R. Cornish, D. Martinez Rubio, M. Schmidt,
and F. Wood, “Online Learning Rate Adaptation with Hypergradient
Descent,” ArXiv e-prints, Mar. 2017.

[24] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: the RPROP algorithm,” in IEEE International
Conference on Neural Networks, 1993.

[25] S. Schaal and C. G. Atkeson, “Constructive incremental learning from
only local information,” Neural computation, vol. 10, no. 8, 1998.

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” arXiv
e-prints:1603.04467, 2016.

[27] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328-373, 2013.

	I Introduction
	II Background
	II-A Adaptive First-Order Methods
	II-B Learning to Learn

	III Learning a Memory for Learning Rates
	III-A Training Signal for the Learning Rate Memory
	III-B Learning Rate Memory Representation
	III-C Multi-Dimensional Learning Problems
	III-D Implementation Details

	IV Experiments
	IV-A Baselines and Experimental Setup
	IV-B Rosenbrock Problem
	IV-C Binary Mnist Problems
	IV-D Inverse dynamics learning
	IV-D.1 Batch Learning
	IV-D.2 Sequential Online Learning

	V Discussion and Future Work
	References

