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Abstract— We consider the task of monitoring spatiotem-
poral phenomena in real-time by deploying limited sampling
resources at locations of interest irrevocably and without
knowledge of future observations. This task can be modeled
as an instance of the classical secretary problem. Although this
problem has been studied extensively in theoretical domains,
existing algorithms require that data arrive in random order to
provide performance guarantees. These algorithms will perform
arbitrarily poorly on data streams such as those encountered
in robotics and environmental monitoring domains, which tend
to have spatiotemporal structure. We focus on the problem of
selecting representative samples from phenomena with periodic
structure and introduce a novel sample selection algorithm
that recovers a near-optimal sample set according to any
monotone submodular utility function. We evaluate our al-
gorithm on a seven-year environmental dataset collected at
the Martha’s Vineyard Coastal Observatory and show that it
selects phytoplankton sample locations that are nearly optimal
in an information-theoretic sense for predicting phytoplankton
concentrations in locations that were not directly sampled.
The proposed periodic secretary algorithm can be used with
theoretical performance guarantees in many real-time sensing
and robotics applications for streaming, irrevocable sample
selection from periodic data streams.

I. INTRODUCTION

Many interesting phenomena vary on spatial and temporal
scales that are too large to monitor in their entirety. At-
tempting to understand these phenomena using limited repre-
sentative samples is known as constrained sample selection
or experimental design [1]. In most problem formulations,
samples are chosen to maximize some utility function while
satisfying a fixed cost requirement: an autonomous under-
water vehicle (AUV) may need to maximize the amount
of phytoplankton in 10 collected water samples; a planetary
rover may need to collect a maximally diverse set of rock
samples that weigh less than 5 kg; a policy maker may wish
to infer pollutant flow throughout a water body but only
spend $10, 000 on water samples. Constrained sample selec-
tion problems arise in many real-world contexts, spanning
domains from robotics to data mining to online auctions.

Constrained sample selection problems can be divided into
offline and streaming problems. In offline problems, potential
sample locations are known ahead of time and an algorithm
can make arbitrarily many passes through these locations
to find the optimal placement of samples. In streaming
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Fig. 1. Streaming irrevocable sample selection: In an example of
streaming, irrevocable sample selection, an autonomous underwater vehicle
must irrevocably collect representative water samples along a fixed trajectory
at locations that are the most informative about a latent quantity of interest
(q.o.i.), e.g. plankton concentrations (1). After observing the value of the
quantity of interest at the sample locations (2), we can infer a mapping
between environmental observations and the latent q.o.i. for later use (3).

problems, potential sample locations are revealed to the
algorithm sequentially, and the algorithm must choose to
collect or not collect a sample in real-time. Both the offline
and streaming constrained sample selection problems are
known to be NP-hard, but polynomial time approximation
schemes exist for a variety of problem formulations [2].

One important variant of the streaming sample selection
problem arises when an autonomous agent must choose to
collect samples irrevocably, i.e. the agent must decide in real-
time whether to collect a sample, cannot return to collect a
sample at a previously rejected location, and cannot later
reject a collected sample. This streaming, irrevocable-choice
variant of the constrained sample selection problem arises
frequently in real-time domains and is known as the secre-
tary problem because of parallels to the problem of hiring
the most qualified secretarial candidate from a stream of
applicants [3]. Often, in these streaming sampling problems,
the quantity of interest (q.o.i) is not directly observable and
samples must be selected based on observable quantities
that are hypothesized to be correlated with the quantity of
interest. In these problems, it is also often desirable to select
samples that are informative for the purpose of inference
about the distribution of the q.o.i.; this can be addressed by
optimizing an information-theoretic utility function [4].

For example, an AUV following a fixed trajectory through
a marine environment may be equipped with k single-use
water samplers and need to collect the set of water samples
that are the most informative about the distribution of a
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quantity of interest (q.o.i.) e.g. plankton species. However,
the AUV is unable to measure the plankton present in the
water stream in real-time. Instead, the AUV can measure the
surrounding environmental conditions and decide to collect
a sample based on these environmental covariates (Figure
1). Finding the optimal set of locations to sample at along
its trajectory without a model of the environment is a hard
problem: if the AUV collects samples too early, it will not be
able to sample the interesting locations it discovers later in
the mission; if the AUV passes over interesting locations at
the start of the mission, it may not see enough high quality
locations later in the mission at which to collect samples.

The secretary problem has a long history and a variety of
near-optimal solutions for different problem domains have
been developed [3]. However, solutions to the secretary
problem nearly always require that data are seen in random
order. This stringent requirement is rarely met in robotics
and real-time sensing domains, which produce spatially and
temporally correlated data streams. In this work, we focus on
data streams with periodic spatiotemporal structure. Periodic
data arise commonly in environmental monitoring datasets
due to natural cycles on a daily, lunar, and annual basis and
in robotics tasks such as repetitive surveying. In this work,
we introduce a multiple-choice secretary algorithm to choose
k samples from a data stream with periodic structure and
provide a lower bound on the utility of the selected samples.

The contributions of this work include:
• We introduce the periodic secretary algorithm, which

leverages spatiotemporal structure to choose near-
optimal samples from a periodic data stream according
to any monotone submodular utility function.

• We develop an algorithmic framework that allows
information-theoretic utility functions to be used within
secretary algorithms in order to minimize the uncer-
tainty in estimates of a quantity of interest at locations
or times that are not directly observed.

• We validate our algorithms on a dataset containing phy-
toplankton observations from January 2009 to January
2016, and show that the phytoplankton samples selected
by the periodic secretary algorithm are best able to
predict phytoplankton concentrations in environmental
conditions that were not directly sampled.

II. RELATED WORK

The problem of constrained sample selection has been
given a thorough treatment in both the offline and streaming
settings. In offline settings, previous work has explored
using information theoretic utility functions in spatiotem-
porally correlated data domains to select high utility sam-
ples. Nemhauser et al. [2] show that for submodular utility
functions, a simple iterative greedy algorithm where the
highest-utility sample given previous samples is selected
at each iteration will produce a set with utility greater
than (1 − 1/e) times the utility of the optimal set. Other
works use this greedy algorithm along with Gaussian process
(GP) models and information-theoretic utility functions to

do offline sample selection [4] and to plan information-rich
exploration paths for robots [5]. There also is a rich body
of literature in the spatial statistics community discussing
optimal sensor placement in an offline setting for a variety
of placement criteria [1].

On the other hand, streaming, irrevocable sampling algo-
rithms remain largely constrained to simple utility functions
and random arrival order assumptions. When selecting a
single maximal sample, the problem is known as the secre-
tary problem and Lindley [6] provides a well known result:
by observing the maximum utility sample in the first 1/e
fraction of the stream and picking the first sample with higher
utility, the highest utility sample will be selected in 1/e cases.
If we instead want the set of k samples with maximum
utility, the problem is known as the multiple-choice secre-
tary problem. Babaioff et al. [7] introduce an e-competitive
algorithm for the multiple-choice secretary problem and an
alternative approach [8] provides a 1/(1−5/

√
k)-competitive

algorithm. However, neither algorithm can be implemented
with information-theoretic utility functions and both require
that data arrive in random order. The most general solution
to the multiple-choice secretary problem is presented by
Bateni et al. [9]. For any monotone submodular utility
function Bateni et al. [9] provide a 7/(1− 1/e)-competitive
algorithm known as the submodular secretary algorithm.
The submodular secretary algorithm splits the data into k
segments and runs the single secretary algorithm on each
segment. Despite allowing flexibility in utility function, this
algorithm still requires that data arrive in random order.

Kesselheim et al. [10] attempt to relax the assumption that
data arrive in random order and define a class of distributions
for which the assumption is violated but the performance of
the standard secretary algorithm remains bounded. However,
most spatiotemporally correlated data, including periodic
data, do not satisfy even these relaxed constraints. Vardi [11]
proposes a secretary algorithm for quasi-periodic data which
arrive in random order. This algorithm requires that each
observation will appear exactly m times in the data stream,
an often unrealistic assumption in noisy data streams.

Streaming, irrevocable-choice algorithms have been ap-
plied to select samples in environmental monitoring and
robotics applications, even when the data streams in question
violate random arrival order assumptions. Das et al. [12]
apply the submodular secretary algorithm on-board an AUV
to select k water samples with the highest concentration
of a harmful phytoplankton and use a GP model to pre-
dict these concentrations. However, they directly apply the
submodular secretary algorithm, despite their data being
spatially correlated, which could lead to arbitrarily poor
sampling performance. Girdhar et al. [13] also deploy a
modified multiple-choice secretary algorithm on an AUV
to choose the most informative images to send back to a
ground station. However, this approach is incompatible with
the use of information-theoretic utility functions, requires
that data arrive in random order, and does not account for
spatiotemporal structure in an image stream.



III. TECHNICAL BACKGROUND

In the general constrained sample selection problem, we
must choose a set A consisting of k sample locations from
a finite set of possible locations in our observation space V
such that a utility set function f : 2V → R+ is maximized
(Eq. 1). The full observation space V is split into a set of
locations where it is possible to collect samples S and a set
where no samples can be collected U = V \ S.

A∗ = argmaxA⊆S:|A|=kf(A) (1)

In the offline setting, S and U are defined by accessibility,
price, or other concerns. In the streaming setting, S is the
set of observations encountered in the data stream. The
observation space V can consist of geographic locations or
locations in an environmental sensor space, e.g. temperature.

A. Utility functions and tradeoffs

A variety of utility functions appear in the sample selection
literature, including maximizing the sum of utilities of the
collected samples [7], maximizing the minimum distance
between samples [13], [14], maximizing the reduction in
entropy H(·) over V , i.e. the entropy criterion [4]:

fH(A) = −H(V \ A | A) = H(A)−H(V), (2)

or maximizing the mutual information I(·; ·) between sam-
pled locations and the rest of the observation space, i.e. the
mutual information criterion [4]:

fI(A) = I(V \ A;A) = H(V \ A)−H(V \ A | A). (3)

The entropy and mutual information utility functions directly
quantify how useful a sample will be for the task of inference
about a quantity of interest that is distributed across the
observation space. These information-theoretic utility func-
tions have been widely used to decide optimal placements of
sensors in the kriging and spatial statistics literature [1]. The
mutual information criterion seeks to maximize the mutual
information between a set of sampled locations A and the
rest of the observation space V \ A. Intuitively, the mutual
information criterion reflects how informative the sampled
locations are about the rest of the space for the purposes
of inference. However, calculating the mutual information
criterion requires a model of the entire observation space
V and generally requires O(|V|3) operations to compute
a single time. This can be challenging or impossible to
compute in streaming contexts.

The entropy criterion seeks simply to maximize the reduc-
tion in entropy over the observation space by maximizing the
entropy of the selected sample set A, since the entropy of
the sample space H(V) is constant. The entropy criterion
does not depend on knowledge of the entire observation
space and can be calculated in O(k3) operations, where
k is maximum cardinality of the selected sample set A.
Despite the compelling argument made in favor of the mutual
information criterion in [4], for real-time applications run on
computationally constrained devices, the entropy criterion is
an efficient alternative to the mutual information criterion.

B. Submodular set functions

For an arbitrary utility function f(A), the maximization
problem in Eq. (1) is NP-hard for both the offline and
streaming scenarios [15]. Fortunately, many commonly used
utility functions, including the entropy criterion [16], have
special structure that allows near-optimal polynomial time
approximation schemes. This structure is submodularity [2].
Definition 1 (Submodularity) A set function f : 2V → R
is submodular if for every A ⊆ B ⊆ V and e ∈ V \ B,
f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B).

Submodularity formalizes the intuitive notion of diminish-
ing returns: the benefit you get from adding a new sample
to a large set is less than the benefit you get from adding
that new sample to a smaller subset. Monotone submodular
utility functions have many beneficial properties: they can
be minimized efficiently and near-optimal constrained max-
imization is possible in polynomial time. We will exploit
this structure to develop performance guarantees for our
periodic, irrevocable sample selection algorithm using the
entropy criterion.

IV. PROPOSED MODEL

Let the dataset S = {xi} ⊆ V be a stream of observations,
such that xi is observed at time step i. Let yi be the
corresponding latent quantity of interest (q.o.i.) value at
time step i, which cannot be measured in vivo but can
be sampled for offline analysis. We define an observation
data stream S to be approximately periodic with period
T and noise Σd if the (possibly vector-valued) observation
xi at index i is drawn i.i.d. from a Gaussian distribution
with mean equal to the observation xi mod T and covariance
Σd i.e. xi ∼ N (xi mod T ,Σd) for i ≥ T (Figure 2). The
utility of approximately periodic observations will also be
approximately periodic with period T and some utility noise
σ2
u for any deterministic utility function f(·).
Our sampling goal is to select a set of k sample locations

A ⊆ S that maximally reduce the entropy (Eq. 2) in
predictions of the q.o.i. y over the observation space V .
Computing the entropy criterion requires a model of how a
latent quantity of interest y is correlated with observations x.
Given that the physical sensors in robotics and environmental
monitoring domains are noisy, this model would ideally

Fig. 2. Approximately periodic data: Our algorithm assumes data are
approximately periodic with period T and noise Σd, where the observation
xi at index i is drawn i.i.d. from a Gaussian distribution with mean equal
to the observation xi mod T and covariance Σd i.e. xi ∼ N (xi mod T ,Σd)



be probabilistic and include a measure of uncertainty in
its predictions. Following [4], we use a Gaussian process
model (GP), a nonparametric generalization of the multivari-
ate Gaussian distribution. A GP model allows us to make
predictions about the q.o.i. at new observation locations in
the data stream S based on a set of noisy samples, and to
compute the uncertainty in these predictions.

Let Am ⊆ Si be the set of m observations we have
sampled from the first i observations in the data stream.
At time step i + 1, we must irrevocably decide whether to
add the observation to the sample set based on the value
of the entropy criterion at that observation. To calculate the
entropy criterion at a potential observation xi+1, we must
calculate the conditional entropy of that observation, given
the locations in observation space of previously collected
samples. In a GP model, we can calculate the differential
entropy at xi+1 in closed form [4]:

h(xi+1 | Am) =
d

2
ln(2πe) +

1

2
ln(σ2

xi+1
| Am) (4)

where d is the dimension of V and σ2
xi+1

| Am is the
conditional variance of the GP model at point xi+1 [17].
Crucially, σ2

xi+1
| Am depends solely on the covariance func-

tion used in the GP model and the locations of the samples
Am in observation space, not on the sampled quantity of
interest values at these locations. This important property
of GPs allows us to do streaming entropy calculations even
if we are unable to observe the value yi+1 of a sample
at observation xi+1 until post-processing. For our model,
we use a squared exponential (SE) covariance function with
maximum likelihood parameters estimated from a previous
dataset. Although our data are periodic, we do not use a
periodic covariance function [18]. The periodic covariance
function is used in data domains where the latent q.o.i.
is periodic but the observations themselves are not; the
SE covariance function is sufficient for our model because
both the environmental observations and the latent q.o.i are
assumed to be periodic with the same period.

After a sampling mission is completed and samples have
been collected at various locations in observation space, we
use the resulting dataset D = {(xi, yi) | xi ∈ S}, |D| = k,
consisting of observations xi and noisy quantity of interest
samples at those observations yi, to predict the distribution
of the latent quantity of interest at unsampled locations in
the observation space using the formulas for the conditional
predictive mean and variance of a GP [19].

V. PROPOSED SAMPLING ALGORITHM

Periodic phenomena occur ubiquitously in biological do-
mains due to natural cycles on a daily, monthly, and annual
basis and in repetitive robotics tasks. Existing streaming,
irrevocable-choice sampling algorithms will perform arbi-
trarily poorly on these data streams due to their non-random
spatiotemporal structure. Given a GP model that allows us
to compute the entropy utility function for observations in
our data stream, we propose a novel variant of the multiple-
choice secretary algorithm for data with approximately peri-
odic structure.

Assuming that the period T of an approximately periodic
data stream is known or can be estimated, the proposed
periodic secretary algorithm consists of two stages. During
the initial observation period, the first T observations in the
data stream are saved into a reference set UR but no samples
are collected. Then, for the remainder of the data stream, our
goal is to iteratively sample the next observation in the stream
with the highest utility given previously selected samples.
This goal is difficult to achieve without knowledge of the
future observations in the data stream. However, for approx-
imately periodic data streams, our algorithm can exploit the
information it gathers during the initial observation period to
make informed decisions about when to sample.

To select the next observation in the stream to sample,
the periodic secretary algorithm computes the utility of
each observation in the reference set UR and finds the
observation with the highest utility in the reference set given
previously selected samples. Then, the algorithm samples
the next observation in the data stream with utility greater
than the maximum utility observation in the reference set,
minus some constant threshold parameter λ that accounts
for noise in the periodic function. In a sense that we derive
explicitly in Section VI, we can expect to see an observation
of sufficient utility with high probability because our data
are approximately periodic, and periodic observations pro-
duce periodic observation utilities. Given this new sample,
the utility of observations in the reference set may have
changed. We find the new maximum utility observation in
the reference set conditioned on the new sample set, and
select the next observation in the data stream within some
λ of this maximum. This procedure repeats until k samples
have been collected or the end of the data stream is reached.
The procedure is formalized in Algorithm 1 and depicted
visually in Figure 3. We discuss the effect of the parameter
λ on the algorithm’s performance in Section VII.

VI. THEORETICAL ALGORITHM PERFORMANCE

In this section, we analyze the performance of the periodic
secretary algorithm as a function of the variables in our

Algorithm 1 Periodic secretary algorithm
Input: Utility function f , data stream S = {xi}, sampling
capacity k, data period T , parameter λ ∈ R+

Output: Sample set A ⊆ S
1: procedure PERIODIC SECRETARY ALGORITHM
2: A ← ∅
3: UR ← {f({xi}), for i ∈ [0, T )
4: threshold← max(UR)− λ
5: for each i ∈ [T, . . . , N ] do
6: if f({xi} ∪ A) ≥ threshold then
7: A ← A∪ xi

8: if |A| = k then return A
9: UR ← {f({xi} ∪ A)}, for i ∈ [0, T )

10: threshold← max(UR)− λ
11: return A



Fig. 3. Periodic secretary algorithm with threshold parameter λ: (a)
An approximately periodic data stream with known period T. The first
three samples selected using the periodic secretary algorithm are shown.
(b) Observed points are in black; unknown future observations are in grey.
When the algorithm begins and before any samples have been selected,
every subsequent observation has equal entropy [utility], hence the algorithm
chooses the first observation after the reference set UR as the first sample.
(c) Given the first sample (1), the utility function is approximately periodic.
The algorithm then samples the first observation with entropy [utility] ≥
the maximum entropy observation in the reference set UR minus λ (2). (d)
Given samples at (1,2), the next observation with entropy [utility] ≥ the
maximum entropy observation in UR minus λ occurs at (3).

model: the utility noise σ2
u, the number of periods in the data

bN/T c, the number of samples selected k, and threshold
parameter λ. We show that when the number of periods
in the dataset is large compared to the number of samples
selected, the gap between the performance of the periodic
secretary algorithm and the optimal offline solution grows
slowly with the length of the dataset as O(

√
log bN/T c).

When the number of samples is much larger then the number
of periods, our bound decreases quickly as k grows, as
O(bN/T c /k). Although the algorithm will likely outperform
this bound for specific utility functions, this is the tightest
bound we could derive for general utility functions and is
commensurate with bounds provided by e.g. the submodular
secretary algorithm [9] when the number of periods divided
by the number of samples is on the order of (1 − 1/e)/7.
These conclusions follow directly from Theorem 1, proven
at the end of this section. However, we first provide the
following three useful lemmas.

Let A∗ be the optimal sample set according to Eq. (1) and
A be the set returned by the periodic secretary algorithm. We
refer to the first T observations in the stream as the reference
set UR. Let Am ⊆ S be the current set of m observations
sampled by the algorithm and fAm(x) be the marginal gain
of adding observation x to set Am, i.e. f(Am∪x)−f(Am).

Lemma 1. In each iteration of the periodic secretary al-
gorithm, the expected utility of the sample selected by the
periodic secretary algorithm x∗s from approximately periodic
data of length N with period T and utility noise σ2

u, given
a previously selected sample set Am, is lower bounded by:

E[fAm
(x∗s)] ≥ E[fAm

(x∗)]−
(
λ+

√
2σ2

u log
⌊
N

T

⌋)
, (5)

where x∗ is the point with globally maximum utility.
Lemma 1 bounds how suboptimal the sample selected

by the periodic secretary algorithm can be compared to the
globally optimal sample. The detailed proof of Lemma 1 is
included in the Appendix.
Lemma 2. A set A of k samples chosen according to the
periodic secretary algorithm will have utility:

E[f(A)] ≥ (1−1

e
)

(
f(A∗)− k ·

(
λ+

√
2σ2

u log
⌊
N

T

⌋))
.

(6)
Lemma 2 states that a set of k samples chosen with

suboptimality bounded as in Lemma 1 also has bounded
suboptimality. The detailed proof of Lemma 2 is included in
the Appendix. Lemma 2 assumes that the periodic secretary
algorithm succeeds in sampling k times, as will be the case
when the utility noise σ2

u is small and the length of the data
stream is large. However, given a finite data stream of length
N , it is possible to fail to select all k samples.
Lemma 3. In an approximately periodic data stream with pe-
riod T and utility noise σ2

u of length N , the expected number
of samples selected by the periodic secretary algorithm is:

E[#Success] ≥ min
(
k,Q(−λ/σ2

u)

⌊
N

T

⌋)
. (7)

Proof of Lemma 3. The probability of encountering an
observation in period n of the data which meets or exceeds
the utility threshold for a given iteration of the periodic
secretary algorithm and is therefore sampled is:

Pr(Success) ≥Pr
(
f(xi+nT ) ≥ f(x∗r)− λ

)
≥Q(−λ/σ2

u),
(8)

where Q(·) is the standard Gaussian tail probability. In a
data stream of length N , there are

⌊
N
T

⌋
total periods and

the expected number of successes is the number of periods
multiplied by the probability of success in each period.
Theorem 1. Given a sample set A selected by the periodic
secretary algorithm from a data stream of length N that is
approximately periodic with period T and utility noise σ2

u,
the expected utility of A is less than the utility of the optimal
set A∗ by a factor which depends the number of samples
selected k and parameter λ:

E[f(A)] ≥
min(k, Q(−λ/σ2

u)
⌊
N
T

⌋
)

k
·
(

1− 1

e

)
(
f(A∗)− k ·

(
λ+

√
2σ2

u log
⌊
N

T

⌋))
,

(9)
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Fig. 4. Tuning parameter λ: The utility of samples sets selected using the
periodic secretary algorithm on the data stream x(t) = sin(2πt)+sin(3πt)
and periodic noise σ2

d = 0.35 for nine different values of λ, bN/T c =
10, and k = 75 with the entropy criterion. For small λ, the algorithm
chooses high utility samples, but is unable to successfully sample k times.
For medium λ, the algorithm selects k samples with utility very near that
of the offline algorithm. For large λ the algorithm successfully samples k
times, but the samples are of low utility. For this dataset, λ should be set
to 0.50 for best performance.

where Q(·) is the standard Gaussian tail probability.

Proof. In Lemma 2, we showed that a set of k samples
selected using the periodic secretary algorithm has bounded
suboptimality. In practice, for finite data streams, it is possi-
ble successfully sample less than k times. Lemma 3 derives
the expected number of samples the periodic secretary algo-
rithm will accept in a data stream of length N . Combining
Lemma 2 and 3 with the observation that for a monotone
submodular function, the value of the first a samples of A
have utility of at least

⌊
a
k

⌋
f(A), a ≤ k, the expected utility

of set A is given by Theorem 1.

VII. EXPERIMENTS

A. Using simulation to tune parameter λ

The submodular secretary algorithm has one tunable pa-
rameter λ that mediates the trade-off between selecting more,
lower quality samples and selecting fewer, higher quality
samples in a noisy data stream. Generally, for large λ, the
expected number of samples selected will grow to k, but the
utility of the selected samples will decrease. Smaller λ will
cause the samples in A to be closer to their optimal utility
values, but the algorithm may fail to select all k samples
in a noisy, short data stream. Generally, λ should be tuned
to maximize Eq. (9) based on the noise parameters of the
periodic phenomena and the length of the data stream. We
believe that it may be possible to do this maximization in
closed form, but leave this as an open question for future
work. It is also possible to tune λ empirically by simulating
data drawn from the periodic phenomena using the known
period and periodic noise values and then selecting the
λ which produces the largest average utility across these
simulated data streams. We demonstrate this process using
samples drawn from an arbitrary approximately periodic
function for nine different values of λ in Figure 4.

B. MVCO Experiments

We apply the periodic secretary algorithm with the entropy
utility function to select water samples from a stream of po-
tential samples observed by a marine sensor on the Martha’s
Vineyard Coastal Observatory from January 2009 to January
2016 [20]. This stationary marine sensor is equipped with
k single-use water samplers. The scientific objective is to
collect water samples that give the best understanding of
the seasonal dynamics of the plankton species Guinardia
flaccida. The prevalence of this plankton species is known
to vary with time of year (it is a winter blooming plankton)
and water temperature (during warm winters, the species
tends to be more numerous than during cold winters). How-
ever, the sensor is unable to measure the plankton present
in the water stream in real-time. Instead, the sensor can
measure the temperature of the surrounding water and the
day of year, and must decide to collect a sample based
on these environmental covariates. In this stationary setting,
the sensor is not choosing sample locations in geographic
space but instead in the space of its environmental sensors.
Throughout its deployment, the sensor will observe a stream
of points in this environmental space, and must choose to
take water samples in the environmental conditions which are
the most informative about the plankton species of interest.
This seven-year dataset and ground truth Guinardia flaccida
counts (unknown to the algorithm) are shown in Figure 5.

Given that these environmental data are known to be
periodic on an annual basis, we apply the periodic secretary
algorithm to select 84 samples (equivalent to 12 samples per
year for seven years using a scheduled sampler) from the
data stream using the entropy criterion with a GP model. We
also select sample locations using the submodular secretary
algorithm [9], a scheduled sampling algorithm commonly
used in practical sensing deployments (sampling every N

k
samples), and random sampling as baselines. We use the
offline greedy algorithm [2] to provide an upper bound.

Fig. 5. MVCO Environmental Dataset: The environmental dataset
collected on the Martha’s Vineyard Coastal Observatory from Jan 2009
to Jan 2016, averaged over half-day segments. The platform was equipped
with the IFCB device [20], which allowed ground truth Guinardia flaccida
concentrations to be measured (red). Only the environmental data (blue) are
available to the sample selection algorithms.



Fig. 6. Samples selected from the MVCO dataset: The {temperature,
cos(fraction of year)} samples selected from the full dataset (upper left,
colored by the ground-truth plankton counts). The periodic secretary al-
gorithm chooses samples which provide the most dense coverage of the
environmental observation space. The quality of predictions in unknown
environmental conditions will depend on having sampled a nearby point in
{temperature, cos(fraction of year)} space. Gaps in the sample coverage,
such as those seen in the bottom three plots, will cause large uncertainty
and poor predictions of plankton counts in those regions.

C. MVCO Sampling Results

The selected samples for each approach are shown in
Figure 6 along with the complete dataset colored by the
ground-truth plankton counts. The periodic secretary algo-
rithm selects samples which provide the most dense coverage
of the observation space. The quality of plankton count
predictions in unknown environmental conditions will de-
pend on having sampled a nearby point in {temperature,
cos(fraction of year)} space. Large gaps in the sampled
locations will cause lower entropy reduction and poorer
predictions at those locations; these gaps are evident in the
submodular, scheduled and random sampling strategies.

To quantify this result, we compare the entropy reduction
achieved by samples selected using the periodic secretary
algorithm to samples selected by the baselines and the offline
upper bound (the entropy reduction should be maximized).
The mean utility and one standard deviation values for
each algorithm are shown in Figure 7(a) for 50 random
permutations of the yearly data in the MVCO dataset. For
small sample sets, all six algorithms produce similar results.
After selecting around 30 samples, the periodic secretary
algorithms begin to surpass the other streaming algorithms.
The submodular secretary algorithm, which represents the
current state-of-the-art in streaming, irrevocable sample se-
lection for information-theoretic utility functions, never does
much better than a scheduled algorithm. After selecting 70
samples, the periodic secretary algorithm with poorly tuned
λ reaches the end of the stream without selecting all k = 84
samples. The periodic secretary algorithm with well-tuned λ
stays close to the upper bound set by the offline algorithm.

Figure 7(a) demonstrates that samples selected by the pe-
riodic secretary algorithm achieve the highest entropy reduc-
tion across the environmental observation space. Intuitively,
this means that we can use these samples to do inference

Fig. 7. Quantitative results on the MVCO dataset: The mean value and
standard deviation across the 50 runs of the periodic secretary algorithm
on random permutations of the yearly data in the MVCO dataset. (a) The
entropy reduction achieved as each of the k = 84 total samples are selected.
The periodic secretary algorithm achieves the highest entropy reduction
among the streaming algorithms. However, the algorithm with poorly tuned
λ reaches the end of the stream without selecting all samples. The periodic
secretary algorithm with well-tuned λ stays very close to the upper bound
set by the greedy algorithm. (b) Using the selected samples, plankton counts
at unknown locations are predicted on a held-out test set. The prediction
mean-squared error decrease as samples are selected and is minimized using
the periodic secretary algorithm with well tuned λ.

about plankton concentrations in unknown environmental
conditions. To test this assumption, we quantify how well
the representative samples selected by each algorithm can
be used to predict Guinardia flaccida concentrations on a
held out test set of {temperature, cos(fraction of year)}
environmental conditions (the prediction mean-squared error
should be minimized). Figure 7(b) shows that on average
the sample sets selected by the periodic secretary algorithm
produce more accurate predictions of plankton counts then
all other streaming algorithms. Note that choosing points
according to the entropy criterion is a nearly optimal strategy
from an information theoretic perspective when trying to
reduce prediction error, but higher entropy reduction will not
necessary directly equate to lower mean-squared prediction
error for a specific dataset. This is why there are places in
Figure 7(b) where an algorithm with lower entropy reduction
achieves lower prediction mean-squared error.

VIII. DISCUSSION AND CONCLUSION

This paper presents a novel algorithm for online, irrevo-
cable sample selection from periodic phenomena. We prove
that the periodic secretary algorithm selects sample sets



according to any monotone submodular set function with
bounded suboptimality. For short data streams, where the
number of periods is small compared to the number of
samples to be selected, the performance of the periodic
secretary algorithm depends on the choice of utility function
and setting the parameter λ appropriately. However, we
demonstrate that for the entropy criterion, this dependence
is only evident when the number of samples is much larger
then the number of periods. and provide methods to tune λ.

The periodic secretary algorithm is a robust and versatile
tool that can be applied in a variety of real-time applications;
many real-world periodic data streams can be considered
approximately periodic, so long as period-to-period variation
can be modeled as Gaussian noise with some covariance Σd.
The algorithm is also robust to noisy estimates of the period
length T , requiring only that the algorithm’s reference set
includes one complete period of the data. Our work extends
previous results in information theoretic sample selection
and adapts classical secretary algorithms to data domains
that produce periodic spatially and/or temporally correlated
data streams, such as robotics and environmental monitoring.
Although we focus on periodic phenomena, we believe
techniques similar to those presented here could be used to
provide performance bounds for irrevocable sample selection
from data streams with other types of spatiotemporal struc-
ture, and hope that this work will serve as a foundation for
developing secretary algorithms that can be applied to these
intersting data domains.
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IX. APPENDIX
We include some technical proofs removed from the body

of the paper in the interest of space:
Proof of Lemma 1. Given that the maximum utility obser-
vation in the reference set x∗r occurs at index i, the expected
difference in utility between x∗r and the the maximum utility
sample in the entire data stream x∗ will be maximized when
x∗ occurs at index i + nT for some n, 0 ≥ n ≥

⌊
N
T

⌋
.

Because our data are approximately periodic, we know that
fAm

(xi+nT ) ∼ N (fAm
(x∗r), σ2

u) for n = {0, . . . , NT } and
the global maximum x∗ = max {xi+nT | n = 0, . . . ,

⌊
N
T

⌋
}

i.e. the maximum of n i.i.d. draws from a normal distribu-
tion with mean fAm

(x∗r) and variance σ2
u. Therefore, the

expected difference betweenfAm(x∗) and fAm(x∗r) is no
larger than the expectation of the maximum of n samples
drawn from a mean-zero Gaussian [21]:

E[fAm
(x∗)− fAm

(x∗r)] ≤

√
2σ2

u log
⌊
N

T

⌋
. (10)

The sample that the algorithm selects x∗s will have utility
fAm

(x∗s) = fAm
(x∗r)− λ.

Proof of Lemma 2. Following the general proof in [22]:

f(A∗) ≤ f(Am−1) +
∑

x∈A∗\Am−1

fAm−1(x) (11)

≤ f(Am−1) +
∑

x∈A∗\Am−1

f(Am)− f(Am−1) + c

(12)
≤ f(Am−1) + k · (f(Am)− f(Am−1) + c), (13)

where c = λ +
√

2σ2
u log

⌊
N
T

⌋
. The first line (11) follows

directly from f(·) being a monotone submodular set function
[22], the second (12) from Lemma 1, and the third (13)
because |A∗| ≤ k. Subtracting k · f(A∗) from both sides:

f(Am)− f(A∗) ≥ k − 1

k
(f(Am−1)− f(A∗))− c, (14)

which implies by induction, with f(∅) = 0:

f(Ai) ≥
(

1− (1− 1

k
)i
)(

f(A∗)− k · c
)
. (15)

Lemma 2 is achieved by setting i = k, and using the identity
(1− 1

k )k ≤ 1
e .
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