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Abstract— This paper presents a mutual information (MI)
based algorithm for the estimation of full 6-degree-of-freedom
(DOF) rigid body transformation between two overlapping
point clouds. We first divide the scene into a 3D voxel grid
and define simple to compute features for each voxel in the
scan. The two scans that need to be aligned are considered as a
collection of these features and the MI between these voxelized
features is maximized to obtain the correct alignment of scans.
We have implemented our method with various simple point
cloud features (such as number of points in voxel, variance
of z-height in voxel) and compared the performance of the
proposed method with existing point-to-point and point-to-
distribution registration methods. We show that our approach
has an efficient and fast parallel implementation on GPU, and
evaluate the robustness and speed of the proposed algorithm on
two real-world datasets which have variety of dynamic scenes
from different environments.

I. INTRODUCTION

A 3D alignment algorithm to determine the relative rigid
body transformation between two partially overlapping scans
is an underpinning tool for many applications in mobile
robotics including localization, mapping and navigation sys-
tems. In this work, we consider a robot which obtains two
3D scans (A and B) from two poses P0 and P1 via a 3D
laser scanner. Provided that some part of the environment
is common to both scans, it is generally possible to find a
rigid-body transformation T that can project the points in
P1 so that they align with P0. The solution to the process
of scan alignment (T ) is parameterized by six values: three
translation components (tx, ty and tz) and three rotation
components (θx, θy and θz). The reason that scan align-
ment problem is at the center of most navigation, mapping
and localization systems, is simply because the rigid body
transformation T derived from alignment is of higher quality
than odometry estimate (due to wheel slippage and surface
irregularities).

The primary challenge in the problem is to minimize
the runtime complexity while maximizing the robustness
of the solution. Most existing methods are either designed
around computationally-efficient local searches which are
not robust to initialization or global search methods which
are computationally intense. At vehicle’s dead-reckoning
error, the initial estimate can be far from global maximum
resulting in large errors when using local-search methods.
To counter this problem, most implementations currently
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Fig. 1: An overview of mutual information (MI) based scan
alignment framework. MI maximization is applied over the
voxelized-features computed from two partially overlapping
scans.

involve running the registration algorithm at high frequency
rate resulting in a constant load on computation resources.

Our approach poses the alignment problem in a MI (mu-
tual information) maximization framework: it finds the rigid
body transformation that maximizes MI between the features
of two scans. An overview of our approach is illustrated in
Figure 1. We show that even primitive features like variance
and number of points give results better than the other state
of the art point-to-point and point-to-distribution methods for
large prior errors from odometry.

The central contributions of this paper are:

• We present a robust and fast framework for scan align-
ment by posing the problem in a MI maximization
framework with simple voxelized features.

• Unlike other 3D scan alignment methods, our approach
allows us to consider the no-feature voxels (unoccupied
region in scene).

• We present a detailed empirical evaluation of our
method in different environments: both urban and rural
scenes. We compare our approach with a point-to-point
and a point-to-distribution alignment method.

• We show how the proposed approach has an efficient
fast and robust GPU implementation, freeing the CPU
for other important tasks.

The quality and robustness of our method along with it’s
ability to work in real-time, makes it ideal for mobile robotic
systems in which accuracy is of high importance.

In the following section we present a brief overview of
the prior work (Section II). In section III, we describe the
proposed framework. Empirical evaluation and comparison
with other methods along with runtime analysis is shown in
section IV.
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II. RELATED WORK

Iterative Closest Point (ICP) [1] is one of the most popular
scan registration algorithms used to estimate the optimal
transformation between two overlapping scans. In ICP, clos-
est points between scan A and reference scan B are used
to obtain a closed-form solution by optimizing the sum of
squared distances (usually Euclidean distance). Performing
the nearest neighbor search in ICP becomes a bottleneck due
to its high computational cost, however, using a K-D Tree [2]
does mitigate the problem to an extent. Iterative Dual Corre-
spondence (IDC) [3] generates corresponding points for both
rotation and translation separately, with optimization done in
an alternate fashion. This improves the alignment accuracy
when the initial estimate has large rotational error. Iterative
Closest Line (ICL) [4], [5], [6] is a variant of ICP in which
instead of matching the points in both the scans, the query
points in scan B are matched to lines extracted from points
in reference scan A. Generalized ICP (GICP) [7], attaches a
probabilistic model in estimating the correct corresponding
points by taking the covariance structure derived from the
local neighborhood in the environment.

Another widely used algorithm is Normal Distribution
Transform (NDT) which was initially proposed for 2D data
[8] and was later extended to three-dimensions. 3D-NDT
[9] is a point-to-distribution method in which the maximum
likelihood estimate (MLE) of points in B is maximized
over the distribution of points in a gaussian mixture model
derived from A. Supervoxel based NDT (SV-NDT) [10] is
an extension to 3D-NDT in which segmentation on the basis
of local-spatial structure is done over A before creating a
GMM model.

The problem of scan alignment with fused sensor data
as input has also been extensively researched in the past
two decades. Some of the work includes incorporating color
information in the ICP framework ([11], [12]) by augmenting
RGB color channels to 3D coordinates and by exploiting the
co-registration of 3D data with the available camera imagery
to associate scale invariant feature transform (SIFT) [13] or
speeded up robust features (SURF) [13] features to the 3D
points as in [14].

Mutual information based alignment methods was first
proposed in [15] for multi-modality medical images. Since
then literature has been filled with work inspired by mutual
information, these include minimization of distribution of
joint histograms [16], data alignment from multiple modal-
ities (different sensors) as in [17], [18], [19], and [20]. In
[21], a comprehensive survey of mutual information based
techniques being used in medical images is presented.

The proposed method is closely related to FPFH [20]
mainly because we use mutual information to compute the
registration parameters. However, the feature selection and
histogram creation method is different. In [20] high dimen-
sional features are computed using FPFH which are then
quantized into one of the precomputed codewords. There
is no denying that FPFH are better descriptors of a scan
than simple voxelized features like z-variance, but in a MI

(a) Unaligned scans (b) Aligned scans

Fig. 2: This figure shows the cropped 3D textured point cloud
of a pair of scan transformed to the same frame of reference.
(a) Transformation used is from the initial estimate. (b)
Transformation applied is first improved/aligned using our
approach.

based framework, we don’t need to find correspondences
between patches, therefore computing FPFH only increases
the run-time complexity due to nearest neighbor search
and normal computation at each point. Moreover, unlike
voxelized features, FPFH fails to take into account the empty
region in the scan.

III. METHODOLOGY

A. Approach

A qualitative result of the proposed MI based approach
using voxelized features is shown in Figure 2. In order to
estimate the correct rigid body transformation T , represented
by a [4×4] transformation matrix, we first initialize our scene
with a large 3D grid with resolution Rv (1 × 1 × 1) that
encompasses both the scans A and B. We create two voxel-
point mapping tables by finding the corresponding voxel (the
voxel which contains the point) for all points in scan A and
B. Now we calculate simple features like (i) Variance of z-
height, or (ii) number of points in voxel. It is important to
note that unoccupied voxels are also included in our voxel-
point mapping table with φ (no-feature) value; this results in
a voxel-feature mapping that contains large number of voxels
with feature φ. Intuition behind this approach is that in a
perfectly aligned state not only the occupied voxels should
be aligned, but unoccupied voxels should also be aligned in
the overlapping region.

To obtain the statistical dependence using mutual infor-
mation of two partially overlapping scans, we define an
overlapping region which is a subgrid parameterized by six
variables [xomin, x

o
max, y

o
min, y

o
max, z

o
min, z

o
max] (where ’o’ is

the overlapping region). We consider the feature maps of this
overlapping subgrid as two random variables representing
the structure of the environment. These random variables
are used to calculate the mutual information of both the
scans. The mutual information between these two random
variables is the amount of information obtained about one
variable, through the information about the other variable.
Therefore, under the correct rigid body transformation, we



Fig. 3: This figure shows 4 joint histograms: 2 before
alignment (Row 1) and 2 after alignment using the proposed
method (Row 2). Each column represents two different test
cases: in Column 1 the scan pair had the initial heading error
of 4◦ and in Column 2 the scan pair had the initial heading
error of 12◦. X-axis and Y-axis of all the 4 joint histograms
represent the variance of Z in a voxel for scan A and scan B
respectively. Note how the dispersion in the joint histogram
decreases (forming a straight line) after alignment in both
the test cases. It can also be seen that the dispersion in joint
histogram increases as we increase the heading error from
Column 1 - Column 2 (4◦ to 12◦). Best viewed in color.

can expect the information from one of the scans to give
maximum amount of information about the other scan, thus
rendering the MI to be maximum between the feature maps.

η = argmax
η

MI(X,Y ; η) (1)

where η = [tx, ty, tz, θx, θy, θz] are the required trans-
formation parameters, [X,Y ] are the respective random
variables representing the features of scan A and B in the
corresponding overlapping region and MI(X,Y ; η) is the
mutual information of the overlapping voxels under the
transformation η.

MI(X,Y ; η) = H(X; η) +H(Y ; η)−H(X,Y ; η) (2)

where H(X; η) and H(Y ; η) are the entropies of the
random variables X and Y respectively, and H(X,Y ; η) is
the joint entropy of the two variables at transformation η.

H(X; η) = −
∑
x∈X

PX(x; η) logPX(x; η) (3)

H(Y ; η) = −
∑
y∈Y

PY (y; η) logPY (y; η) (4)

H(X,Y ; η) = −
∑
x∈X

∑
y∈Y

PXY (x, y; η) logPXY (x, y; η)

(5)

Algorithm 1 Alignment of two scans using MI framework

Input: Two scans A and B with some partial overlap. Initial
guess of the rigid-body transformation To.

Output: Estimated registration parameter T
Initialization :

1: Extract the associated voxel ids for all points in scan A
2: Create scan A feature map for all voxels

Alignment :
3: Tc = To
4: while MI not converged do
5: Transform scan B using current rigid body transfor-

mation Tc
6: Extract associated voxel ids for points in scan B
7: Create scan B feature map for all voxels
8: Define an overlapping bounding region:

xomin = max(xAmin, x
B
min)

yomin = max(yAmin, y
B
min)

zomin = max(zAmin, z
B
min)

xomax = min(xAmax, x
B
max)

yomax = min(yAmax, y
B
max)

zomax = min(zAmax, z
B
max)

9: Consider random variable X and Y as the voxelized
feature map for all voxels lying inside the overlap of
scan A and scan B respectively

10: Compute the marginal and joint entropy using the
equations 3, 4 and 5

11: Calculate MI using 2
12: Update Tc using Nelder-Mead optimization
13: end while
14: return Tc

Here PX(x; η) is the marginal probability for X =
x, PY (y; η) is the marginal probability for Y = y and
PXY (x, y; η) is the joint probability for X = x and Y = y
when transformation parameters are η. For simplicity, we
have taken x and y to be either the variance in z or the
number of points in a voxel.

In each iteration, the MI value changes and is maximized
when all voxels (occupied and unoccupied) are aligned. It is
important to note that with every iteration, the overlapping
region will change and the correct subgrid will be found
when the MI is maximum. Figure 3 represents the joint-
distribution before (row 1) and after (row 2) MI maximiza-
tion for two pairs of scan with different initial error. It
can be seen that the joint distribution converges to a line
passing through origin and becomes relatively uniform after
the correct alignment.

B. Optimization

The cost function (1) is maximized at the correct value
of rigid body transformation. Therefore, any optimization
technique that iteratively converges to the local optimum
can be used here. Some of the commonly used optimization
techniques compute the gradient or hessian of the cost
function ([22], [23] and [24]). There are also gradient free
direct optimization methods like pattern search [25] or



Dataset Environment Total Scans deviation(tx) deviation(ty) deviation(tz) deviation(θx) deviation(θy) deviation(θz)

Ford Campus
Vision and Lidar

Urban 3538 0.65 2.87 0.05 0.02 0.02 0.23

Kitti Vision
Benchmark Suite

Rural /
Highway

4919 2.67 0.31 0.04 0.01 0.01 0.08

TABLE I: Standard deviation (in meters for translation and radians for rotation) of the ground truth for all 6 DOF is shown.
This analysis involves all the scan-pairs considered in our experiments. All floating point numeric values are rounded to
two decimal places. It can be seen that the variance in tx,ty and θz is more than the variance in tz , θx and θy . Although,
we have shown this only for two different robots, this is in general true for any wheeled-robot. We use this information in
initializing the simplex particles (N+1 points) in the optimization phase.

simulated annealing [26]. In this work we use one such direct
optimization method called Nelder-Mead optimization [27].

Nelder-Mead method initializes a simplex with (N+1)
points on the cost surface, where N is the number of
DOF (six in our case) in the optimization phase. In each
iteration it tries to improve these set of points by series
of steps (reflecting, expanding, shrinking or contracting) to
obtain the point which minimizes the cost function. NM-
Simplex is sensitive to initial simplex size [sx, sy , sz , sroll,
spitch, syaw]. Choosing an initial simplex large can cause
unnecessary steps in areas of little interest, while a small
simplex can lead to a narrow search on the cost surface
increasing the computation. This problem can be alleviated
by making a simple assumption that most of the relative
traversal will be in tx, ty and θz for wheeled robots. The
intuition being that for any wheeled-robotic platform, motion
is constrained in roll, pitch and z(height). Similar observation
was also made in the localization method proposed in [28].
Making this assumption allows us to explore large range for
tx, ty and θz on cost surface, while at the same time a
constrained initial search in tz , θx and θy . We verify this
assumption, by calculating the deviation of all 6-DOF in
Table I.

As this optimization technique is based on heuristics,
optimization might not always lead to the optima. This is
indeed a disadvantage of this optimization technique. While
there exist methods that allow approximating the gradient
of the cost function, however, the computation involved
increases the run time of the algorithm. In the section below,
we show that even after using a heuristic optimization, the
results are close to the ground truth.

The complete algorithm for obtaining the rigid body
transformation is given in (Algorithm 1).

IV. EXPERIMENTS AND RESULTS

We show results for two types of feature used in our MI
framework: (i) Variance of z-height in voxel (MI-VARZ),
and (ii) Number of points in voxel (MI-N). We have used
two point cloud datasets to assess the performance of the
proposed approach. Scans from both these datasets are
registered using GICP, 3D-NDT, MI-N, and MI-VARZ. The
comparison factors were accuracy and runtime for different
initial estimates. Datasets used in our experiments were
Ford Campus Vision and Lidar dataset [29] and odometry

dataset from the Kitti Vision Benchmark Suite [30]. Both the
datasets consist of 3D scans collected from a test vehicle with
a Lidar mounted on it and have ground truth pose information
available from a highly accurate inertial navigation system
(INS).

Implementation of GICP is taken from the open source
version available at [31] and 3D-NDT is taken from Point
Cloud Library (PCL) [32]. Grid resolution (Rv) for 3D-NDT,
MI-VARZ and MI-N is set as 1m. In our implementation we
chose the initial simplex for optimization as [sx = 8, sy = 8,
sz = 1, sroll = 0.1, spitch = 0.1, syaw = 0.8].

A. Ford Campus Vision and Lidar Dataset

In this experiment we compare the translation and rotation
accuracy of the proposed method with GICP and 3D-NDT
on Ford Dataset. To estimate the translation accuracy, we
consider equi-spaced reference scan (A) in the downtown
test run and sample 10 query scans (B) which are 1-10m
from A. Similarly for rotation, all B query scans that have
relative rotation upto 20◦ (with translation error less than
5m) from scan A are chosen. In total 3538 scan pairs from
Ford dataset were considered to plot error results shown in
Figure 4.

B. Kitti Vision Benchmark Suite

In this experiment, we use the scans from Kitti dataset for
testing both translation and rotation accuracy. Here also, we
sample scans that have translation 1-10m and rotation upto
12◦ (plot range is reduced here as the number of scan pairs
with translation error less than 5m and rotation greater than
12◦ are not enough) resulting in a total of 4919 scan pairs
from a single session run. Results are shown in Figure 5.

C. Discussion of results

It can be seen, that when the initial estimate of transforma-
tion parameters are good, all 4 methods perform reasonably
good for both the datasets. However, 3D-NDT fails to
converge when the initial error is increased: this can be
explained by the discontinuity in score function due to the
jump caused when the query scan B passes one of the cell
boundaries. In [33] and [34], convergence of 3D-NDT and
it’s dependence on voxels resolution is explained in detail.

It should be noted that GICP works better when we have
a good initial guess for translation parameters. However, it
fails to converge to the correct optima when the initial guess



(a) Boxplot depicting the variance and median of final translation error (in meters) versus initial error in translation parameters

(b) Boxplot depicting the variance and median of final rotation error (in degrees) versus initial error in rotation parameters

Method 1 2 3 4 5 6 7 8 9 10

GICP 0.03 0.07 0.11 0.34 1.06 2.49 2.60 3.99 5.42 6.73
3D-NDT 0.29 1.69 3.08 4.12 5.22 6.17 7.17 8.22 9.17 10.29

MI-N 0.05 0.10 0.18 0.43 0.68 1.22 2.09 2.68 2.80 3.23
MI-VARZ 0.06 0.10 0.28 0.30 0.70 0.95 1.37 2.01 2.39 2.70

(c) Mean error (in meters) after alignment. Error in initial translation parameters is increased (from left: 1-10m).

Method 2 4 6 8 10 12 14 16 18 20

GICP 0.41 0.72 1.00 1.14 0.88 0.81 1.23 1.78 3.26 5.05
3D-NDT 0.52 1.82 4.48 5.98 8.96 11.03 13.17 15.24 17.43 19.44

MI-N 1.18 1.90 2.39 4.79 4.19 5.66 2.60 5.61 4.91 1.49
MI-VARZ 0.43 0.70 0.75 0.72 0.92 2.56 0.89 4.11 1.98 1.48

(d) Mean error (in degrees) after alignment. Error in initial rotation parameters is increased (from left: 2◦-20◦).

Fig. 4: Ford Campus Vision and Lidar: Comparison between the proposed method (MI-VARZ and MI-N) with GICP and
3D-NDT. (a) and (b), depict the variance and median of the error magnitude (L2 norm) versus initial error for translation
and rotation. In (c) and (d) we summarize the success rate of GICP, 3D-NDT, MI-N and MI-VARZ using mean error results
in translation and rotation calculated by taking the L2 norm of difference with ground truth. Error analysis in (a) and (b)
is done using descriptive statistical boxplots. In each boxplot, blue box represents the range from 25th percentile to 75th
percentile and the black line inside the box shows the median. Results farther than 1.5 times the error at box-edges are
considered outliers and are represented as red dots outside the whiskers. Ends of the whisker below and above the box
represent the minimum and maximum values respectively.

is poor. This can be explained from cost surface of GICP
algorithm. As seen in Figure 6a, GICP has several local op-
tima causing the gradient based optimization methods to fail.
Figure 6c also depicts this problem, when the initial heading
error is large GICP can converge to incorrect transformation.
In contrast, in Figure 6b it can be seen that our MI based

method has a single optima corresponding to the correct
rigid-body-transformation for the same range of initial error.
It is important to note that this might not always be the case.
In scan pairs with multiple dynamic objects and large initial
error, the heuristic based optimization in MI-VARZ and MI-
N can converge at an optima far from the correct solution.



(a) Boxplot depicting the variance and median of final translation error (in meters) versus initial error in translation parameters

(b) Boxplot depicting the variance and median of final rotation error (in degrees) versus initial error in rotation parameters

Method 1 2 3 4 5 6 7 8 9 10

GICP 0.03 0.13 0.21 0.60 0.74 1.41 2.53 2.91 4.71 5.42
3D-NDT 0.24 1.62 2.55 3.92 5.01 5.86 6.91 7.88 8.73 10.01

MI-N 0.06 0.10 0.22 0.28 0.25 0.47 0.51 0.54 1.90 3.38
MI-VARZ 0.06 0.06 0.12 0.09 0.21 0.41 0.42 0.36 0.68 1.23

(c) Mean error (in meters) after alignment. Error in initial translation parameters in increased (from left: 1-10m).

Method 2 4 6 8 10 12

GICP 0.13 0.34 0.82 2.08 2.70 2.90
3D-NDT 1.10 3.21 5.43 7.82 9.49 11.47

MI-N 0.30 0.27 0.51 1.20 1.85 0.31
MI-VARZ 0.17 0.20 0.31 0.67 0.94 0.36

(d) Mean error (in degrees) after alignment. Error in initial rotation parameters is increased (from left: 2◦-12◦).

Fig. 5: Kitti Vision and Benchmark Suite: Comparison between the proposed method (MI-VARZ and MI-N) with GICP
and 3D-NDT. (a) and (b), depict the variance and median in the error for different magnitude error in initial estimate for
translation and rotation. In (c) and (d) we summarize the success rate of GICP, 3D-NDT, MI-N and MI-VARZ using mean
error results in translation and rotation calculated by taking the L2 norm of difference with ground truth. Error analysis in
(a) and (b) is done using descriptive statistical boxplots. In each boxplot, blue box represents the range from 25th percentile
to 75th percentile and the black line inside the box shows the median. Results farther than 1.5 times the error at box-edges
are considered outliers and are represented as red dots outside the whiskers. Ends of the whisker below and above the box
represent the minimum and maximum values respectively.

Despite that, we observe that our MI based method performs
better than GICP in most cases.

Both MI-VARZ and MI-N have better results for transla-
tion as we increase the prior translation error. For the Kitti
Dataset, it can be seen that MI-VARZ has average translation
error less than 0.5m for the initial translation error up till

8m and MI-N till 6m, which is in contrast to results from
GICP where we see an average error of 0.6m at 4m of initial
translation error. In the Ford dataset, MI-VARZ and MI-N
have error less than 0.5m up till 4m and GICP till 3m.

As for the rotation error, in Kitti Dataset we see a similar
trend where MI-VARZ performs better than GICP as we



(a) GICP cost versus tx and ty (b) MI-VARZ cost versus tx and ty (c) Normalized Cost versus heading

Fig. 6: Cost-function plots for GICP and MI-VARZ. In (a) and (b), we have plotted the top view of GICP and MI-VARZ
cost-function surface versus the translation parameters tx and ty , while all other parameters are fixed to true ground-truth
value. The correct translation parameters are (tx = 0.40, ty = −5.99). In (c), we compare the cost-function of GICP(Blue)
and MI-VARZ(Orange) versus the heading. True heading parameter is (θz = 27.45◦). It can be seen from both (a) and (c)
that GICP can converge at a local optima far from global optimum when the initial error is large.

increase the initial error. In the Ford dataset however, both
GICP and MI-VARZ produce mixed results. This is primarily
due to unstructured areas and multiple dynamic objects in the
urban scene. In such cases, the heuristic based search in MI-
VARZ leads to outliers (See Figure 4b and 4d for initial error
16◦) which are relatively farther from the correct rotation
parameters than GICP outliers. Yet in most cases (Figure
4b) MI-VARZ has performance better than GICP. We also
observe that MI-N doesn’t perform as good as MI-VARZ
and GICP. In general too, MI-N has less success rate as
compared to MI-VARZ, this is because the number of points
in a voxel do not convey any information about the local-
structure unlike the case in variance of z.

D. Runtime analysis

In this section we compare the runtime of GICP with
MI-N and MI-VARZ. We do not consider the 3D-NDT in
this analysis as it fails to converge when the initial error is
high. The average runtime of GICP, MI-N and MI-VARZ is
shown in Table II. All the implementations were executed on
a system powered by Intel Core i7-7700HQ CPU@ 2.80GHz
× 8 and GeForce GTX 1050Ti. We used [35] to optimize
the GICP by implementing the point-point search queries in
GPU memory. The runtime of GICP after this optimization
is also showed in Table II.

Another important challenge is the variability of runtime
with change in the initial error. The runtime of GICP varies
when we change the error in translation, whereas MI-N and
MI-VARZ have runtime independent of the initial error.

In Table III, we show that all major steps in our proposed
framework can be easily offloaded to GPU with minimal
overhead. This is in contrast to other point-to-point alignment
methods like GICP, which require building nearest neighbor
structures (like K-D Tree) in GPU. The preprocessing step

Initial Error GICP GICP-GPU MI-N MI-VARZ

(m) (s) (s) (s) (s)

1 2.67 1.64 1.26 0.49

3 4.00 2.25 1.27 0.50

5 6.92 4.42 1.26 0.50

7 10.72 7.25 1.23 0.49

9 14.26 10.13 1.22 0.51

TABLE II: Runtime analysis of GICP (Original), GICP (GPU
Search), MI-N and MI-VARZ. MI-N and MI-VARZ have
negligible variability in runtime with respect to quality of
the initial guess. However, the GICP runtime increases as
the initial error is increased.

in GICP for nearest neighbor search takes most of the time
in alignment process. Whereas in our MI based framework,
the only bottleneck is GPU memory allocation (along with
gpu context initialization).

MI Steps Kernel Total Time(ms)

GPU Allocate memory - 189.00
Data CPU to GPU - 0.5
Voxel Mapping Map 5.87
Find overlap Reduce 33.06
Feature histograms Map 100.10
Entropy Calculation Reduce 8.45

TABLE III: GPU profiling for a scan pair while executing
MI-VARZ. Second column depicts the type of gpu kernel for
the operation and third column is the total time (ms) spent in
kernel execution for all iterations in the alignment process.



V. CONCLUSION

In this paper, we report a MI based scan alignment
algorithm that maximizes the mutual information between
the voxelized features of two partially overlapping scans
by calculating a single-dimensional feature in a voxel. Our
approach allows us to consider the no-feature voxels in our
cost function with the intuition being: that both scans, when
aligned, should have same number of unoccupied voxels
in the overlapping region. The proposed method is tested
and compared with a point-to-point and point-to-distribution
method on two real-world datasets covering wide range of
dynamic scenes: urban and rural. We see that our method
performs relatively better even for large initial errors in
transformation. Although, we implemented our method with
data from a single sensor (lidar), it can easily be extended to
fused-sensor data (lidar-camera). We show that our method
has a fast GPU implementation which allows computation to
be offloaded to GPU with minimal overhead.
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