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Abstract

A defining feature of sampling-based motion planning is the reliance on an implicit repre-
sentation of the state space, which is enabled by a set of probing samples. Traditionally, these
samples are drawn either probabilistically or deterministically to uniformly cover the state space.
Yet, the motion of many robotic systems is often restricted to “small” regions of the state space,
due to, for example, differential constraints or collision-avoidance constraints. To accelerate the
planning process, it is thus desirable to devise non-uniform sampling strategies that favor sam-
pling in those regions where an optimal solution might lie. This paper proposes a methodology
for non-uniform sampling, whereby a sampling distribution is learned from demonstrations, and
then used to bias sampling. The sampling distribution is computed through a conditional varia-
tional autoencoder, allowing sample generation from the latent space conditioned on the specific
planning problem. This methodology is general, can be used in combination with any sampling-
based planner, and can effectively exploit the underlying structure of a planning problem while
maintaining the theoretical guarantees of sampling-based approaches. Specifically, on several
planning problems, the proposed methodology is shown to effectively learn representations for
the relevant regions of the state space, resulting in an order of magnitude improvement in terms
of success rate and convergence to the optimal cost.

1 Introduction

Sampling-based motion planning (SBMP) has emerged as a successful algorithmic paradigm for
solving high-dimensional, complex, and dynamically-constrained motion planning problems. A
defining feature of SBMP is the reliance on an implicit representation of the state space, achieved
through sampling the feasible space and probing local connections through a black-box collision
checking module. Traditionally, these samples are drawn either probabilistically or deterministically
to uniformly cover the state space. Such a sampling approach allows arbitrarily accurate represen-
tations (in the limit of the number of samples approaching infinity), and thus allows theoretical
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guarantees on completeness and asymptotic optimality. In practice, many robotic systems only
operate in small subsets of the state space, which may be very complex and only implicitly defined.
This might be due to the environment (e.g., initial and goal conditions, narrow passageways), the
system’s dynamics (e.g., a bipedal walking robot’s preference towards stable, upright conditions),
or implicit constraints (e.g., loop closures, multi-robot systems remaining out of collision). The
performance of SBMP is thus tied to the placement of samples in these promising regions, a result
uniform sampling is only able to achieve through sheer exhaustion. Therein lies a fundamental
challenge of SBMP algorithms: while their implicit representation of the state space is very general
and requires only minimal assumptions, it limits their ability to leverage knowledge gained from
previous planning problems or to use known information about the workspace or robotic system to
accelerate solutions.

Figure 1: A fast marching tree (FMT*) generated with learned samples for a double integrator, conditioned on
the initial state (red circle), goal region (blue circle), and workspace obstacles (black). Note the significantly
higher density of samples in the region around the solution.

In this work we approach this challenge through biasing the sampling of the state space to-
wards these promising regions via learned sample distributions (see Fig. . At the core of this
methodology is a conditional variational autoencoder (CVAE) (Sohn et al.|2015]), which is capable
of learning complex manifolds and the regions around them, and is trained from demonstrations
of successful motion plans and previous robot experience. The latent space of the CVAE can then
be sampled and projected into a representation of the promising regions of the state space, condi-
tioned on information specific to a given planning problem, for example, initial state, goal region,
and obstacles (as defined in the workspace). In this way one may maintain the theoretical and ex-
ploration benefits of sampling-based motion planning, while leveraging the generality, extensibility,
and practical performance associated with hyperparametric learning approaches. Remarkably, this
methodology is extensible to virtually any system and available problem-specific information.



Statement of Contributions. The contributions of this paper are threefold. First, we present
a methodology to learn sampling distributions for sampling-based motion planning. Such learned
sampling distributions can be used to focus sampling on those regions where an optimal solution
may lie, as dictated by both system-specific and problem-specific constraints. This methodology
is general to arbitrary systems and problems, scales well to high dimensions, and maintains the
typical theoretical guarantees of SBMP (chiefly, completeness and asymptotic optimality). Second,
we demonstrate the learned sampling distribution methodology on a wide variety of problems,
from low-dimensional to high-dimensional, and from a geometric setting to problems with complex
dynamics. Third, we compare our methodology to uniform sampling, finding approximately an
order of magnitude improvement in success rates and path costs, as well as to state of the art
approaches for sample biasing. Our findings show analogous benefits to those seen recently in the
computer vision community, where feature learning-based approaches have resulted in substantially
improved performance over human intuition and handcrafted features.

Organization. This paper is organized as follows. The next section reviews related work in
non-uniform and learned measures for sampling. Section [3| reviews the problem addressed herein.
Section M| outlines the learned sampling distribution methodology. Section [5| demonstrates the
performance of the method through numerical experiments on a variety of environments. Section [f]
experimentally investigates the method’s hyperparameters, potential data sources, generalization,
and extensions. Section [7] summarizes the results and provides directions for future work.

2 Related Work

In this section, we review approaches to improving the efficiency of sampling-based motion planning
via non-uniform sampling schemes. We divide these methods into four groups: heuristic methods,
informed sampling, adaptive sampling, and learning-based approaches. First, we review heuristics
for biased sampling, which use, for example, workspace information to choose sampling measures.
Informed sampling refers to techniques which alter the sampling distribution based on the current
best trajectory, whereas adaptive sampling alters the distribution based on the previously taken
samples. These methods are both online methods (referring to the distribution changing online),
whereas the heuristic methods are primarily offline, and thus the distribution does not change
during the motion planning problem. An important distinction between these two approaches is
that informed sampling is not able to refine the sampling distribution until a feasible trajectory has
been found. Finally, we review learning methods for sampling, which spans both online and offline
methods. The approach presented in this paper is an offline, learning-based method.

Heuristics for Biased Sampling. Several previous works have presented non-uniform sampling
strategies for SBMP, often resulting in significant performance gains (Urmson & Simmons [2003),
Hsu et al.[2006). Other works leverage models of the workspace to bias samples via decomposition
techniques (Kurniawati & Hsu|2004, Van den Berg & Overmars 2005]) or via approximation of the
medial axis (Yang & Brock|2004). While these sampling heuristics are effective when used within the
problems for which they were designed, it is often unclear how they perform on environments that
are outside of their expected operating conditions (Geraerts & Overmars|2004). This is particularly
the case for planning problems that must sample the full state space (e.g., that include velocity).
These methods further require significant expert intuition, while our method is able to compute



efficient non-uniform distributions from demonstration only. Indeed, this class of biased sampling
algorithms does not learn from previous sampling problems or adapt during a problem.

Informed Sampling. Recent work by |Gammell et al| (2014]) places batches of samples based
on information gained from the running best solution during the motion planning problem. This
approach was generalized in (Gammell et al.|2015) and (Choudhury et al.|2016)), but these ap-
proaches are restricted to geometric motion planning problems. These approaches, which reject
samples if they could not improve the current best solution, are herein referred to as informed
sampling approaches (Gammell et al.|2014) Karaman et al.|2011). In the case of geometric motion
planning problems with Euclidean cost, informed sampling methods generate an elliptical informed
set which may be sampled from directly (Ferguson & Stentz|[2006]). For problems with differen-
tial constraints, steering solutions must be computed and thus a closed-form representation of the
sampling region does not exist. Samples may be rejected if they are guaranteed to not improve
the current trajectory (Akgun & Stilman 2011, but this leads to a large fraction of samples being
rejected in high dimensional problems (Kunz et al.[2016). Kunz et al.|(2016) and |Yi et al.| (2017)
improve the efficiency of this approach using hierarchical rejection sampling and Markov Chain
Monte Carlo methods. Generally, informed sampling approaches aim to leverage the current best
path to improve sampling quality. However, this requires a solution to the motion planning problem
before the sampling may be refined.

Adaptive Sampling. Adaptive sampling typically refers to techniques that alter the sampling
distribution based on knowledge of the environment gained from previous samples, during the
same motion planning problem. Several approaches to adaptive sampling have used online learning
to improve generalization. Burns & Brockl (20055) aim to optimally sample the configuration
space based on maximizing a given utility function for each new sample, related to the quality of
configuration space representation. (Coleman et al.| (2015) use a related experience-based approach
to store experiences in a graph rather than as individual paths. Kumar & Chakravorty| (2010)
leverage information encoded in local connectivity graphs to improve sampling efficiency. |Burns &
Brock| (2005a) aim to address the narrow corridor problem by classifying points in the configuration
space as either free space or obstructed space, and the latter are sampled more densely. Each of these
approaches either fails to generalize to arbitrary planning problems or cannot leverage both the
full state (e.g., velocity information) and external (e.g., obstacle information) factors. In this work
we propose the use of recent advances in representation learning to learn sampling distributions.
These models are able to include all available state and problem information due to their ability to
represent general, high-dimensional, complex conditional distributions.

Learned Sampling. Finally, we use the term learning to refer to the case where knowledge
of previous planning problems is leveraged to improve the quality of samples in a given motion
planning problem. This is in contrast to informed sampling, which only improves efficiency once a
solution is found, and adaptive sampling, which only adjusts sampling distributions after informa-
tion has been gained from previous samples. Note that informed, adaptive, and learned sampling
are sometimes used interchangeably, but we will consistently use these terms as defined above
in this work. Learning approaches have the potential to dramatically improve the rate at which
good solutions may be found, as they do not require information to be acquired in a given mo-
tion planning problem before refining sample placement. [Zucker et al. (2008) use a reinforcement



learning approach to learn where to sample in a discretized workspace. This approach is based
on a discretization of the workspace. While discretizing the workspaces avoids the severe impact
of the curse of dimensionality associated with a complex configuration space, it may substantially
degrade sampling performance versus learning a sampling distribution in the state space. Beren-
son et al. (2012) cache paths, and use a learned heuristic to store new paths as well as recall and
repair old paths. |Li & Bekris (2011) learn cost-to-go metrics for kinodynamic systems, which often
do not have an inexpensive-to-compute metric, especially for nonholonomic systems. Baldwin &
Newman| (2010) learn distributions that leverage semantic information. Ye & Alterovitz (2015
present a learning-based approach that leverages human demonstrations and SBMP to generate
plans. Recently, [Lehner & Albu-Schaffer| (2017) fit Gaussian Mixture Models to previous solution
configurations. This model, however, is restrictive and may not generalize as well as the CVAE
architecture used herein.

3 Problem Statement

The goal of this work is to generate sample distributions to aid sampling-based motion planning
algorithms in solving the optimal motion planning problem. Informally, solving this problem entails
finding the lowest-cost free trajectory from an initial state to a goal region, if one exists. The
simplest version of the problem, referred to herein as the geometric motion planning problem,
is defined as follows. Let X = [0,1]% be the state space, with d € N,d > 2. Let X, denote
the obstacle space, Xpee = X \ Xops the free state space, Tinit € Xpee the initial condition, and
Xgoal C Apree the goal region. A path is defined by a continuous function, s : [0,1] — R?. We
refer to a path as collision-free if s(T7) € Xpee for all 7 € [0,1], and feasible if it is collision-free,
5(0) = Zinit, and s(1) € Xgoa1. For the geometric motion planning problem, we consider the cost ¢
as the Euclidean distance. We thus wish to solve,

Problem 1 (Optimal motion planning). Given a motion planning problem (Xpee, Tinit, Xgoar) and
a cost ¢, find a feasible path s* such that c¢(s*) = min{c(s) : s is feasible}. If no such path exists,
report failure.

Generally, there exist formulations of this problem for systems with kinematic, differential, or
more complex constraints, for which we refer the reader to (Schmerling et al.|2015, LaValle |2006]).
The general form of the motion planning problem is known to be PSPACE-complete (LaValle[2006)),
and thus one often turns to approximate methods to solve the problem efficiently. Sampling-based
motion planning has achieved particular success in solving complex, high-dimensional planning
problems. These algorithms (e.g., PRM*, RRT* (Karaman & Frazzoli 2011)), FMT* (Janson et al.
2015)) approach the complexity of the motion planning problem by only implicitly representing the
state space with a set of probing samples in X and making local, free connections to neighbor
samples (sampled states within an 7, > 0 cost radius, where n is the number of samples). These
samples are drawn from a sample source (random or deterministic) and then distributed over the
state space (Hsu et al.|[2006). As more samples are added, the implicit representation is able to
model the true state space arbitrarily well, allowing theoretical guarantees of both completeness
(a solution will be found, if one exists) and asymptotic optimality (the cost of the found solution
converges to the optimum) (Karaman & Frazzoli 2011} |Janson et al.|2018). This work focuses on
computing sampling distributions to allocate samples to regions more likely to contain an optimal
motion plan.



4 Learning-Based Sample Distributions

The goal of this work is to develop a methodology capable of identifying regions of the state space
containing optimal trajectories with high probability, and generating samples from these regions to
improve the performance of sampling-based motion planning (SBMP) algorithms. These regions
may be arbitrary and potentially complex, defined by internal or external factors. Specifically, we
refer to intrinsic properties of the robotic system, independent of the individual planning problem
(e.g., the system dynamics) as internal factors, and we refer to properties specific to the planning
problem itself (e.g., the obstacles, the environment, the initial state, and the goal region) as external
factors. At the core of our methodology is a Conditional Variational Autoencoder (CVAE), as it is
expressive enough to represent very complex, high-dimensional distributions and general enough to
admit arbitrary problem inputs. The CVAE is an extension of the standard variational autoencoder,
which is a class of generative models that has seen widespread application in recent years (Kingma
& Welling 2013). This extension allows conditional data generation by sampling from the latent
space of the model (Sohn et al.|2015)); in the motion planning context, the conditioning variables
represent external factors. Lastly, these samples are used, along with uniform samples that ensure
state space coverage, as the sampling distribution for SBMP algorithms. The method thus leverages
previous robotic experience (motion plans and demonstrations) to inform planning algorithms.
This combination of learning and SBMP allows both the generality of learning and the exhaustive
exploration ability and theoretical guarantees of SBMP.

We will briefly discuss the theory behind the variational autoencoder (VAE), and point out
connections to concrete features of our methodology. We aim to construct a distribution for the set
of sampled points lying on a nearly optimal trajectory, conditioned on a given planning problem.
We will refer to a sampled point as . We will denote a finite dimensional encoding of the planning
problem and other external features as y. For example, a map of obstacles in a workspace can
be encoded as an occupancy grid, for which y is an array of binary elements. We will denote
the conditional density of sample points, conditioned on y, as p(z|y). This distribution may be
formulated as a latent variable model, where we write the joint density of sampled points and the
latent variable as p(x|z,y) p(z|y), where z is a latent variable. We may then write parameterized
forms of these densities as py(x|z,y) and pg(z|y) respectively, where 6 is a vector of parameters.
Given this formulation, the maximum likelihood approach aims to maximize the likelihood

po() = / po(zlzy) po(ely)dz (1)

with respect to the empirical distribution. In this work, as is standard in the VAE literature
(Doersch!2016)), we will let py(z|z,y) = N (z|f(2,9;0), 0% I), where o is a hyperparameter that is
set to be a small value, and f is a deterministic function which will be encoded as a neural network
(typically referred to as the decoder). Because any distribution over the latent variable may be
mapped to an arbitrary distribution by the nonlinear function f, we will let py(z|y) = N(0,1I).
However, computing the integral in (1)) is intractable. To address this problem, the approach taken
in variational inference is to approximate the posterior p(z|z,y) with a function g4(z|z,y), where ¢
is a vector of parameters. This is referred to as the encoder. A divergence penalty is then enforced
between p(z|x,y) and g4(z|z,y). With some manipulation, the log likelihood log pg(x|y) may then
be written as

log po(z|y) — Drr(as(2]z,y) | po(2]2, y)) = Ey, 21z log po (]2, y)] — Drr(as (2|2, y) || po(2]y)), (2)



where D denotes the KL divergence. We refer the interested reader to (Kingma & Welling
2013, Doersch 2016) for further details. The right hand side of this equation is referred to as the
Evidence Lower Bound (or ELBO), as it is a lower bound on the log likelihood resulting from the
non-negativity of the KL divergence. Because the KL divergence term on the right hand side is
small (due in part to using high capacity models in the form of neural networks), we can optimize
the right hand side as a tractable surrogate for the log likelihood. This is then optimized with
respect to the parameters 6 and ¢ via backpropagation. Writing ¢, (z|x,y) = N (u(z,y), (z,y)),
and noting py(z|y) is modelled as an isotropic, unit-variance Gaussian, maximizing the log likelihood
lower bound above is equivalent to maximizing

lz = f(z,9)1* = Drr(N (u(e, y), S(a,y)) | N(0, 1)) (3)
with respect to # and ¢. To make this tractable via backpropagation, the reparameterization trick
is used (Kingma & Welling 2013)). Roughly, this is equivalent to modeling ¢4 as a deterministic
function with a stochastic input, such that z = pu(z,y) + A€, where € ~ N(0, ) and AAT = (z, y).
The outline of the training process is provided in Fig. The optimization of Equation [3]is done
via standard stochastic gradient methods.

The standard construction of the conditional VAE (CVAE) consists of neural networks for the
encoder gy (z|x,y) and the decoder py(z|z,y). Once trained, the decoder allows us to approximately
generate samples from p(z|y) by simply sampling from the normal distribution of the latent variable
p(zly) = N(0,1) (see Fig. 2b). While one iteration of this offline phase is often sufficient, with
problems that are expensive to solve and thus expensive to acquire data for, the entire methodology
may be performed iteratively. Thus, a partially trained CVAE may generate samples that result
in better planning performance, allowing more, high-quality data and subsequently allowing the
CVAE to be further trained. In practice, it is common to add a weighting term (8) to the KL
divergence term in the ELBO (Higgins et al|2017). This term controls the relative weighting of
the autoencoding loss (the reconstruction error) and the strength of the prior over z (Alemi et al.
2018)). The value of 8 was chosen on a per-problem basis.

Approach. We now examine the methodology in detail, following along with the outline below.
It begins with an offline phase which trains the CVAE, to be later sampled from. Line [1] initializes
this phase with the required demonstration data. This data (states and any additional planning
problem information) may be from successful motion plans, previous trajectories in the state space,
human demonstration, or other sources that provide insight into how the system operates. In this
work we use each of these data sources (Section , though, when available, optimal solutions
to previous motion planning problems are preferred since these will intuitively provide the most
insight into the optimal motion planning problem. In order to generate the required breadth
of data (in this work, on the order of one hundred thousand data points), we leverage GPU-
accelerated, approximate motion planning algorithms to generate plans quickly (Ichter et al.|2017)).
The data is then processed into the state of the robot and the conditioning variables. In particular,
these conditioning variables (Line [2|) contain information about the problem, such as workspace
information (e.g., obstacles) or the initial state and goal region. The CVAE is then trained in
Line [3, with the goal of learning the internal representation of the system conditioned on external
properties of the problem (which may inform where in the state space the system will operate,
adaptively to a problem).

The online phase of the methodology begins with a new planning problem, Line [ defined by
the tuple (Xfree, Tinit, Xgoal), which is formed into a conditioning variable y in Line 5l For example,
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Learning Sample Distribution Methodology Outline

Offline:
1 Input: Data (successful motion plans, robot in action, human demonstration, etc.)
2 Construct conditioning variables y
3 Train CVAE, as in Fig.

Online:

4 Input: New motion planning problem (Xpee, Zinit, Xgoal), learned sample fraction A

5 Construct conditioning variable y

6 Generate AN free samples from the CVAE latent space conditioned on y, as in Fig.
7 Generate (1 — A\)N free samples from an auxiliary (uniform) sampler

8 Run sampling-based planner (e.g., PRM*, FMT* RRT¥)

y may be the initial state, the goal region, or workspace obstacles encoded in an occupancy grid.
With this in hand, we now generate samples by sampling the latent space as N (0, I), conditioning
on y, and mapping these samples to the state space through the decoder network (Line @ In
order to maintain the ability of SBMP algorithms to represent the true state space with arbitrarily
high fidelity, and thus maintain the theoretical guarantees of SBMP algorithms (see Remark , we
also sample from an auxiliary sampler, in our case a uniform sampler. We denote the fraction of
learned samples as A, i.e., we generate AN samples from the learned sampler and (1—A)N from the
auxiliary sampler. We have found through experimentation (Section that A = 0.5 represents
a satisfactory balance between leveraging the learned sample regions and ensuring full coverage
of the state space. In particular, the learned sampler is often able to find solutions quickly, with
very few samples. However, if the learned sampler does not fully identify the region containing the
optimal solution, the uniform sampler must effectively fill in the gaps, i.e., the learned sampler will
continue to miss these regions even with more samples. Finally, in Line [§], we use these samples to
seed a SBMP algorithm, such as PRM*, FMT*, or RRT*, and solve the planning problem. This
methodology is applied to a variety of problems with varying state space dimensionality, constraints,
and training data-generation approaches in the following section.

Remark 1 (Probabilistic Completeness and Asymptotic Optimality). Note that the theoretical
guarantees of probabilistic completeness and asymptotic optimality from (Janson et al.||2015]), (Jan-
son et al.|2018), and (Karaman & Frazzoli 2011) hold for this method by adjusting any references to
n (the number of samples) to (1 — \)N (the number of uniform samples in our methodology). This
result is detailed in Appendiz D of (Janson et al.||2015) and Section 5.3 of (Janson et al|2018),
which show that adding samples can only improve the solution or lower the dispersion (which the
theoretical results are based on), respectively.

5 Numerical Experiments: Performance and Scalability

To demonstrate the performance and generality of learning sample distributions, this section shows
several numerical experiments with a variety of robotic systems. The results in Section were
implemented in MATLAB with the Fast Marching Tree (FMT*) and Batch Informed Trees (BIT*)
algorithms (Janson et al|[2015, Gammell et al.|[2015), while the remainder of the results were
implemented in CUDA C with a GPU version of the Probabilistic Roadmap (PRM*) algorithm
(for convergence plots) and the Group Marching Tree (GMT*) algorithm (to generate training
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Figure 2: Conditional Variational Autoencoder (CVAE) setup (Doersch|2016). In the context of this work,
x represents training states, y the conditioning variable (possibly initial state, goal region, and workspace
information), and z the latent state. The decoder (b) is used online to project conditioned latent samples
into our distribution.

data) (Karaman & Frazzoli|2011, Ichter et al.[2017). The CVAE was implemented in TensorFlow.
The simulations were then run on a Unix system with a 3.4 GHz CPU and an NVIDIA GeForce
GTX 1080 Ti GPU. Example code and the network architecture may be found at https://github.
com/StanfordASL/LearnedSamplingDistributions. We begin with a simple geometric planning
problem in which we show our method performs as well as or better than state of the art approaches.
We also note that these state of the art approaches are less general than the method we present in
this paper, and tuned well towards these geometric problems. We then demonstrate the benefits of
learning distributions for a high-dimensional spacecraft system, a dynamical system conditioned on
workspace obstacle information, and a kinematic chain. These results are examined conceptually
as well as quantitatively in terms of convergence, finding an order of magnitude improvement in
success rate and cost.

This section aims to show that the method presented in this paper achieves good performance
on a wide variety of systems, from simple to complex. Moreover, this section examines a variety of
conditioning variables, showing the approach is useful with no conditioning information (and the
approach learns to sample based on characteristics of the system dynamics) or with complicated
conditioning variables such as workspace representations. Note sample generation time is included
in runtime, but generally accounts for only a fraction of the total runtime—generating thousands of
samples takes only few milliseconds. The offline portion of training is not included in the runtime
and was on the order of several minutes (see video at https://goo.gl/E3JPWn for training times
with the problem in Section [5.3)).
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5.1 Geometric Planning Comparisons
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Figure 3: Solutions to the geometric planning problem with different sample distributions (colored
by cost to come, or green if unexplored) and convergence results for sample distributions with FMT*
and BIT* (results averaged over 100 runs, standard deviation shaded, and A = 0.5). Hybrid refers to the
sampling strategy of (Hsu et al.[2005]), and Learned refers to the method we present in this paper.

While this methodology is very general and can be applied to complex systems, we first show
the methodology performs well for a simple, geometric problem. All problems are created with
randomly generated initial states, goal regions, and 10 cube obstacles, as shown in Fig. The
learned sample distributions were conditioned on all the problem information (initial state, goal
region, and obstacles), and trained over successful motion plans.

For this problem, we make comparisons to a non-uniform sampling strategy and combine our
methodology with an exploration-guided non-uniform sampling algorithm. Specifically, we con-
sider the hybrid sampling strategy proposed in (Hsu et al.|2005)), and Batch Informed Trees (BIT*)
(Gammell et al. [2015). The hybrid sampling approach uses uniform samples, Gaussian samples,
and bridge samples to create a distribution favoring narrow passageways and regions nearby obsta-
cles. BIT* uses successive batches of samples to iteratively refine a tree, leveraging solutions from
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previous batches to selectively sample only states that can improve the solution.

The results of these comparisons are shown in Fig. The first comparison shows each strategy
with FMT* (Janson et al.[2015)). We find that each strategy performs nearly equivalently in terms of
finding a solution, but the learned strategy finds significantly better solutions in the same amount of
time. In fact, the learned sampling strategy finds within 5% of the best solution almost immediately,
instead of converging to it as the number of samples increase. The results show less of a performance
gap with BIT*, though the learned strategy continues to perform at least as well as the others.
The delayed start of the hybrid convergence is only due to the time required to generate samples,
which for BIT* was implemented here by rejection.

5.2 Spacecraft Debris Recovery

The second numerical experiment considered is a simplified spacecraft debris recovery problem,
whereby a cube shaped spacecraft with 3D double integrator dynamics (# = u, no rotations) and
a pair of 3 DoF kinematic arms (assumed to be much less massive than the spacecraft body), for a
total of 12 dimensions, must maneuver from an initial state, through a cluttered asteroid field, to
recover debris between its end effectors. The cost is set as a mixed time/quadratic control effort
penalty with an additional term for joint angle movement in the kinematic arms. The initial states
and goal regions were randomly generated, as were the asteroids (i.e., obstacles). Fig. |4 shows an
example problem and the spacecraft setup. The CVAE was conditioned on the initial state, goal
region, and debris location, and trained with successful motion plans.

Figure 4: An example spacecraft debris recovery problem, whereby the spacecraft must maneuver from an
initial state to recover debris (shown in the figure inset in green) between its end effectors, while avoiding
obstacles (blue). The spacecraft (red) is modeled as a double integrator with a pair of 3 DoF kinematic arms
(shown in the figure inset in black).

The resulting learned distributions are shown in Fig. [5| Fig. shows the learned distribution
of the x and y positions for two problems. The distribution resembles an ellipsoid connecting
the initial state and goal region, with some spread in the minor axis to account for potential
obstacles in the trajectory and a slight skew in the direction of the initial velocity—we note the
similarity to the sample distributions found after exploration in BIT* (Gammell et al|2015). Fig.
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Figure 5: Spacecraft learned distributions for various dimensions. The learned distributions are shown in
red and purple (corresponding to different initial states, plotted as red and purple circles), the goal region
is shown in blue, and the initial training distributions are shown in black (when displayed). (ba)) shows the
distribution favoring an ellipse connecting the initial state and goal region. (bb)) shows a phase portrait of
the x dimension, where the samples favor velocities towards the goal region. show distributions for
the kinematic arm angles, where it has converged to a few fixed values to sample, thus reducing movement
cost (o and 1 denote rotation angles at the arm-spacecraft hub and Sy denotes the joint angle in the arm).

shows the learned distribution of x and 1z, i.e., a phase portrait of the 2 dimension. The purple
distribution favors velocities such that any sample flows from the initial state to the goal region, first
accelerating near the maximum sampled velocity (¢ = 1), and then maintaining the velocity until
nearby the goal. The red distribution, whose initial position is much closer to the goal region has a
much larger spread, favoring samples with velocities towards the goal in all directions. Finally, the
learned distributions for a single arm are shown in Figs. The angle distributions demonstrate
the arm movement should be kept to a minimum, by holding one dimension fixed to a few values
only. In the problem setup, the arms have significantly less impact on obstacle avoidance, but can
incur a large cost for movement, which is reflected in the distributions.

Fig. [6] shows the convergence of the methods in time. The learned sampling distribution
outperforms the uniform by approximately an order of magnitude in finding solutions when they
exist. The cost convergence curves show that planning with learned samples converges almost
immediately to within a few percentage of optimal, while even after 10,000 samples, planning with
a uniform distribution is still more than 60% from optimal. This immediate convergence is similar
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Figure 6: Convergence results for the spacecraft planning problem. Planning with the learned distributions
(50% and 90% learned) significantly outperforms planning with a uniform distribution (results averaged over
100 runs and the standard deviation shaded).

to what was observed in the geometric planning problem and the narrow passage problem (in the
following section). We also note the variance is smaller for the learned distributions.

5.3 Workspace Learning

The next problem, shown in Figs. [I] and [7} was loosely inspired by the narrow passage problems
in (Zucker et al|2008), and demonstrates the ability of the methodology to learn distributions
conditioned on workspace information. The problem features a 3D double integrator (6 dimensional
state space) operating in an environment with 3 narrow passages. The initial state, goal region,
and gap locations are all randomly generated and used to condition the CVAE for each problem
(an occupancy grid was used to represent the obstacles in the conditioning variable). Fig. [7|shows
several problems and their learned distribution; clearly, the CVAE has been able to capture both
initial state and goal region biasing, some sense of dynamics, and the obstacle set. The velocity
distributions too show the samples effectively favoring movement from the initial state to goal
region. The convergence results, shown in Fig. |8 demonstrate learned distribution solutions can
be found with approximately an order of magnitude fewer samples and converge in cost almost
immediately, while the uniform sampling results show the classic convergence curve we may expect.
A video of the methodology applied to this problem can be found here, https://goo.gl/E3JPWn.

This method’s ability to learn both dynamics and obstacles demonstrates that learning is capa-
ble of almost entirely solving some problems. While this would be quite efficient, we also found the
learned distributions susceptible to failure modes (e.g., cutting corners), which result in infeasible
solution trajectories. In our methodology, this is easily handled through the uniform sampling and
the guarantees of SBMP. This methodology may thus be thought of as attempting to solve the
problem through learning, and accounting for possible errors with a theoretically sound algorithm.

5.4 Chain

We next demonstrate our methodology on a kinematic arm planning problem. The arm, shown in
three potential configurations in Fig. has eight degrees of freedom. Each degree of freedom is a
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Figure 7: Example learned distributions for the narrow passage problem, conditioned on the initial state
(red), goal region (blue), and the obstacles (through an occupancy grid).

rotational joint around an alternating axis. The arm must navigate a cluttered environment from
an initial state to a goal region as in Fig. [b] This scenario demonstrates a planning problem in
which the optimal sample placement is unintuitive in the state space. Still, the convergence results
show similar performance increases.

6 Numerical Experiments: Extensions, Data Sources, Generaliza-
tion, and Hyperparameter Selection

In this section, we investigate modifications to the learned sampling distribution methodology that
can result in performance improvements. We first investigate the role of algorithmic parameters
on the performance of the learned sampling distribution methodology. We investigate learning
structured distributions in which samples are coupled together resulting in improved dispersion
along the trajectory. We investigate out-of-distribution generalization. Finally, we investigate
potential training data sources when solution trajectories are not available.

6.1 Fraction of Learned Samples (\)

In this section we investigate the effect of the fraction of learned samples (A) on the cost, time,
and success rates. These comparisons are performed on the spacecraft environment (Section .
Percentages between 0% (all uniform) and 100% (all learned) are shown in Fig. In terms of
convergence, all the percentages equal to or greater than 25% performed equally well. In terms
of success rate, with small sample counts (< 5000), 50% and above each performed similarly,
however, as the number of samples increased, the high percentages (75% and above) continued
to fail on a few problems in which the learned sample distributions missed important regions of
the state space. Lastly, comparing runtime, the runtimes begin increasing very quickly with a
learned sample fraction greater than 50%. This is caused by a high density of samples being in
small regions, leading to an increased number of nearest neighbors for each sample. As the 50%
distribution performed well in all three factors, we use this as our default for this paper, and we
observed similar results in other planning environments.

In this work we only consider sampling fractions that are constant over the duration of the plan-
ning algorithm. However, the learned sampling distribution typically result in rapid convergence
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Figure 8: Convergence results for the narrow passage problem, demonstrating the learned sample distribu-
tions (50% and 90% learned) achieve approximately an order of magnitude better performance in terms of

success rate, and are able to converge with few samples (results averaged over 100 runs and the standard
deviation shaded).

(a few hundred samples) in most cases, with a small fraction of problems taking longer. In these
cases, the learned samples fail to produce a trajectory, and gaps are filled via the auxiliary sampler.
As a result, performance could likely be improved by first sampling primarily from the learned
distribution, and increasingly sampling from the uniform distribution as the problem progresses.
This is a relatively minor consideration, but may improve performance, especially when the amount
of training data is limited.

6.2 Learning Dependent Sample Sets

To showcase the generality of the learned sampling distributions methodology and its ability to
capture arbitrary and complex distributions, we use the proposed methodology to learn sets of
samples — meaning we learn a distribution of multiple samples at once, to be drawn in batches. In
this case, we learn from solution trajectories with three or more samples. We are thus learning not
only a distribution to model the promising regions of the state space, but multiple distributions at
once with dependency between them (i.e., the methodology learns to disperse the samples along the
trajectory). Fig. shows resulting distributions and the success rate of this method compared to
learning only a single sample. As expected, the distributions learn to be well-distributed along the
solution trajectory, resulting in higher success rates (e.g., the success rate for a 90% ratio of learned
samples to uniform samples increased from 82% to 93% at 100 samples). This result corroborates
the findings of |Janson et al.| (2018]), which found the primary benefit of low-dispersion sampling is
in finding solutions with fewer samples.

6.3 Varied Obstacle Density

In the previous section the learned sampling distributions methodology was shown to generalize
well to previously unseen problem instances (new initial states, goal regions, and obstacle sets).
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Figure 9: Results for the kinematic arm problem. shows three valid configurations of the system. (9b)
shows a successful trajectory. shows the performance in terms of the success rate and the cost, plotted
versus the number of samples and the planning time. Within approximately 25ms, the performance of the
learned sampling approach exceeds the performance of the uniform sampling approach after 300ms.

In these cases, the test and train problem sets are drawn from the same problem generator. This
section investigates the performance of this method when the test problems are significantly different
from those seen during the training phase. The ability for machine learning systems to generalize
(or extrapolate beyond training data) is a current active topic of research. While we anticipate
future developments will enable better generalization, in this subsection we aim to characterize the
out-of-distribution generalization of our proposed methodology.

Our approach is as follows: we generate maze-like environments randomly, from a random maze
generator (described below) that takes maze complexity as an argument. We generate training data
for three different complexity levels (low, medium, and high), and train sampling distributions on
these datasets. Then, we investigate the performance of double integrator systems (conditioned on
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Figure 10: Convergence comparison over varying percentages of learned samples to uniform samples (i.e.,
A) in the spacecraft planning problem. From these results a 50-50 split was selected as an ideal in terms of
runtime, success rates, and cost.

an occupancy grid of the environment) on planning problems of some complexity, with sampling
distributions trained from a dataset of a different complexity. Concretely, we train a sampling
distribution on each of the low, medium, and high complexity datasets, and test on each of them
as well. We do not test on the train dataset, different test and train datasets are generated for each
complexity level. In addition to this, we also compare against a uniform sampling distribution and
a CVAE trained on all three complexity levels. Examples of each complexity level are plotted in
Fig. Results are plotted in Fig. In our experiments, we found that for all cases the learned
sampling distribution substantially outperformed a standard uniform distribution. Of the learned
distributions, we found that the worst performance was achieved when distributions were trained on
low complexity environments and tested on high complexity environments. This is fairly intuitive,
as low complexity environments have few obstacles, and the distribution is heavily biased toward
samples in the center of the workspace with velocities toward the goal. The best performance was
(roughly) achieved when the train and test complexity were the same.

Maze Generation. The maze generation algorithm was implemented on a square grid with an
odd number of rows and columns. The complexity of the maze generating function was indexed by
two numbers: the number of obstacles generated (n) and the number of steps taken (m). Referring
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black, and blue), effectively enforcing some dispersion between them. (11d)) Success rates for single sample
distributions and multi-sample distributions (lighter colors denote the multi-sample counterparts).

to these with tuples (n,m), low, medium, and high complexity corresponded to (2,2), (4,2), and
(6,4). The maze was generated by sampling points in the grid on odd-indexed cells, sampling a
random direction, and attempting to take a step, where each step corresponded to two cells. The
cells between the previous point and the new step would then be added to the obstacle. This
continued while less than m steps were taken for that obstacle. If the cell was occupied, then the
step was not taken. This was repeated for a total of n obstacles. If the initial sampled point of
an obstacle was in another obstacle, it was not resampled. This process was applied to an 11 x 11
grid, and the outer region layer of one cell was discarded. This was performed because this maze
generation process often left this space without obstacles, so motion planning algorithms could find
simple feasible paths by sampling along the edge of the grid.

6.4 Iterative Training of CVAE

Fig. shows the performance of the approach on a multirobot motion planning problem. This
problem consists of planning for three single integrator robotic systems in their joint state space.
Empirically, we found learning near-optimal sampling distributions from successful motion plans
was challenging for this problem because the motion plans generated through uniform sampling were
of low quality (a high quality plan for the problem requires not only samples in the correct workspace
locations, but synchronized along the trajectory of each robot). The difficulty of generating high
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(a) Low Complexity (b) Medium Complexity (c) High Complexity

Figure 12: Representative mazes for each complexity with initial states and goal regions held constant.

Train Problem Complexity Train Problem Complexity
Rand. Low Med. High All Rand. Low Med. High All
Low 1 099 093 0.99 Low 0.81 084 092 0.81

Test Test
Problem  Med. 0.8 093 087 082 Problem  Med. 085 086 090 0.85
Complexity Complexity
High 0.48 = 0.75 0.8 0.64 High 094 088 088 087
Success Rate Cost (Normalized by Random)
(a) Success Rate at 500 Samples (b) Normalized Cost at 4000 Samples

Figure 13: Results for generalization across testing environments. For both grids, the columns denote the
complexity of the training problems, where All denotes problems drawn with equal probability from each
class, and Rand. denotes using a uniform sampling distribution. The rows denote the performance on low,
medium, and high complexity planning problems. All training complexities outperformed random sampling
on all test complexities, both in terms of success rate and normalized cost. Training on the same complexity
level as used in testing always achieves the best (or nearly the best, in the case of cost) performance.
Training on low complexity problems and testing on high complexity problems is potentially problematic,
as the optimal trajectories are close to the shortest path in free space, and thus the CVAE model does not
learn to effectively condition on the obstacles. These results show that it is important in practice to ensure
that the training data used is reasonably representative of the test conditions.

quality trajectories for this system using uniform sampling distributions is shown in Fig. where
after 5000 samples the best generated trajectory has a normalized cost of more than 1.5.

A naive approach to this problem would be to simply generate a very large amount of data,
and increase training time. However, data gathering efficiency can be dramatically improved by
iteratively updating the sampling scheme used, as opposed to solely using the uniform sampling
distribution for gathering training data. Figs. show the sampling distributions after
retraining with data generated from a previous (less-optimal) learned sampling distribution. We
found that this dramatically improved sample complexity.

6.5 Human Demonstration

Finally, we demonstrate the methodology on a problem trained from a data source other than
computed motion plans — human demonstration. The problem is a multi-robot planning problem
consisting of two cars completing a lane changing maneuver (Fig. , with a total of 22 states,
as well as a constraint on the two cars colliding and a preference towards the cars remaining in
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Figure 14: Learned sampling distributions for a varying number of phases of re-generating training datasets
using the learned sampling distribution. The different colors correspond to different robots, and the planning
problem is in their joint state space. The straight lines plotted in each figure connect the start state to the
goal state for each robot. Note that iteratively regenerating training data allows rapid convergence of the
learned sampling distributions.

their lanes when not changing lanes. The data was collected from human demonstration on a two
person driving simulator (Schmerling et al|2018]). Because this problem is beyond the reach of
sampling-based motion planning with uniform samples and because we do not have access to a two
point boundary value problem solver, we only examine this distribution qualitatively. The resulting
learned distribution is visualized for a single initial state in Fig. and overlayed on the total
dataset. The learned distribution effectively encapsulates the necessary factors for a successful
motion plan: the collision constraint, the preference towards the center of lanes, the preference to
maintain forward velocity, and the choice of states applicable to a lane change maneuver.

7 Discussion and Conclusions

Conclusions. In this paper we have presented a methodology to bias samples in the state space
for sampling-based motion planning algorithms. In particular, we have used a conditional varia-
tional autoencoder to learn subspaces of valid or desirable states, conditioned on problem details
such as obstacles. We have compared our methodology to several state of the art methods for
sample biasing, and have demonstrated it on multiple systems, showing approximately an order
of magnitude improvement in cost and success rate over uniform sampling. This learning-based
approach is promising due to its generality and extensibility, as it can be applied to any system
and can leverage any problem information available. Its ability to automatically discover useful
representations for motion planning (as seen by the near immediate convergence) is similar to recent
results from deep learning in the computer vision community, which require less human intuition
and handcrafting, and exhibit superior performance.

Future Work. There are many possible avenues open for future research. One promising ex-
tension is the incorporation of semantic workspace information through the conditioning variable.
These semantic maps show promise towards allowing mobile robots to better understand task spec-
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Figure 15: Performance of the learned sampling framework on the multirobot motion planning problem.

ifications and interact with humans (Kostavelis & Gasteratos [2015). Another promising extension
builds upon recent work demonstrating the favorable theoretical properties and improved perfor-
mance of non-independent samples (Janson et al.[2018). An approach to reducing the independence
of the samples was presented in Section [5.3] but extensions beyond this exist, including generating
large sample sets (e.g., > 1000). Lastly, for systems with constraints that force valid configurations
to lie on zero-measure manifolds, recent work has focused on projective methods (Jaillet & Porta
. Our methodology, while not capable of sampling directly on this manifold, can easily learn to
sample near it, and therefore, potentially dramatically improve the performance of these methods.

In this work we have explored conditioning on workspace maps. However, this was performed
only for relatively small, planar problems. Scaling this to large problems is challenging, as the
number of conditioning variables grows exponentially with the occupancy grid resolution and with
the problem dimensionality. However, our experiments provided promising evidence that this con-
ditioning could be used to substantially improve performance. As such, a promising future line of
work is investigating more efficient methods for environment conditioning. One possible approach
is finding environment representations that are relatively low dimensional, and encode useful infor-
mation for motion planning. Another is to instead switch to an adaptive scheme. In this approach,
instead of conditioning on the workspace map directly, one could condition on recent samples with
known collision test results or one could condition on the state of the tree itself. This gives a
constantly updated set of conditioning variables corresponding to the structure of the workspace.
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(a)

Figure 16: Setup for lane change problem, generated from human demonstration, where the red and
blue car must switch lanes and make their respective exits. (16bH16c) The training dataset is visualized in
black, overlayed with learned distributions for the blue and red initial car states. Displayed are the z and
y positions of each car at several samples. Each line connects the position of the two cars at a given time.
Initially, the red car is behind the blue car, but at a higher velocity and thus eventually passes the blue car
in most samples (the red car is leading samples visualized in and tailing in ) Note each sample
is not in self collision.

However, this method also has associated scalability questions that merit future work.

Application in Practice. Note again, the goal of this work is to compute a distribution repre-
senting promising regions (i.e., regions where optimal motion plans are likely to be found) through
a learned latent representation of the system conditioned on the planning problem. During the
offline CVAE training phase, we recommend training from optimal motion plans to best demon-
strate promising regions. We generally train on the order of one hundred thousand motion plans,
the generation of which can be accelerated with approximately optimal, GPU-based planning algo-
rithms (Ichter et al2017). To form the conditional variable, we recommend including all available
problem information, particularly the initial state and goal region. If available, workspace obstacles
can be easily included through occupancy grids; we note however that obstacles can be included
in any form, as the neural network representation for the CVAE has the potential to arbitrarily
project these obstacles as necessary. As mentioned in Section [} we use a weighting term on the
KL divergence in the ELBO for training, as in e.g. [Higgins et al. (2017)). This was chosen inde-
pendently for each planning problem, in the range of 10~ to 1072. This choice was simply based
on visual inspection of the samples generated by the trained model — in practice, a more thorough
evaluation could be performed via evaluating the effect of the KL weighting on the performance of
the planning algorithm. Multiple dependent samples can also be generated at once (Section ;
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we found even as few as three resulted in marked increases in success rate. Finally, in the online
phase of the algorithm, we draw a combination of learned and uniform samples to ensure good
state space coverage; we found a 50-50 split to be most effective.
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