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Generative Adversarial Nets in Robotic Chinese Calligraphy*

Fei Chao1, Jitu Lv1, Dajun Zhou1, Longzhi Yang2, Chih-Min Lin1,3, Changjing Shang4, and Changle Zhou1

Abstract— Conventional approaches of robotic writing of
Chinese character strokes often suffer from limited font genera-
tion methods, and thus the writing results often lack of diversity.
This has seriously restricted the high quality writing ability of
robots. This paper proposes a generative adversarial nets-based
calligraphic robotic framework, which enables a robot to learn
writing fundamental Chinese strokes with rich diversity and
good originality. In particular, the framework considers the
learning process of robotic writing as an adversarial procedure
which is implemented by three interactive modules including
a stroke generation module, a stroke discriminative module
and a training module. Noting that the stroke generative
module included in the conventional generative adversarial nets
cannot solve the non-differentiable problem, the policy gradient
commonly used in reinforcement learning is thus adapted in this
work to train the generative module by regarding the outputs
from the discriminative module as rewards. Experimental
results demonstrate that the proposed framework allows a
calligraphic robot to successfully write fundamental Chinese
strokes with good quality in various styles. The experiment also
suggests the proposed approach can achieve human-level stroke
writing quality without the requirement of a performance
evaluation system. This approach therefore significantly boosts
the robotic autonomous creation ability.

I. INTRODUCTION

Applications of robotics in promoting human culture and

civilisation, such as robotic writing and drawing, are a major

topic which is often neglected by the traditional robotics re-

search. The research of robotic writing focuses on the design

of control algorithms to drive robotic end-effectors to write

complex characters or letters [1]–[5]. Since Chinese character

writing must consider the spatial collocations of character

strokes [6], high quality writing must locate well-shaped

strokes in the right positions and accordingly the writing

quality of Chinese characters essentially relies on the quality

of the character strokes. Existing high quality stroke writing

requires a calligraphy robot to simultaneously control various

joints such that the pen moves accurately. Consequently, only

characters existing in the robot’s predefined font databases
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can be written by the robots. However, this leads the current

calligraphy robots to facing a challenging difficulty that these

robots cannot generate strokes with good diversity. In other

words, the writing results by the current calligraphy robots

are all in the same style, lacking of the creativity that human

calligraphers usually have.

A number of recent studies applied direct programming

methods to attach large font databases to robots control

systems in an effort to solve the aforementioned difficulty

[7], [8]. Such a method requires complicated and massive

human input to convert font information into manipula-

tor’s trajectories [1]. Other scientists applied the follow-

up ability of manipulators to obtain rich font information

[4], [9], [10], which successfully imparts human calligraphic

styles to robots. However, the method still entails significant

human work to enable manipulators to produce sufficient

font information. In addition, several robotic scientists at-

tempted to use deep neural networks to learn writing and

drawing abilities [5]. Indeed, it is very appealing that a

calligraphy robot possesses a generation mechanism that

can automatically produce various styles. In addition, the

generation mechanism is desired to have a good learning

ability, such that the mechanism can be trained using training

data, rather than manually setting up with a big human labor

consumption.

This paper proposes a new robotic writing approach using

the generative adversarial nets (GAN), which enables a robot

to learn to write fundamental Chinese strokes and thus be

more appealing. The GAN is a cutting-edge tool for training

generative models, and GAN has been widely applied in

computer vision and natural language processing [11]. Due to

its powerful creation ability, GAN appears to be a promising

method for the robotic calligraphy. However, the GAN is

not readily applicable to robotic manipulators in generating

writing sequences of Chinese strokes. This is because GAN

is designed for generating images, but it has difficulties

in directly generating sequences of discrete data, such as

stroke trajectories or robot motions. More specifically, the

utilisation of a robotic manipulator in a GAN model leads to

the fact that gradient informant cannot be propagated from

the model’s output to its generative network. In this case, an

alternative training method must be used in order to build

the GAN-based robotic calligraphy.

A generative adversarial framework is therefore proposed

which uses policy gradient for a robot in learning to write

fundamental Chinese strokes. The framework applies the

GAN to generate robotic writing trajectories, which are per-

formed by a multiple-degree robotic manipulator. Through

the adversarial processes of the framework, the writing
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performance is evaluated by the discriminative network and

the evaluation results are used as the gradients to train the

generative network. As a result, the robot is able to write

various types of Chinese strokes. The main contributions of

this work are summarized as follows: (1) introducing the

GAN to robotic manipulator to generate writing movements,

which drives a brush pen to produce various writing types

of Chinese strokes (as detailed in Section II-A), (2) adopting

the “Policy Gradient” training method in the generative

net to solve the difficulty that error information cannot be

propagated back to the GAN (as discussed in Section II-D).

The remainder of the paper is organised as follows.

Section II details the proposed approach which allows callig-

raphy robotic to learn to write strokes with good diversity.

Section III specifies the experimental set up and discusses

the experimental results. Section IV concludes the paper with

directions of future work suggested.

II. PROPOSED APPROACH

A. The Approach Overview

The proposed approach, as shown in Fig. 1, consists of

three parts: 1) stroke generative module, 2) stroke discrimi-

native module, and 3) training module. The entire method is

built upon the GAN. The task of the discriminative module is

to distinguish samples from the stroke generative module or

from the real training data; meanwhile, the stroke generative

module’s task is to maximally confuse the discriminative

module. Thus, the training objectives of the approach are

summarized to: 1) train the discriminative module to max-

imize the probability of the real stroke data and minimize

the probability of the stroke image written by the robot; and

2) train the generative module to minimize the probability

that the discriminative module recognizes the robotic written

images.

In the stroke generative module, a generative network,

G, uses random numbers as input to produce probability

distributions of stroke trajectory points. Then, the calligraphy

robot applies a sampling method to obtain the stroke’s

position information from the probability distributions. From

this, the robot uses the obtained position to write the stroke,

which is captured by a camera representing as a stroke image.

The discriminative network, D, receives stroke images, either

captured from the written strokes by the robot or sampled

from calligraphy textbooks, and produces a discriminative

result for each image.

The original training approach proposed in Goodfellow’s

GAN used the gradient descent method. However, the gradi-

ent descent method must face a non-differentiable problem

during the training phase in the proposed framework, due to

the involvement of the robotic manipulator in the proposed

approach. Such problem cannot be solved by the back-

propagation algorithm, and thus the policy-gradient typically

used in the reinforcement learning algorithm is applied here

to train the framework, motivated by the work of Yu et al.

[12]. For each output of the G network, the discriminative

result generated by the D network indirectly reflects the

performance of the G network. In this case, outputs of D

network are used as rewards of the robotic actions, which

are generated by the G network.

Therefore, the training objective of G network is changed

to obtain maximum rewards in the proposed system. The G
network must learn to increase the occurring probability of

outputs such that the writing performances can be improved.

Based on this consideration, if a stroke writing image of

the robot has better performance determined by D, the

G network must increase the probability of the robotic

trajectory points. The detailed implementations of these three

modules are described below.

B. Stroke Discriminative Module

The stroke discriminative module is established by a feed-

forward neural network. The network consists of three layers,

including input layer, hidden layer, and output layer. The

dimension of the input layer is set as 784, since the size

of each input image is 28 × 28. The hidden layer contains

128 neurons; and the dimension of the output is 1. The

network’s input data X consist of two types of images: 1)

real stroke images, Xreal, extracted from Chinese calligraphy

copybooks; and 2) “fake” stroke images, Xfake, written by

our calligraphy robot. The fake images are captured by a

camera mounted on the robot’s gripper. The output values

predict the probability that x came from the Xreal data

distribution against that from the robot-generated images.

C. Stroke Generative Module

The stroke generative module has a Gaussian noise input,

which produces random numbers to seed the generative mod-

ule. In this paper, a feed-forward neural network is adopted to

implement the stroke generative module. The G network also

has three layers. Input of G is an array of generated random

numbers, Z, whose dimension is set as 128 in this paper. The

hidden layer of G has 128× TN hidden neurons, where TN

denotes the number of the trajectory points. The output of

G contains two probability distributions: 1) trajectory point

position distribution, ptpp, and trajectory width distribution,

ptw. Thus, the dimension of the output layer, Noutput, is

defined as follows:

Noutput = 784 · TN +RN · TN , (1)

where RN denotes the level number of trajectory width. In

this work, RN is set as 20, which means a trajectory has 20

types of widths.

For each trajectory point position, a “softmax” function is

applied to normalize G network’s output; thus, the softmax

functions of ptpp and ptw are defined as:

ptpp(V )j =
eVj

∑K
k=1 e

Vk

(2)

ptw(S)i =
eSi

∑M
m=1 e

Sm

(3)

where for ptpp, j denotes the jth pixel of the image and

K = 784; and for ptw, i denotes the ith level of width

and M = 20. When all the probability distributions are
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Fig. 1: The flowchart of the proposed approach to robotic handwriting. The approach contains three modules: (a) stroke

generative module, (b) stroke discriminative module, and (c) training module.

generated, the random sampling method is used to generate

five trajectory points from the probability distributions. After

sampling, both the position and width information of the five

points are sent to the robotic system.

D. Training Module

The original training objective of GAN can be represented

as:

min
G

max
D

V (D,G) =

Ex∼pr
[logD(x)] + Ez∼pz

[log(1−D(G(z)))],
(4)

where D(·) denotes the D network’s output; G(·) denotes

the G network’s output; and E[·] denotes the network ex-

pectation. However, each G(·) is a stroke’s trajectory, which

is written by the robotic system, rather than obtained from

an image. Therefore, the objective function can be rewritten

as:

min
G

max
D

V (D,G) =

Ex∼pr
[logD(x)] + Ez∼pz

[log(1−D(W (G(z))))],
(5)

where W (·) denotes the writing process of the robotic

system. Thus, the D network objective is expressed as the

following loss function:

Dloss = −Ex∼pr
[logD(x)]−Ez∼pz

[log(1−D(W (G(z))))].
(6)

Based on the proposed approach shown in Fig. 1, the

G network must produce a number of trajectory points to

obtain higher awards from the D network. Therefore, the

training objective is to increase the occurring probability of

the trajectories with higher rewards. The loss function of the

G network is obtained by:

Gloss = Ez∼pz
[(log

n∏
i=1

G(z)i) ·D(W (G(z)))], (7)

where n denotes the number of a stroke’s trajectory points;

G(z)i denotes the occurring probability of the ith trajectory

point;
∏n

i=1 G(z)i indicates the occurring probability of a

stroke, which is calculated by multiplying the probabilities of

all trajectory points of the stroke; and D(W (G(z)) denotes

the output from the D network, with value ranging from 0

to 1.

Following Yu et al.’s work [12], τ denotes a stroke trajec-

tory, R(τ) denotes the trajectory’s reward, P (τ, θ) denotes

the occurrence probability of τ , θ denote the parameters of

the policy network (G network); then, the objective of the

reinforcment learning is to fined the optimal θ:

max
θ

J(θ) = max
θ

∑
τ

logP (τ, θ)R(τ) (8)

Use Dθ(W (Gθ(z))) to replace R(τ) and use Gθ(z)i) to

replace P (τ, θ), the gradient of the objective function J(θ)
with the G network’s parameters is obtained by:

∇θJ(θ) = Ez∼pz
[∇θ(log

n∏
i=1

Gθ(z)i) ·Dθ(W (Gθ(z)))].

(9)

Since the expectation E[·] can be approximated by sampling,

the G network’s parameters are then updated by:

θ ← θ + α∇θJ(θ), (10)

where α is the learning rate. Since the D network is imple-

mented by a MLP network, and its training is implemented

using the advanced gradient algorithms such as Adam and

RMSprop.

A training process for the above model is defined here.

The G and D networks are trained alternatively. As the G
network gets progressed via training on g-steps updates, the

D network must be retrained periodically to retain a good

training pace with the G network. When training the D
network, real stroke examples are extracted from calligraphy

textbooks; whereas fake examples are generated from the

calligraphy robot. In order to keep the balance, the number

of fake examples generated for each d-step is equivalent to

that of the real examples. The entire training procedure is

illustrated in the pseudo-code as detailed in Algorithm 1.

E. Robotic System

Fig. 2 illustrates the robotic hardware system, which

includes a 5-DOFs industrial robotic arm, a camera, and a

writing board. The positions of both the robotic arm and

the writing board are fixed. Four of the arm’s five joints are
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Algorithm 1 Training Phase of GAN-based Calligraphic

Robot

Require: Real stroke image dataset Xreal and random num-

ber Z;

1: Initialize G and D with random weights;

2: repeat
3: for g-step do
4: Produce a new random number Z;

5: Input Z into G;

6: for t in 1 : TN do
7: Sample a trajectory point position based on Eq.

2;

8: end for
9: for t in 1 : TN do

10: Sample a trajectory point width for each trajec-

tory point;

11: end for
12: Robot writes the trajectory, then the writing result

is convert to an image;

13: Update G parameters via policy gradient in Eq. 10;

14: end for
15: for d-step do
16: Produce current G and robot to generate new tra-

jectory images and combine with Xreal;

17: Train D by Eq. 6;

18: end for
19: until GAN Converges

applied to achieve a writing task. A soft pen is mounted at the

tip of the arm, and the writing takes place within the arm’s

working range. Then camera, mounted above the soft pen,

captures input Chinese character pictures, which are taken

from Chinese calligraphic textbooks. The inverse kinematics

analysis of the robot arm is based on forward kinematics.

Thus, if the positions of the manipulator are obtained, the

manipulator’s four joints are calculated by inverse kinematics

by following the approach specified in the work of [9].

A conversion function is created to convert positions of the

stroke trajectory to that in the calligraphic robot coordinates.

The function is defined as:⎧⎪⎨
⎪⎩

xr = xS + γ · xp

yr = yS + γ · yp
zr = zS + τ

(11)

where γ denote a scale parameter, which controls the size of

each stroke; xS , yS , and zS jointly define an initial position

for each stroke; and τ is obtained by sampling RN in G.

III. EXPERIMENTATION

The approach proposed above was applied to a task of

Chinese character stroke writing, for system validation and

evaluation. The information and examples of training data

(obtained from “real” images included in calligraphic book)

were established first. Then, the training procedure and writ-

ing actions took place, and the writing results demonstrated

Manipulator

Writing 
board

Brush

Camera

Fig. 2: The robotic hardware for writing Chinese strokes.

the learning performance of the policy gradient method. In

the experiments, the dimension of the noise space was set as

128; and the value of each noise data instance was ranged

from -1 to 1.

A. Training Data

In the experiment, six different Chinese character strokes

were used to train the proposed approach. These strokes were

extracted from simple Chinese characters from Chinese calli-

graphic textbooks. The stroke extraction method was created

by using the work of Lian et al. [13]. Each stroke has more

than 500 samples; thus, the total number of the training sam-

ples is more than 3,000. Some illustrative training samples of

each stroke is shwon in Fig. 3. Each row shows one type of

a stroke with various variants. The stroke types from the top

to bottom rows are: “short left-falling stroke”, “horizontal

stroke”, “horizontal and left-falling stroke”, “right-falling

stroke”, “long left-falling stroke”, and “vertical, turn-right

and hook stroke”.

Fig. 3: Illustrative training samples used in the experiment,

each row shows one type of a stroke with various variants.

B. Training Phase and Writing Results

Several randomly-selected robotic writing results of the

“vertical, turn-right and hook” stroke is shown in Fig. 4; this

stroke is the most complicated one used in this experiment,

during the training phase. This figure shows the writing

results of three stages: 1) early stage, 2) medium stage, and

3) final stage. The training phase of the other six strokes

showed similar training situations with that of the “vertical,
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Fig. 4: Robotic writing results during the training stages.

turn-right and hook” stroke. Note that, the stroke images

were processed by the “Invert Color” (convert the black

trajectories with white background to the white trajectories

with black background); since the image patters of both the

training data and generated data must be identical.

All the nine writing results in the early stage are amor-

phous, and consequently it is very difficult to recognize

the written stroke. In contrast, the samples in the medium

stage showed several quality writing results, that is, the

bottom-left trajectory has showed a rough shape of the target

stroke. However, the rest trajectories are still far different

from the target stroke. The writing results in the final

stage demonstrated very high quality performance. Every

generated trajectory in this stage is visually close to the

target stroke; in particular, the top-left and bottom-right ones

exhibit consistent performance with human-level writing.

Fig. 5: Robotic arm writing a stroke in action.

As an example of the robot’s writing actions, Fig. 5

shows the robotic arm writing the “horizontal and left-falling

stroke” stroke in action. The arrows in the figure indicate

the action sequence. The gripper holding a soft pen starts its

writing at a predefined starting position; then, the arm moves

by following the stroke’s trajectory points, which have been

converted to joint angles of the arm by inverse kinematic

equations used in [9]. When all trajectory points are traveled,

the gripper returns to the starting position.

The evaluation results of the G network’s output on the

long left-falling stroke is illustrated in Fig. 6. The perfor-

mance line shown in this figure was calculated by the D
network using Eq. 6. The training epochs of this stroke was

set as 5,000. At the first several hundred training epochs, the

D network could not have the ability to determine whether

each image was generated by the manipulator; therefore, the

evaluation scores were assigned randomly. The average score

during this stage was around 1.4, (2× ln 0.5). Then, the D
network gained the discriminative ability more rapidly; in

contrast, the G network did not generate quality writing. In

Fig. 6: Training epoches of the vertical, turn-right and hook

stroke.

this case, the score decreased sharply. However, due to the

policy-gradient mechanism generated heuristic feedback in-

formation, several good quality writing results had appeared.

After around 500th epochs, the score gradually climbed;

although the slope was not steep, the score finally reached

at over 0.6, which was not very close to the ideal network’s

output; however, the writing quality has reached to a very

high level. Furthermore, because of the sampling process in

the framework, the curve contains many significant shocks.

The evaluation curves of the rest four strokes are very

similar to that of the long left-falling stroke shown in Fig.

6. The numbers of the training epochs of the six strokes

are 8,000 for the short left-falling stroke, 5,000 for the

horizontal stroke, 14,500 for the horizontal and left-falling

stroke, 14,000 for the right-falling stroke, 5,000 for the long

left-falling stroke, and vertical, and 18,000 for the turn-right

and hook stroke.

Fig. 7 shows the final writing results of all the six

strokes without invert-color process. These writing results

were obtained by inputting various random numbers to the

G network, when the training phase had completed. In other

words, each random numbers had its corresponding output

trajectory. After writing a stroke, the robot moved to a prede-

fined position to capture the trajectory by an image through

the mounted camera. Each stroke type had 64 samples. The

experiment demonstrated that all these trajectories were not

identical for each type of strokes. By inputting different

random number, each writing trajectory was unique which

provides good writing style diversity. Therefore, the proposed

approach is able to address the font limitation problem as

discussed in Section I.

Several trajectories generated by the robot using the pro-

posed approach were very close to those written by human, in

addition to fact that the overall writing quality of the writing

results are better than those of our previous studies. For

example, as shown in Figs. 7 (a) short left-falling and 7 (d)

right-falling strokes, the robot obtained the ability to control

changes in thickness while it was writing one trajectory. This
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(a) Short left-falling stroke (b) Horizontal stroke (c) Horizontal and left-falling stroke

(d) Right-falling stroke (e) long left-falling stroke (f) Vertical, turn-right and hook stroke

Fig. 7: Final writing results of all the six strokes.

ability required the robot to adjust the distance between the

pen and the write board. Due to the width output “softmax”

in the G network, the robot was able to handle such difficult

task. Furthermore, the last segment (the hook) of the 7

(f) stroke is another complicated structure for calligraphy

robots, since the trajectory in the hook becomes short and

sharp. However, several trajectories generated based on the

proposed approach include the hook with quality shape,

which also proves the success of our approach.

It is necessary to note, however, that a few incorrect trajec-

tories still existed in the final writing results. In particular, the

errors of several incorrect trajectories in the 7 (b) horizontal

and 7 (d) right-falling strokes are very obvious. These errors

might be caused by the noise of the training data (incorrect

strokes existed in the training data) simply imply that the

training still require more training epochs.

C. Discussion and Comparison

The experimental results demonstrated the ability of the

proposed approach in writing Chinese character strokes. In

contrast to existing approaches reported in the literature, the

proposed one has three distinctive advantages:

1) Without the requirement in creating evaluation

mechanisms by human engineers: A large number of exist-

ing robotic calligraphy systems did not involve an evaluation

mechanism to assess their writing results. Since these robot

systems did not use the close-loop structure, these systems

did not possess the learning ability and did not improve

the writing performance by the robots themselves. Also,

existing robotic writing systems via learning must contain

the evaluation mechanisms, so that these systems can have

the gradient information or optimisation objectives. Such

evaluation mechanisms must be established by algorithm

engineers, which requires significant human efforts.

In contrast, our system alternatively takes the full advan-

tage of the discriminative network from the GAN model,

which is able to automatically build the evaluation mech-

anism without human intervention. The proposed system

only requires sufficient training data, which can be readily

extracted from existing stroke database or Chinese charac-

ter decomposing algorithms, and thus, the proposed robot

system can learn the probability distributions of the training

data. From this sense, the trained discriminative networks

should be able to be used in evolutionary computation

algorithms, where the trained discriminative networks work

as the fitness function. The further investigation on this
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remains as future work.

2) Diverse font shapes: The font database based calligra-

phy robot systems suffer from limited stroke styles. Also, the

learning-based calligraphy robots merely imitate to writing

shapes of the target strokes, the number of which is still

limited. However, the generative network produces massive

number of various trajectories for each stroke. In addition,

our generative module is able to adjust the trajectory width.

therefore, one trajectory with various widths can exhibit

different shapes. From this, the proposed approach is able

to address the limitation of the styles of stroke styles in the

existing approaches.

Since the diversity is driven by the network’s random

inputs, it is difficult to control the robot to follow a specific

style, and actually the system just randomly generates differ-

ent trajectory shapes for each stroke. Therefore, it is neces-

sary to use labels to determine the stroke types. Fortunately,

several cutting-edge GAN modules have addressed this, such

as conditional-GAN [14] and InfoGAN [15]. In particular,

the Info-GAN can automatically find the distributions of

stroke types. Therefore, the introduction of these new types

GAN into the proposed system can further develop the

robotic writing ability, which again remains as future work.

3) High writing quality with simple learning system:

Using GAN to generate realistic images has become a hot re-

search topic in computer vision and machine learning areas.

The application of a GAN model in stroke images generation

is not a creative study, but it is interesting in this work to

involve a robotic manipulator using a brush pen to write

Chinese strokes. Several important trajectories in Chinese

calligraphy require multiple complicated writing motions of

human calligraphers. It is hard to obtain human-level writing

performance using only computational generation methods.

In contrast, the proposed approach is able to simulate human-

level writing from writing hardware, which is therefore very

promising in calligraphic robotics.

IV. CONCLUSION

This paper presented a new generative adversarial nets-

based robotic writing system, which is able to write different

Chinese strokes in different styles. The system takes real

stroke images produced from Chinese calligraphy textbooks

for training. During the training phase, the policy gradient

information was applied to solve the problem that gradient

cannot be back-propagated. The experimental results based

on six strokes demonstrated the working of the proposed

method, and several results achieved human-level quality.

Coming with a Chinese character decomposing algorithm,

our method is able to write Chinese characters with multiple

styles.

While the proposed approach is promising, there is

room for improvement. First, only the conventional GAN

is adopted in the present work; and it is interesting to

investigate if other GAN variants, such as conditional-GAN

[14], can be applied to generate better results. Second, stroke

writing sequence is another crucial issue in robotic writing

[16], [17], which might be addressed by the application of

recurrent neural network and thus further study is required.

Third, the proposed algorithm ignored the trajectory order of

the sampling points, further efforts will focus on this.
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