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Abstract— We study the problem of planning a tour for an
energy-limited Unmanned Aerial Vehicle (UAV) to visit a set of
sites in the least amount of time. We envision scenarios where
the UAV can be recharged along the way either by landing
on stationary recharging stations or on Unmanned Ground
Vehicles (UGVs) acting as mobile recharging stations. This leads
to a new variant of the Traveling Salesperson Problem (TSP)
with mobile recharging stations. We present an algorithm that
finds not only the order in which to visit the sites but also
when and where to land on the charging stations to recharge.
Our algorithm plans tours for the UGVs as well as determines
best locations to place stationary charging stations. While the
problems we study are NP-Hard, we present a practical solution
using Generalized TSP that finds the optimal solution. If the
UGVs are slower, the algorithm also finds the minimum number
of UGVs required to support the UAV mission such that the
UAV is not required to wait for the UGV. Our simulation results
show that the running time is acceptable for reasonably sized
instances in practice.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are being increasingly
used for applications such as surveillance [14], package
delivery [25], infrastructure inspection [11], [20], environ-
mental monitoring [8], and precision agriculture [6], [27].
However, most small, multi-rotor UAVs have limited battery
lifetime (typically < 30 minutes) which prevents them from
being used for long-term or large scale missions. There is
significant work that is focused on extending the lifetimes
of UAVs through new energy harvesting designs [17], au-
tomated battery swapping [28], low-level energy-efficient
controllers [9], and low-level path planning [16]. In this
paper, we investigate the complementary aspect of high-level
path planning with an emphasis on energy optimization.

This work is motivated by persistent monitoring appli-
cations [21] where the UAVs are tasked with monitoring
a finite set of sites on the ground by flying above these
sites. The objective is to minimize the time required to
visit all sites. In the absence of any additional constraints,
this can be formulated as Traveling Salesperson Problem
(TSP) which is a classic optimization problem [3]. However,
when the sites are located far apart, the UAV may not
have enough battery capacity to fly the entire tour. We
consider scenarios where the UAVs are capable of landing
on recharging stations and then taking off and continuing the
mission. The recharging stations can either be stationary or
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Fig. 1: DJI F450 with Pixhawk PX4 and NUC i7 on top of
the Clearpath Husky used for the field experiments.

placed on Unmanned Ground Vehicles (UGVs) which can
charge the UAV while simultaneously transporting it from
one site to another (Figure 1). This leads to a new variant of
TSP where the output is not only a path for the UAV, but also
a charging schedule that determines where and how much to
recharge the UAV battery as well as paths for the UGVs. For
a single UGV to keep up with the UAV, we also study the
problem of minimizing the number of UGVs. Since it is not
always possible for the UGV to keep up with the UAVs speed
we implement a solver that can find the minimum number
of UGVs necessary to service the UAV.

This problem generalizes Euclidean TSP [3] and is
consequently NP-Hard. As such, assuming P 6=NP, no al-
gorithm can guarantee the optimal solution in polynomial
time. Instead, we seek algorithms that find the optimal
solution in reasonable time for practical instances, similar
to recent works [13], [26]. Our main contribution is to show
how to formulate both problems, described in section III,
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as Generalized TSP (GTSP) [19] instances. Earlier works
have shown that a GTSP-based algorithm finds solutions
faster than an Integer Programming approach [22], [13], [26].
We empirically evaluate two approaches to solve the GTSP
instances: (1) GLNS solver [22] which uses heuristics to find
potentially sub-optimal solutions in short time; and (2) an
exact solver which reduces GTSP into TSP instances which
are solved using concorde [2]. We compare the time required
to find the solution in both approaches.

II. RELATED WORK

In this section we briefly describe the works related to
UAV recharging stations.

A. Recharging and Replacing UAV Batteries

A number of solutions for autonomous charging of UAVs
have been proposed in the recent past. Cocchioni et al. [5]
presented a vision system to align the UAV with a sta-
tionary charging station. A similar design was presented
by Mulgaonkar and Kumar [18] which included magnetic
contact points. There are also commercial products (e.g., the
SkySense system [1]) that provide similar capabilities.

The alternative to recharging batteries is to swap them.
Swieringa et al. [24] presented a “cold” swap system for
exchanging the batteries for one or more helicopters. The
authors evaluated their system through simulations with three
helicopters where they demonstrated an increase in system
lifetime from six minutes to thirty two minutes. Toksoz et
al. [28] presented the design of a stationary battery swapping
station for multi-rotor systems. Their design has a “dual-
drum structure” that can hold a maximum of eight batteries
which can be “hot” swapped.

The work presented in this paper is complementary to
these hardware designs — any of the existing systems
could be leveraged. Instead we show how to optimize the
performance by careful placement of charging stations or
planning of paths for mobile charging stations.

B. Planning for Energy Limited UAVs

A typical strategy to deal with limited battery life of UAVs
is to use multiple robots with possibly redundancy built in.
Derenick et al. [7] presented a control strategy to carry
out persistent coverage missions with robot teams which
balances a weighted sum of mission performance and the
safety of the UAVs. Mitchell et al. [15] presented an on-
line approach for maintaining formations while substituting
UAVs running low on charge with recharged UAVs. Liu and
Michael [10] presented a matching algorithm for assigning
UAVs with UGVs acting as recharging stations.

In our previous work [27], we showed how to plan tours
for a symbiotic UAV+UGV where the UGV can mule the
UAV between two deployment locations such that the UAV
does not spend any energy. However, the previous work did
not model the capability of UGV recharging the UAV along
the way. Consequently, the goal was to maximize the number
of sites that can be visited in a single charge. This results in a
variant of an NP-Hard problem known as orienteering [4]. In

the current work, we allow for a more general model which
has the added complication of keeping track of the energy
level of the UAV as well as deciding where and how much
to charge along the tour.

The work by Rathinam et al. [23] looks into how to
plan paths for mobile charging stations. The author of this
paper studies the problem of planning UAV paths with fuel
constraints and stationary refueling locations. The algorithms
that the author presents allow for the planning of multiple
UAVs to visit every site. This paper is slightly different than
ours in the sense that the refueling stations are stationary and
the UAV has to adjust to the refueling station. In our paper
we allow the refueling station to mobile and adjust for the
UAV allowing for shorter tour times.

The work most closely related to ours is that of Maini and
Sujit [12]. They present an algorithm that plans paths for one
UAV and one recharging UGV to carry out surveillance in
an area. The UGV moves on a road network. The authors
create an initial path for the UGV and then create a path
for the UAV. In this paper, we simultaneously create paths
for the UAV and UGV. Additionally, we guarantee that our
algorithm finds the optimal solution for the problem.

III. PROBLEM FORMULATION

In this section we formally define the problem. Throughout
the paper, we focus on the main problems of planning with
limited battery lifetime.

The input to our algorithm is a set of n sites, xi, that
must be visited by the UAV. We start with a list of common
assumptions:

1) unit rate of discharge (1% per second);
2) UAV has an initial battery charge of 100%;
3) UAV and UGVs start at a common depot, d;
4) all the sites are at the same altitude;
5) UAV can fly between any two sites if it starts at 100%

battery level;
6) UGVs have unlimited fuel/battery capacity.

All but the last assumption are only for the sake of conve-
nience and ease of presentation and can be easily relaxed.
Although UGVs cannot have unlimited operational time, it is
a reasonable assumption since UGVs can have much larger
batteries or can be refueled quickly.

We also provide a list of standard terminology that will
be used throughout this paper:
• xi denotes the ith site that must be visited1 by flying

to a fixed altitude;
• r represents the time required to recharge the battery

by a unit %;
• tTO is the time it takes to take off from the UGV;
• tL is the time it takes to land on the UGV;
• tUAV (xi, xj) and tUGV (xi, xj) give the time taken by

the UAV and UGV to travel from xi to xj .
Suppose Π is a path that visits the sites in the order given

by σ : {1, . . . , n} → {1, . . . , n} where σ(j) = i implies xi

1Note that xi does not mean that is the ith point that will be visited.
The order of visiting the points is determined by the algorithm.



is the jth point visited along Π. The cost of an edge from
xσ(j) to xσ(j+1) along Π depends on whether the UAV flies
between the two sites or if it is muled by the UGV between
the two sites while being recharged. Let k and k′ be the
battery levels at σ(j) and σ(j + 1). Therefore,

T (j, j + 1) =

{
tUAV (xσ(j), xσ(j+1))

max{tUGV (xσ(j), xσ(j+1)), r(k
′ − k)}

(1)
In addition, we also have non-zero node costs if the UAV
is charged from battery level k to k′ at a site xi rather than
along an edge:

T (j) = r(k′ − k). (2)

Therefore, the total path cost is given by,

T (Π) = T (1) +

n−1∑
j=1

T (j + 1) + T (j, j + 1) (3)

We are now ready to define the problems studied in this
paper.

Problem 1 (Multiple Stationary Charging Stations (MSCS)).
Given a set of sites, xi, to be visited by the UAV, find a path
Π∗ for the UAV that visits all the sites as well as select one
or more sites (if needed) to place recharging stations so as
to minimize the total time given by Equation 3 under the
assumptions given above.

Problem 2 (Single Mobile Charging Station (SMCS)). Given
a set of sites, xi, to be visited by the UAV, find a path Π∗ for
the UAV that visits all the sites as well as another path for
the UGV acting as a mobile basestation so as to minimize
the total time given by Equation 3 under the assumptions
given above. Assume that the UAV and UGV travel at the
same speed.

The assumption that the UGV is as fast as the UAV is
not necessary to find a solution; it is required to guarantee
optimality for one UGV. If the UGV is slower than the UAV,
we can still use the paths returned by the algorithm for one
UGV, but the UAV may have to wait. An alternative is to
minimize the number of UGVs required to ensure the UAV
never has to wait for a recharging station.

Problem 3 (Multiple Mobile Charging Stations (MMCS)).
Given a path, Π∗, for a UAV and a set of charging sites
as well as TYPE II edges for the UGVs, find the minimum
number of slower UGVs necessary to service the UAV,
without the UAV having to wait for a UGV. The input to
MMCS is obtained by solving SMCS, without assuming the
single UGV in SMCS is as fast as the UAV.

Our main contribution is a GTSP-based algorithm that
solves the first two problems optimally and an Integer Linear
Programming (ILP)-based algorithm that solves Problem 3
optimally. As mentioned previously, Problems 1 and 2 are
NP-Hard and consequently finding optimal algorithms with
running time polynomial in n is infeasible under standard
assumptions. Instead, we provide a practical solution that is

able to solve the three problems to optimality in reasonable
time (quantified in Section V).

IV. GTSP-BASED ALGORITHM

In this section we show how to formulate Problems 1 and
2 as GTSP instances [19]. The input to GTSP is a graph
where the vertices are partitioned into clusters. The objective
is to find a minimum cost tour that visits exactly one vertex
per cluster. When each cluster contains only one vertex, the
GTSP reduces to TSP.

Solving GTSP is at least as hard as solving TSP. However,
Noon and Bean [19] presented a technique to convert any
GTSP input instance into an equivalent TSP instance on a
modified graph such that finding the optimal TSP tour in the
modified graph yields the optimal GTSP tour in the original
graph. We can solve GTSP by solving TSP optimally using
a numerical solver and we use concorde [2], which is the
state-of-the-art TSP solver or GLNS [22], that is a heuristics-
based GTSP solver. The results in Section V show that
GLNS significantly faster than concorde. However, only the
concorde approach is guaranteed to find the optimal solution.

We start by showing how to formulate the SMCS and
MSCS problems as GTSP instances. After obtaining an
output, we can convert the TSP solution back into a GTSP
solution, then into a solution for the SMCS or MSCS
problems. The process of converting SMCS and MSCS into
TSP is the same. Only the process of converting the solution
of TSP to solutions of SMCS and MSCS differ.

A. Transforming SMCS/MSCS to GTSP

Given an SMCS or MSCS instance, we show how to create
a GTSP instance consisting of a directed graph where the
vertices are partitioned into non-overlapping clusters. We
create one cluster, gi, for each input site xi. Each cluster,
gi has m vertices, each one corresponding to a discretized
battery level. That is, gi = {xki | ∀i ∈ [1 : n],∀k ∈
{1, 2, . . . ,m}}. xki represents the UAV reaching site xi with
k ∗ 100%

m battery remaining. m is an input discretization
parameter. Figure 2 shows the six clusters for six input sites
with m = 5.

Next we describe how to create the edges amongst the
vertices in the n clusters. We create three types of edges.
TYPE I edge between xki and xk

′

j models the case where the
UAV directly flies from xi to xj . The cost of a TYPE I edge
is given by:

TI(x
k
i , x

k′

j ) = tUAV (xi, xj)

A TYPE I edge exists between xki and xk
′

j if and only if
k − k′ equals the distance between xi and xj . For ease of
exposition, we assume that taking-off and landing energy
consumption is negligible. Nevertheless, we can easily in-
corporate this in the edge definitions. These types of edges
are shown by the red lines in Figure 2.

A TYPE II edge from xki to xk
′

j models the UAV landing
on the UGV at xi and recharging while being muled to xj
by the UGV. The cost of a TYPE II edge is given by:

TII(x
k
i , x

k′

j ) = max(r(k′ − k), tUGV (xi, xj)) + tTO + tL
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Fig. 2: Different types of edges that are created. TYPE I is
the red edges if there is a battery level drop of 1 between the
two clusters, TYPE II is the green edge, and blue is TYPE
III . The depot station d is shown on the graph. Note that
only a subset of all possible edges are shown.

The cost is the maximum of the time taken to recharge from
k to k′ and the time it takes the UGV to travel from xi to
xj . Note that a TYPE II edge exists only if k′ ≥ k. TYPE II
edges are shown as the green edges in Figure 2.

Finally, we have TYPE III edges that represent the UAV
flying from xi to xj and then landing on the UGV at xj
and recharging up to k′ battery level. The cost of a TYPE
III edge is given by:

TIII(x
k
i , x

k′

j ) = tUAV (xi, xj)+r(k
′−k+||xi−xj ||2)+tTO+tL

A TYPE III edge exists if and only if k′ ≥ k − ||xi − xj ||2.
Figure 2 shows the TYPE III edges in blue.

Only TYPE I and TYPE III edges exist when solving
MSCS whereas all three edges are possible when solving
MMCS. Note that TYPE II and TYPE III edges require the
UAV to take off and land at every site. This prevents the
UAV from not taking off between two consecutive TYPE II
edges. This is because in order to visit a site it must fly to
a fixed altitude to consider the site visited.

There are certain pairs of vertices for which more than one
type of edge may be allowed. In such a case, we pick the
minimum of the three edge costs (assuming the edge cost is
∞ if the edge does not exist) and assign the minimum cost
for the edge. That is, the edge cost T (xki , x

k′

j ) is given by:

T (xki , x
k′

j ) = min{TI(x
k
i , x

k′

j ), TII(x
k
i , x

k′

j ), TIII(x
k
i , x

k′

j )}

We also create an n + 1th cluster containing a dummy
vertex called as the depot, d. We add a zero cost edge from
d to all vertices, xki , with k = m and edges from all vertices
back to d. The reason to create a depot node is that the
TSP solver finds a closed tour whereas we are interested in
finding paths.2 The depot node serves to ensure that we can
find a closed tour without charging for the extra edges.

2A path visits a vertex exactly once whereas a tour has the same starting
and ending vertices.

B. Converting Optimal TSP Tour to UAV and UGV Paths

An optimal TSP tour immediately yields an optimal GTSP
solution. The order in which the clusters are visited gives
the sequence of vertices on the UAV paths. What remains
is deciding the UGV path for SMCS and recharging station
placements for MSCS.

In MSCS, we only have TYPE I and TYPE III edges. If
a TYPE III edge, say from xki to xk

′

j , appears in the GTSP
solution, then we will place a recharging station at the site
xj . No recharging stations are placed for TYPE I edges in
the solution.

In MMCS, all three edges are possible, whereas only TYPE
I and TYPE II in SMCS. We check the type of each edge in
the GTSP solution, one by one. If a TYPE I edge appears in
the GTSP solution, then it does not affect the UGV tour. If
a TYPE II edge, say from xki to xk

′

j , appears in the GTSP
solution, we add xi and xj to the UGV path (in this order).
If a TYPE III edge, say from xki to xk

′

j , appears in the GTSP
solution we add only xj to the UGV path. The UGV path,
as a result, visits a subset of the input sites. If the UGV
is slower than the UAV, then it is possible that the UAV
will reach a site before the UGV does and will be forced to
wait. We implement an ILP that allows us to solve for the
minimum number of UGVs necessary to service the UAV
without waiting (shown in section IV-C).

Theorem 1. The GTSP-Based algorithm finds the optimal
solution for SMCS and MSCS assuming that there exists an
optimal TSP solution.

The proof follows directly from the proof of optimality of
the GTSP reduction given by Noon and Bean [19].

C. Solution for Problem 3

We present a solution to the MMCS problem based on an
ILP formulation. The input is obtained by solving Problem
2, where we are given a UAV path and a set of UGV sites
and TYPE II edges. The UGV path visits only a subset of
the sites in {xi}. We denote these sites by {g1, g2, . . . , gl},
where l ≤ n. For each edge from gi to gj , where (j > i),
we associate the variable yij , which equals 1 if the edge will
be traversed by some UGV and 0 otherwise. Also associated
with each edge is the time to come for the UAV and UGV
denoted by TΠ∗(gi, gj) and tUGV (gi, gj) respectively. Here
TΠ∗(gi, gj) is the time taken by the UAV to fly the subpath
of Π∗ from gi to gj , which may contain some intermediate
sites. tUGV (gi, gj), on the other hand is the time for the
UGV to directly go from gi to gj . Using the above notation
we provide the ILP formulation given as follows:

max

l−1∑
i=1

l∑
j=i+1

yij (4)

subject to:
j−1∑
i=1

yij ≤ 1 ∀ j, (5)



l∑
j=i+1

yij ≤ 1 ∀ j, (6)

yij = 0 if TΠ∗(gi, gj) < tUGV (gi, gj), and (7)

yij = 1 if yij is TYPE II edge. (8)

Equation 5 and 6 only allow a maximum of one incoming
edge and a maximum of one outgoing edge. The constraint
given by Equation 7 removes all UGV edges where the UAV
would have to wait for the UGV. Lastly Equation 8 forces
our problem to use TYPE II edges if present. Using the above
equations we are able to solve Problem 3.

V. EVALUATIONS

In this section, we present simulation and preliminary
experimental results using the proposed algorithm.

A. Effect of the Parameters

Figure 3 shows the outputs obtained for different config-
urations of the tTO, tL, r, tUGV parameters for the same 20
input sites and with m = 10 battery levels. Each figure has
the UAV+UGV tour with blue solid edges (only UAV), red
solid edges (only UGV), green solid edges (UAV and UGV
separate), and red dashed edges (UAV+UGV together).

We make the following intuitive observations using the six
cases shown in Figure 3:
• tTO = 0, tL = 0 and r = 0: UAV does not differentiate

between the type of the edge because there is no penalty
to recharge (Figure 3a);

• tTO + tL > 0: recharging has a penalty and as such the
number of recharging stops are reduced (Figures 3d, 3e
and 3f);

• tTO = 0, tL = 0, r = 0 and tUGV > tUAV : the UAV
will use TYPE III edges for charging because tUGV will
make TYPE II edges higher cost (Figure 3b and 3e);

• tTO = 0, tL = 0, r > 0 and tUGV = tUAV : the UAV
will use TYPE II edges for charging instead of TYPE
III edges (Figure 3c);

We observe that the recharge time r and UGV speed tUGV
affect which type of edges are used. If the time it takes to
recharge is much larger than tUGV then the UAV will favor
TYPE II edges and when the time it takes to recharge is much
less than tUGV then the UAV will favor TYPE III edges.

B. Computational Time

We use two solvers for the MSCS and SMCS problems.
When using concorde we obtain an optimal solution, but
with more computational time. Therefore, it can only solve
smaller instances. The GLNS solver can solve larger in-
stances, but cannot always guarantee optimality. Neverthe-
less, we observe that the GLNS was able to find the optimal
solution for all of the cases reported in Figure 4.

Figure 4 shows a direct comparison of the computational
times of the two methods. We compared the two methods
by first varying the amount of inputs sites (Figure 4a), with
m = 4, and then comparing the two by varying the amount
of battery levels (Figure 4b), given n = 12. We ran 10 trials

with random input sites. We plot the average value along
with the maximum and minimum value.

Due to limitations in concorde, we were not able to run
larger instances, but GLNS can run larger instances, as shown
in Figure 5. We show the effect of incrementing n from 20
to 50 and m from 50 to 150 in Figure 5. We ran 5 random
instances and plot the average of the 5 instances with the
maximum and minimum value.

Figure 6 shows the minimum number of UGVs necessary
to service a single UAV. We used the same m = 50 data set
that was used to create Figure 5. The plot shows the effects
of having a slower UGV.

C. Preliminary Field Experiments

We also carried out preliminary field experiments using the
quadrotor and Husky UGV (Figure 1). The input consisted of
50 sites shown in Figure 7a and m = 100 battery levels. We
restricted the size of the area to a 200×100 meters area and
set tTO = 4, tL = 4, r = 0, and TUGV = TUAV . Figure 7
shows the results of the experiments. The outputs for the
UAV tour and UGV tour are shown in Figure 7a. Figure 7b
shows the output data from the Pixhawk flight controller.
The UAV was programmed to fly autonomous GPS missions.
The autonomous missions were executed by sending a set of
waypoints that created a path for the UAV to travel and meet
up with the UGV. Once at the final waypoint on the path, the
we manually piloted the UAV to land on the UGV. The UGV
was manually driven to the next take-off point in the tour.
This next waypoint could be a new waypoint due to TYPE II
edge or the same waypoint due to TYPE III edge. The UAV
then detects if it is at the next take-off point by comparing
its current GPS position with the GPS coordinates of the
next take-off point. This process loops until the UAV reaches
its final waypoint whereupon the UAV would autonomously
land on the ground. Additional experiments can be seen in
the multimedia submission.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an optimal algorithm for routing a
battery-limited UAV and a mobile recharging station to visit
a set of sites of interest. We are also conducting larger scale
experiments using a recharging station being developed in-
house. The longer-term future work is to design algorithms
to handle multiple UAVs and UGVs as well as stochastic
energy consumption models.
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(a) UAV Tour and Cluster 0001 in order
of visit.

(b) UAV Tour and Cluster 0004 in order
of visit.

(c) UAV Tour and Cluster 0041 in order
of visit.

(d) UAV Tour and Cluster 4401 in order
of visit.

(e) UAV Tour and Cluster 4404 in order
of visit.

(f) UAV Tour and Cluster 4444 in order
of visit.

Fig. 3: The above figures are multiple runs using the same initial points, instead of randomizing them. We use 20 sites
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“WXYZ” in the caption. This number ”WXYZ” denotes: tTO = W , tL = X , r = Y , and tUGV = Z ∗ tUAV . The colors
represent different edge types with blue being only UAV travel, red being only UGV travel, green being UAV and UGV
travel separate, and dashed red being UAV+UGV travel together.
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