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Abstract— Instrumenting and collecting annotated visual
grasping datasets to train modern machine learning algorithms
can be extremely time-consuming and expensive. An appealing
alternative is to use off-the-shelf simulators to render synthetic
data for which ground-truth annotations are generated auto-
matically. Unfortunately, models trained purely on simulated
data often fail to generalize to the real world. We study how
randomized simulated environments and domain adaptation
methods can be extended to train a grasping system to grasp
novel objects from raw monocular RGB images. We extensively
evaluate our approaches with a total of more than 25,000
physical test grasps, studying a range of simulation conditions
and domain adaptation methods, including a novel extension
of pixel-level domain adaptation that we term the GraspGAN.
We show that, by using synthetic data and domain adaptation,
we are able to reduce the number of real-world samples
needed to achieve a given level of performance by up to 50
times, using only randomly generated simulated objects. We
also show that by using only unlabeled real-world data and
our GraspGAN methodology, we obtain real-world grasping
performance without any real-world labels that is similar to
that achieved with 939,777 labeled real-world samples.

I. INTRODUCTION

Grasping is one of the most fundamental robotic manip-
ulation problems. For virtually any prehensile manipulation
behavior, the first step is to grasp the object(s) in question.
Grasping has therefore emerged as one of the central areas
of study in robotics, with a range of methods and techniques
from the earliest years of robotics research to the present day.
A central challenge in robotic manipulation is generalization:
can a grasping system successfully pick up diverse new
objects that were not seen during the design or training of the
system? Analytic or model-based grasping methods [1] can
achieve excellent generalization to situations that satisfy their
assumptions. However, the complexity and unpredictability
of unstructured real-world scenes has a tendency to con-
found these assumptions, and learning-based methods have
emerged as a powerful complement [2], [3], [4], [5], [6].

Learning a robotic grasping system has the benefit of
generalization to objects with real-world statistics, and can
benefit from the advances in computer vision and deep
learning. Indeed, many of the grasping systems that have
shown the best generalization in recent years incorporate
convolutional neural networks into the grasp selection pro-
cess [2], [5], [4], [7]. However, learning-based approaches
also introduce a major challenge: the need for large labeled
datasets. These labels might consist of human-provided grasp
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Fig. 1: Bridging the reality gap: our proposed pixel-level
domain adaptation model takes as input (a) synthetic images
produced by our simulator and produces (b) adapted images
that look similar to (c) real-world ones produced by the
camera over the physical robot’s shoulder. We then train a
deep vision-based grasping network with adapted and real
images, which we further refine with feature-level adaptation.

points [8], or they might be collected autonomously [5], [6].
In both cases, there is considerable cost in both time and
money, and recent studies suggest that the performance of
grasping systems might be strongly influenced by the amount
of data available [6].

A natural avenue to overcome these data requirements
is to look back at the success of analytic, model-based
grasping methods [1], which incorporate our prior knowledge
of physics and geometry. We can incorporate this prior
knowledge into a learning-based grasping system in two
ways. First, we could modify the design of the system
to use a model-based grasping method, for example as a
scoring function for learning-based grasping [7]. Second, we
could use our prior knowledge to construct a simulator, and
generate synthetic experience that can be used in much the
same way as real experience. The second avenue, which we
explore in this work, is particularly appealing because we
can use essentially the same learning system. However, in-
corporating simulated images presents challenges: simulated
data differs in systematic ways from real-world data, and
simulation must have sufficiently general objects. Addressing
these two challenges is the principal subject of our work.

Our work has three main contributions. (a) Substantial



improvement in grasping performance from monocular RGB
images by incorporating synthetic data: We propose ap-
proaches for incorporating synthetic data into end-to-end
training of vision-based robotic grasping that we show
achieves substantial improvement in performance, particu-
larly in the lower-data and no-data regimes. (b) Detailed
experimentation for simulation-to-real world transfer: Our
experiments involved 25,704 real grasps of 36 diverse test
objects and consider a number of dimensions: the nature of
the simulated objects, the kind of randomization used in sim-
ulation, and the domain adaptation technique used to adapt
simulated images to the real world. (¢) The first demonstra-
tion of effective simulation-to-real-world transfer for purely
monocular vision-based grasping: To our knowledge, our
work is the first to demonstrate successful simulation-to-real-
world transfer for grasping, with generalization to previously
unseen natural objects, using only monocular RGB images.

II. RELATED WORK

Robotic grasping is one of the most widely explored
areas of manipulation. While a complete survey of grasping
is outside the scope of this work, we refer the reader to
standard surveys on the subject for a more complete treat-
ment [2]. Grasping methods can be broadly categorized into
two groups: geometric methods and data-driven methods.
Geometric methods employ analytic grasp metrics, such
as force closure [9] or caging [10]. These methods often
include appealing guarantees on performance, but typically
at the expense of relatively restrictive assumptions. Prac-
tical applications of such approaches typically violate one
or more of their assumptions. For this reason, data-driven
grasping algorithms have risen in popularity in recent years.
Instead of relying exclusively on an analytic understanding
of the physics of an object, data-driven methods seek to
directly predict either human-specified grasp positions [8]
or empirically estimated grasp outcomes [5], [6]. A number
of methods combine both ideas, for example using analytic
metrics to label training data [3], [7].

Simulation-to-real-world transfer in robotics is an im-
portant goal, as simulation can be a source of practically
infinite cheap data with flawless annotations. For this reason,
a number of recent works have considered simulation-to-
real world transfer in the context of robotic manipulation.
Saxena et al. [11] used rendered objects to learn a vision-
based grasping model. Gulatieri ef al. and Viereck et al. [4],
[12] have considered simulation-to-real world transfer using
depth images. Depth images can abstract away many of
the challenging appearance properties of real-world objects.
However, not all situations are suitable for depth cameras,
and coupled with the low cost of simple RGB cameras, there
is considerable value in studying grasping systems that solely
use monocular RGB images.

A number of recent works have also examined using ran-
domized simulated environments [13], [14] for simulation-
to-real world transfer for grasping and grasping-like manip-
ulation tasks, extending on prior work on randomization for
robotic mobility [15]. These works apply randomization in

the form of random textures, lighting, and camera position
to their simulator. However, unlike our work, these prior
methods considered grasping in relatively simple visual
environments, consisting of cubes or other basic geometric
shapes, and have not yet been demonstrated on grasping
diverse, novel real-world objects of the kind considered in
our evaluation.

Domain adaptation is a process that allows a machine
learning model trained with samples from a source domain to
generalize to a target domain. In our case the source domain
is the simulation, whereas the target is the real world. There
has recently been a significant amount of work on domain
adaptation, particularly for computer vision [16], [17]. Prior
work can be grouped into two main types: feature-level and
pixel-level adaptation. Feature-level domain adaptation fo-
cuses on learning domain-invariant features, either by learn-
ing a transformation of fixed, pre-computed features between
source and target domains [18], [19], [20], [21] or by learning
a domain-invariant feature extractor, often represented by a
convolutional neural network (CNN) [22], [23], [24]. Prior
work has shown the latter is empirically preferable on a
number of classification tasks [22], [24]. Domain-invariance
can be enforced by optimizing domain-level similarity met-
rics like maximum mean discrepancy [24], or the response
of an adversarially trained domain discriminator [22]. Pixel-
level domain adaptation focuses on re-stylizing images from
the source domain to make them look like images from
the target domain [25], [26], [27], [28]. To our knowledge,
all such methods are based on image-conditioned generative
adversarial networks (GANS) [29]. In this work, we compare
a number of different domain adaptation regimes. We also
present a new method that combines both feature-level and
pixel-level domain adaptation for simulation-to-real world
transfer for vision-based grasping.

III. BACKGROUND

Our goal in this work is to show the effect of using sim-
ulation and domain adaptation in conjunction with a tested
data-driven, monocular vision-based grasping approach. To
this effect, we use such an approach, as recently proposed
by Levine et al. [6]. In this section we will concisely
discuss this approach, and the two main domain adaptation
techniques [22], [26], [27] our method is based on.

A. Deep Vision-Based Robotic Grasping

The grasping approach [6] we use in this work consists of
two components. The first is a grasp prediction convolu-
tional neural network (CNN) C(x;,v;) that accepts a tuple
of visual inputs X; = {X;,,X;, } and a motion command v;, and
outputs the predicted probability that executing v; will result
in a successful grasp. x;, is an image recorded before the
robot becomes visible and starts the grasp attempt, and x;,
is an image recorded at the current timestep. v; is specified
in the frame of the base of the robot and corresponds to
a relative change of the end-effector’s current position and
rotation about the vertical axis. We consider only top-down



pinch grasps, and the motion command has, thus, 5 dimen-
sions: 3 for position, and 2 for a sine-cosine encoding of the
rotation. The second component of the method is a simple,
manually designed servoing function that uses the grasp
probabilities predicted by C to choose the motor command
v; that will continuously control the robot. We can train
the grasp prediction network C using standard supervised
learning objectives, and so it can be optimized independently
from the servoing mechanism. In this work, we focus on
extending the first component to include simulated data in
the training set for the grasp prediction network C, leaving
the other parts of the system unchanged.

The datasets for training the grasp prediction CNN C are
collections of visual episodes of robotic arms attempting to
grasp various objects. Each grasp attempt episode consists of
T time steps which result in 7 distinct training samples. Each
sample i includes x;,v;, and the success label y; of the entire
grasp sequence. The visual inputs are 640 x 512 images that
are randomly cropped to a 472 x 472 region during training
to encourage translation invariance.

The central aim of our work is to compare different
training regimes that combine both simulated and real-world
data for training C. Although we do consider training entirely
with simulated data, as we discuss in Section [[V-A] most of
the training regimes we consider combine medium amounts
of real-world data with large amounts of simulated data.
To that end, we use the self-supervised real-world grasping
dataset collected by Levine et al. [6] using 6 physical Kuka
IIWA arms. The goal of the robots was to grasp any object
within a specified goal region. Grasping was performed using
a compliant two-finger gripper picking objects out of a metal
bin, with a monocular RGB camera mounted behind the arm.
The full dataset includes about 1 million grasp attempts on
approximately 1,100 different objects, resulting in about 9.4
million real-world images. About half of the dataset was
collected using random grasps, and the rest using iteratively
retrained versions of C. Aside from the variety of objects,
each robot differed slightly in terms of wear-and-tear, as well
as the camera pose. The outcome of the grasp attempt was
determined automatically. The particular objects in front of
each robot were regularly rotated to increase the diversity
of the dataset. Some examples of grasping images from the
camera’s viewpoint are shown in Figure [24.

When trained on the entire real dataset, the best CNN used
in the approach outlined above achieved successful grasps
67.65% of the time. Levine et al. [6] reported an additional
increase to 77.18% from also including 2.7 million images
from a different robot. We excluded this additional dataset
for the sake of a more controlled comparison, so as to avoid
additional confounding factors due to domain shift within
the real-world data. Starting from the Kuka dataset, our
experiments study the effect of adding simulated data and
of reducing the number of real world data points by taking
subsets of varying size (down to only 93,841 real world
images, which is 1% of the original set).

(a) Simulated World

(c) Simulated Samples

(d) Real Samples

Fig. 2: Top Row: The setup we used for collecting the (a)
simulated and (b) real-world datasets. Bottom Row: Images
used during training of (c) simulated grasping experience
with procedurally generated objects; and of (d) real-world
experience with a varied collection of everyday physical
objects. In both cases, we see the pairs of image inputs for
our grasp success prediction model C: the images at t =0
and the images at the current timestamp.

B. Domain Adaptation

As part of our proposed approach we use two domain
adaptation  techniques: = domain-adversarial  training
and pixel-level domain adaptation. Ganin et al. [22]
introduced domain—adversarial neural networks (DANNS),
an architecture trained to extract domain-invariant yet
expressive features. DANNs were primarily tested in the
unsupervised domain adaptation scenario, in the absence
of any labeled target domain samples, although they also
showed promising results in the semi-supervised regime [24].
Their model’s first few layers are shared by two modules:
the first predicts task-specific labels when provided with
source data while the second is a separate domain classifier
trained to predict the domain d of its inputs. The DANN
loss is the cross-entropy loss for the domain prediction task:
Mol Ldlogd; + (1—d;)log(1—d;)}, where
d; € {0,1} is the ground truth domain label for sample i,
and N, N; are the number of source and target samples.

The shared layers are trained to maximize ZpanN, While
the domain classifier is trained adversarially to minimize it.
This minimax optimization is implemented by a gradient
reversal layer (GRL). The GRL has the same output as the
identity function, but negates the gradient during backprop.
This lets us compute the gradient for both the domain clas-



sifier and the shared feature extractor in a single backward
pass. The task loss of interest is simultaneously optimized
with respect to the shared layers, which grounds the shared
features to be relevant to the task.

While DANN makes the features extracted from both
domains similar, the goal in pixel-level domain adaptation
[26], [27], [28], [25] is to learn a generator function G
that maps images from a source to a target domain at the
input level. This approach decouples the process of domain
adaptation from the process of task-specific predictions, by
adapting the images from the source domain to make them
appear as if they were sampled from the target domain. Once
the images are adapted, they can replace the source dataset
and the relevant task model can be trained as if no domain
adaptation were required. Although all these methods are
similar in spirit, we use ideas primarily from PixelDA [26]
and SimGAN [27], as they are more suitable for our task.
These models are particularly effective if the goal is to
maintain the semantic map of original and adapted synthetic
images, as the transformations are primarily low-level: the
methods make the assumption that the differences between
the domains are primarily low-level (due to noise, resolution,
illumination, color) rather than high-level (types of objects,
geometric variations, etc).

More formally, let X* = {x!,y!}", represent a dataset of
N* samples from the source domain and let X' = {x!,y/}V
represent a dataset of N samples from the target domain. The
generator function G(x°;05) — x/, parameterized by 0,
maps a source image x* € X* to an adapted, or fake, image
x/. This function is learned with the help of an adversary, a
discriminator function D(x;6p) that outputs the likelihood d
that a given image x is a real-world sample. Both G and D are
trained using the standard adversarial objective [29]. Given
the learned generator function G, it is possible to create a new
dataset X/ = {G(x*),y*}. Finally, given an adapted dataset
X/, the task-specific model can be trained as if the training
and test data were from the same distribution.

PixelDA was evaluated in simulation-to-real-world trans-
fer. However, the 3D models used by the renderer in [26]
were very high-fidelity scans of the objects in the real-world
dataset. In this work we examine for the first time how
such a technique can be applied in situations where (a) no
3D models for the objects in the real-world are available
and (b) the system is supposed to generalize to yet another
set of previously unseen objects in the actual real-world
grasping task. Furthermore, we use images of 472 x 472,
more than double the resolution in [26], [27]. This makes
learning the generative model G a much harder task and
requires significant changes compared to previous work: the
architecture of both G and D, the GAN training objective,
and the losses that aid with training the generator (content-
similarity and task losses) are different from the original
implementations, resulting in a novel model evaluated under
these new conditions.

IV. OUR APPROACH

One of the aims of our work is to study how final
grasping performance is affected by the 3D object models
our simulated experience is based on, the scene appearance
and dynamics in simulation, and the way simulated and real
experience is integrated for maximal transfer. In this section
we outline, for each of these three factors, our proposals for
effective simulation-to-real-world transfer for our task.

A. Grasping in Simulation

A major difficulty in constructing simulators for robotic
learning is to ensure diversity sufficient for effective general-
ization to real-world settings. In order to evaluate simulation-
to-real world transfer, we used one dataset of real-world
grasp attempts (see Sect. [[lI-A)), and multiple such datasets in
simulation. For the latter, we built a basic virtual environment
based on the Bullet physics simulator and the simple renderer
that is shipped with it [30]. The environment emulates the
Kuka hardware setup by simulating the physics of grasping
and by rendering what a camera mounted looking over the
Kuka shoulder would perceive: the arm, the bin that contains
the object, and the objects to grasp in scenes similar to the
ones the robot encounters in the real world.

A central question here is regarding the realism of the
3D models used for the objects to grasp. To answer it, we
evaluate two different sources of objects in our experiments:
(a) procedurally generated random geometric shapes and
(b) realistic objects obtained from the publicly-available
ShapeNet [31] 3D model repository. We procedurally gen-
erated 1,000 objects by attaching rectangular prisms at
random locations and orientations, as seen in Fig. Eh We
then converted the set of prisms to a mesh using an off-
the-shelf renderer, Blender, and applied a random level of
smoothing. Each object was given UV texture coordinates
and random colors. For our Shapenet-based datasets, we
used the ShapeNetCore.v2 [31] collection of realistic object
models, shown in Figure . This particular collection con-
tains 51,300 models in 55 categories of household objects,
furniture, and vehicles. We rescaled each object to a random
graspable size with a maximum extent between 12cm and
23cm (real-world objects ranged from 4cm to 20cm in length
along the longest axis) and gave it a random mass between
10g and 500g, based on the approximate volume of the
object.

Once the models were imported into our simulator, we
collected our simulation datasets via a similar process to
the one in the real world, with a few differences. As
mentioned above, the real-world dataset was collected by
using progressively better grasp prediction networks. These
networks were swapped for better versions manually and
rather infrequently [6]. In contrast to the 6 physical Kuka
IITWA robots that were used to collect data in the real world,
we used 1,000 to 2,000 simulated arms at any given time
to collect our synthetic data, and the models that were used
to collect the datasets were being updated continuously by
an automated process. This resulted in datasets that were



(a) Procedural

(b) ShapeNet [31] (c) Real

Fig. 3: Comparison of (a) some of our 1,000 procedural,
(b) some of the 51,300 ShapeNet objects, both used for data
collection in simulation, and the (c) 36 objects we used only
for evaluating grasping in the real-world, that were not seen
during training. The variety of shapes, sizes, and material
properties makes the test set very challenging.

collected by grasp prediction networks of varying perfor-
mance, which added diversity to the collected samples. After
training our grasping approach in our simulated environment,
the simulated robots were successful on 70%-90% of the
simulated grasp attempts. Note that all of the grasp success
prediction models used in our experiments were trained from
scratch using these simulated grasp datasets.

B. Virtual Scene Randomization

Another important question is whether randomizing the
visual appearance and dynamics in the scene affects grasp
performance and in what way. One of the first kind of
diversities we considered was the addition of € cm, where
€ ~ .#(0,1), to the horizontal components of the motor
command. This improved real grasp success in early ex-
periments, so we added this kind of randomization for all
simulated samples. Adding this noise to real data did not
help. To further study the effects of virtual scene random-
ization, we built datasets with four different kinds of scene
randomization: (a) No randomization: Similar to real-world
data collection, we only varied camera pose, bin location,
and used 6 different real-world images as backgrounds; (b)
Visual Randomization: We varied tray texture, object texture
and color, robot arm color, lighting direction and brightness;
(c) Dynamics Randomization: We varied object mass, and
object lateral/rolling/spinning friction coefficients; and (d)
All: both visual and dynamics randomization.

C. Domain Adaptation for Vision-Based Grasping

As mentioned in Sect. [} there are two primary types of
methods used for domain adaptation: feature-level, and pixel-
level. Here we propose a feature-level adaptation method and
a novel pixel-level one, which we call GraspGAN. Given
original synthetic images, GraspGAN produces adapted im-
ages that look more realistic. We subsequently use the trained
generator from GraspGAN as a fixed module that adapts our
synthetic visual input, while performing feature-level domain
adaptation on extracted features that account for both the
transferred images and synthetic motor command input.

For our feature-level adaptation technique we use a DANN
loss on the last convolutional layer of our grasp success
prediction model C, as shown in Fig. fk. In preliminary

experiments we found that using the DANN loss on this layer
yielded superior performance compared to applying it at the
activations of other layers. We used the domain classifier
proposed in [22]. One of the early research questions we
faced was what the interaction of batch normalization (BN)
[32] with the DANN loss would be, as this has not been
examined in previous work. We use BN in every layer of C
and in a naive implementation of training models with data
from two domains, a setting we call naive mixing, batch
statistics are calculated without taking the domain labels
of each sample into account. However, the two domains
are bound to have different statistics, which means that
calculating and using them separately for simulated and
real-world data while using the same parameters for C
might be beneficial. We call this way of training data from
two domains domain-specific batch normalization (DBN)
mixing, and show it is a useful tool for domain adaptation,
even when a DANN loss is not used.

In our pixel-level domain adaptation model, Grasp-
GAN, shown in Fig. EL G is a convolutional neural network
that follows a U-Net architecture [33], and uses average
pooling for downsampling, bilinear upsampling, concatena-
tion and 1 x 1 convolutions for the U-Net skip connections,
and instance normalization [34]. Our discriminator D is a
patch-based [35] CNN with 5 convolutional layers, with an
effective input size of 70 x 70. It is fully convolutional on
3 scales (472 x 472, 236 x 236, and 118 x 118) of the two
input images, x;, and x;, stacked into a 6 channel input,
producing domain estimates for all patches which are then
combined to compute the joint discriminator loss. This novel
multi-scale patch-based discriminator design can learn to
assess both global consistency of the generated image, as
well as realism of local textures. Stacking the channels of
the two input images enables the discriminator to recognize
relationships between the two images, so it can encourage
the generator to respect them (e.g., paint the tray with the
same texture in both images, but insert realistic shadows for
the arm). Our task model C is the grasp success prediction
CNN from [6].

To train GraspGAN, we employ a least-squares gener-
ative adversarial objective (LSGAN) [36] to encourage G
to produce realistic images. During training, our generator
G(x*;85) — x/ maps synthetic images x° to adapted images
x/, by individually passing x§ and x{ through two instances
of the generator network displayed in Figure [4] Similar
to traditional GAN training, we perform optimization in
alternating steps by minimizing the following loss terms w.r.t.
the parameters of each sub-network:

Helin)tgoiﬂgen(G,D) + ;Ltgo%ask(Gy C) + lc«>?%0ntem(G) (1)
G
min ﬂvdgdiscr(GvD) + Ld%usk(ch C), (2)
6p,0c

where Lo, and £y are the LSGAN generator and dis-
criminator losses, %, is the task 10sS, Zoptens 1S the
content-similarity loss, and Ag, A4, Asg, A4, Ac, the respective
weights. The LSGAN discriminator loss is the L2 distance
between its likelihood output d and the domain labels d =0
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Fig. 4: Our proposed approach: (a) Overview of our pixel-level domain adaptation model, GraspGAN. Tuples of images
from the simulation x° are fed into the generator G to produce realistic versions x/. The discriminator D gets unlabeled
real world images x’ and x/ and is trained to distinguish them. Real and adapted images are also fed into the grasp success
prediction network C, trained in parallel (motion commands v are not shown to reduce clutter). G, thus, gets feedback from
D and C to make adapted images look real and maintain the semantic information. (b) Architectures for G and D. Blue boxes
denote convolution/normalization/activation-layers, where n64s2:IN:relu means 64 filters, stride 2, instance normalization
IN and relu activation. Unless specified all convolutions are 3 x 3 in G and 4 x4 in D. (¢) DANN model: C;| has 7 conv
layers and C, has 9 conv layers. Further details can be found in [6]. Domain classifier uses GRL and two 100 unit layers.

for fake and d =1 for real images, while for the generator
loss the label is flipped, such that there is a high loss if the
disciminator predicts d=0fora generated image. The task
loss measures how well the network C predicts grasp success
on transferred and real examples by calculating the binomial
cross-entropy of the labels y;.

It is of utmost importance that the GraspGAN generator,
while making the input image look like an image from the
real world scenario, does not change the semantics of the
simulated input, for instance by drawing the robot’s arm or
the objects in different positions. Otherwise, the information
we extract from the simulation in order to train the task net-
work would not correspond anymore to the generated image.
‘We thus devise several additional loss terms, accumulated in
Zrontent» t0 help anchor the generated image to the simulated
one on a semantic level. The most straightforward restriction
is to not allow the generated image to deviate much from
the input. To that effect we use the PMSE loss, also used
by [26]. We also leverage the fact that we can have semantic
information about every pixel in the synthetic images by
computing segmentation masks m/ of the corresponding
rendered images for the background, the tray, robot arm, and
the objects. We use these masks by training our generator G
to also produce m’ as an additional output for each adapted
image, with a standard L2 reconstruction loss. Intuitively, it
forces the generator to extract semantic information about all
the objects in the scene and encode them in the intermediate
latent representations. This information is then available
during the generation of the output image as well. Finally,
we additionally implement a loss term that provides more
dense feedback from the task tower than just the single bit of
information about grasp success. We encourage the generated
image to provide the same semantic information to the task
network as the corresponding simulated one by penalizing
differences in activations of the final convolutional layer of
C for the two images. This is similar in principle to the

perceptual loss [37] that uses the activations of an ImageNet-
pretrained VGG model as a way to anchor the restylization
of an input image. In contrast, here C is trained at the same
time, the loss is specific to our goal, and it helps preserve the
semantics in ways that are relevant to our prediction task.

V. EVALUATION

This section aims to answer the following research ques-
tions: (a) is the use of simulated data from a low quality
simulator aiding in improving grasping performance in the
real world? (b) is the improvement consistent with varying
amounts of real-world labeled samples? (c) how realistic
do graspable objects in simulation need to be? (d) does
randomizing the virtual environment affect simulation-to-real
world transfer, and what are the randomization attributes
that help most? (e) does domain adaptation allow for better
utilization of simulated grasping experience?

In order to answer these questions, we evaluated a number
of different ways for training a grasp success prediction
model C with simulated data and domain adaptatimﬂ When
simulated data was used, the number of simulated samples
was always approximately 8 million. We follow the grasp
success evaluation protocol described by Levine et al. [6].
We used 6 Kuka ITWA robots for our real-world experiments

Visit https://goo.gl/G1HSws| for our supplementary video.
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Fig. 5: The effect of using 8 million simulated samples
of procedural objects with no randomization and various
amounts of real data, for the best technique in each class.
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TABLE I: The effect of our choices for simulated objects
and randomization in terms of grasp success. We com-
pared the performance of models trained jointly on grasps of
procedural vs ShapeNet objects with 10% of the real data.
Models were trained with DANN and DBN mixing.

[ Randomization | None | Visual | Dynamics [ Both |
Procedural 71.93% | 74.88% 73.95% 72.86 %
ShapeNet 69.61% 68.79% 68.62% 69.84%

and a test set consisting of the objects shown in Fig. 3, the
same used in [6], with 6 different objects in each bin for
each robot. These objects were not included in the real-world
training set and were not used in any way when creating our
simulation datasets. Each robot executes 102 grasps, for a
total of 612 test grasps for each evaluation. During execution,
each robot picks up objects from one side of the bin and
drops them on the other, alternating every 3 grasps. This
prevents the model from repeatedly grasping the same object.
Optimal models were selected by using the accuracy of C on
a held-out validation set of 94,000 real samples.

The first conclusion from our results is that simulated
data from an off-the-shelf simulator always aids in im-
proving vision-based real-world grasping performance. As
one can see in Fig. [5] which shows the real grasp success
gains by incorporating simulated data from our procedurally-
generated objects, using our simulated data significantly and
consistently improves real-world performance regardless of
the number of real-world samples.

We also observed that we do not need realistic 3D models
to obtain these gains. We compared the effect of using
random, procedurally-generated shapes and ShapeNet objects
in combination with 10% of the real-world data, under all
randomization scenarios. As shown in Table [ we found that
using procedural objects is the better choice in all cases.
This finding has interesting implications for simulation to
real-world transfer, since content creation is often a major
bottleneck in producing generalizable simulated data. Based
on these results, we decided to use solely procedural objects
for the rest of our experiments.

Table shows our main results: the grasp success per-
formance for different combinations of simulated data gen-
eration and domain adaptation methods, and with different
quantities of real-world samples. The different settings are:
Real-Only, in which the model is given only real data; Naive
Mixing (Naive Mix): Simulated samples generated with
no virtual scene randomization are mixed with real-world
samples such that half of each batch consists of simulated
images; DBN Mixing & Randomization (Rand.): The sim-
ulated dataset is generated with visual-only randomization.
The simulated samples are mixed with real-world samples
as in the naive mixing case, and the models use DBN; DBN
Mixing & DANN (DANN): Simulated samples are generated
with no virtual scene randomization and the model is trained
with a domain-adversarial method with DBN; DBN Mixing,
DANN & Randomization (DANN-R): Simulated samples are
generated with visual randomization and the model is trained
with a domain-adversarial method with DBN; GraspGAN,

TABLE II: Real grasp performance when no labeled real
examples are available. Method names explained in the text.

[ Sim-Only | Rand. [ GraspGAN ]
[ 2353% [ 3595% | 63.40% |

TABLE III: Success of grasping 36 diverse and unseen phys-
ical objects of all our methods trained on different amounts
of real-world samples and 8 million simulated samples with
procedural objects. Method names are explained in the text.

Method All 20% 10% 2% 1%
9,402,875 | 1,880,363 | 939,777 | 188,094 | 93,841
[Real-Only | 67.65% | 64.93% | 62.15% | 35.46% | 31.13% |
Naive Mix. | 73.63% | 69.61% | 65.20% | 58.38% | 39.86%
Rand. 75.58% | 70.16% | 73.31% | 63.61% | 50.99%
DANN 76.26% | 68.12% | 71.93% | 61.93% | 59.21%
DANN-R. | 72.60% | 66.46% | 74.88% | 63.13% | 43.81%
GraspGAN | 76.67% | 74.07% | 70.70% | 6851% | 59.95%

DBN Mixing & DANN (GraspGAN): The non-randomized
simulated data is first refined with a GraspGAN generator,
and the refined data is used to train a DANN with DBN
mixing. The generator is trained with the same real dataset
size used to train the DANN. See Figure [Ib for examples.

Table [[TT] shows that using visual randomization with DBN
mixing improved upon naive mixing with no randomization
experiments across the board. The effect of visual, dynam-
ics, and combined randomization for both procedural and
ShapeNet objects was evaluated by using 10% of the real data
available. Table[[|shows that using only visual randomization
slightly improved grasp performance for procedural objects,
but the differences were generally not conclusive.

In terms of domain adaptation techniques, our proposed
hybrid approach of combining our GraspGAN and DANN
performs the best in most cases, and shows the most gains
in the lower real-data regimes. Using DANNs with DBN
Mixing performed better than naive mixing in most cases.
However the effect of DANNs on Randomized data was not
conclusive, as the equivalent models produced worse results
in 3 out of 5 cases. We believe the most interesting results
however, are the ones from our experiments with no labeled
real data. We compared the best domain adaptation method
(GraspGAN), against a model trained on simulated data with
and without randomization. We trained a GraspGAN on all 9
million real samples, without using their labels. Our grasping
model was then trained only on data refined by G. Results
in Table [lI| show that the unsupervised adaptation model
outperformed not only sim-only models with and without
randomization but also a real-only model with 939,777
labeled real samples.

Although our absolute grasp success numbers are consis-
tent with the ones reported in [6], some previous grasping
work reports higher absolute grasp success. However, we
note the following: (a) our goal in this work is not to
show that we can train the best possible grasping system,
but that for the same amount of real-world data, the in-
clusion of synthetic data can be helpful; we have relied
on previous work [6] for the grasping approach used; (b)
our evaluation was conducted on a diverse and challenging



range of objects, including transparent bottles, small round
objects, deformable objects, and clutter; and (c) the method
uses only monocular RGB images from an over-the-shoulder
viewpoint, without depth or wrist-mounted cameras. These
make our setup considerably harder than most standard ones.

VI. CONCLUSION

In this paper, we examined how simulated data can be
incorporated into a learning-based grasping system to im-
prove performance and reduce data requirements. We study
grasping from over-the-shoulder monocular RGB images, a
particularly challenging setting where depth information and
analytic 3D models are not available. This presents a chal-
lenging setting for simulation-to-real-world transfer, since
simulated RGB images typically differ much more from real
ones compared to simulated depth images. We examine the
effects of the nature of the objects in simulation, of random-
ization, and of domain adaptation. We also introduce a novel
extension of pixel-level domain adaptation that makes it suit-
able for use with high-resolution images used in our grasping
system. Our results indicate that including simulated data can
drastically improve the vision-based grasping system we use,
achieving comparable or better performance with 50 times
fewer real-world samples. Our results also suggest that it is
not as important to use realistic 3D models for simulated
training. Finally, our experiments indicate that our method
can provide plausible transformations of synthetic images,
and that including domain adaptation substantially improves
performance in most cases.

Although our work demonstrates very large improvements
in the grasp success rate when training on smaller amounts of
real world data, there are a number of limitations. Both of the
adaptation methods we consider focus on invariance, either
transforming simulated images to look like real images, or
regularizing features to be invariant across domains. These
features incorporate both appearance and action, due to the
structure of our network, but no explicit reasoning about
physical discrepancies between the simulation and the real
world is done. We did consider randomization of dynamics
properties, and show it is indeed important. Several recent
works have looked at adapting to physical discrepancies
explicitly [38], [39], [40], and incorporating these ideas
into grasping is an exciting avenue for future work. Our
approach for simulation to real world transfer only considers
monocular RGB images, though extending this method to
stereo and depth images would be straightforward. Finally,
the success rate reported in our experiments still has room
for improvement, and we expect further research in this area
will lead to even better results. The key insight from our
work comes from the comparison of the different methods:
we are not aiming to propose a novel grasping system, but
rather to study how incorporating simulated data can improve
an existing one.
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