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Track, then Decide: Category-Agnostic Vision-based
Multi-Object Tracking

AljoSa Osep, Wolfgang Mehner, Paul Voigtlaender, and Bastian Leibe

Abstract— The most common paradigm for vision-based
multi-object tracking is tracking-by-detection, due to the avail-
ability of reliable detectors for several important object cat-
egories such as cars and pedestrians. However, future mobile
systems will need a capability to cope with rich human-made
environments, in which obtaining detectors for every possible
object category would be infeasible. In this paper, we propose a
model-free multi-object tracking approach that uses a category-
agnostic image segmentation method to track objects. We
present an efficient segmentation mask-based tracker which
associates pixel-precise masks reported by the segmentation.
Our approach can utilize semantic information whenever it
is available for classifying objects at the track level, while
retaining the capability to track generic unknown objects in the
absence of such information. We demonstrate experimentally
that our approach achieves performance comparable to state-
of-the-art tracking-by-detection methods for popular object
categories such as cars and pedestrians. Additionally, we show
that the proposed method can discover and robustly track a
large variety of other objects.

I. INTRODUCTION

Multi-object tracking (MOT) is one of the most critical
components in visual scene understanding for mobile plat-
forms, such as autonomous cars and robots. If such systems
are to perform safe navigation and motion planning in urban
environments, they need to be aware of surrounding objects
and be able to predict their future motion.

In recent years, notable successes have been achieved for
vision-based tracking of the most common traffic participant
classes, such as cars and pedestrians. This development has
largely been driven by improvements in object detectors
[32], [31], [21] and tracking-by-detection approaches, e.g.
[6], [10], [27], [42], [44], [45]. However, there is another
challenge that needs to be addressed before mobile systems
using vision sensors can safely operate in human-made
environments: these environments are full of a large variety
of other objects for which reliable detectors may not easily
be obtained.

In LiDAR-based multi-object tracking for autonomous
driving, e.g. [35], [25], this problem is addressed by object-
instance segmentation of LiDAR scans. These instances are
then associated from frame to frame and are classified on
a trajectory level. Using such approaches, a larger variety
of objects can be tracked. However, current LiDAR sensors
suffer from a very limited resolution, making recognition
difficult. Stereo vision can provide a far richer input signal;
however, reliably extracting candidate objects from noisy
stereo data is a much harder problem.
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Fig. 1.
generic object proposals simultaneously. It robustly tracks objects of both
known and unknown categories in challenging street scenarios and reports
a manageable set of relevant objects.

Our proposed method can handle a large number and variety of

In this paper, we address class-agnostic multi-object track-
ing using only an inexpensive stereo setup. Our proposed
approach starts by extracting a large number of object region
proposals from the input images and tracks them over time
using both 2D and 3D information. The basic assumption
behind our method is that correct object region hypotheses
will lead to more consistent tracks and thus to a better
explanation for the observed scene change. Thus, we use
tracking consistency as a cue to identify “interesting” objects.
Our approach provides as output a hypothesized trajectory
for each such object. We then apply a region classifier (in our
case the one from Faster R-CNN [32]) to each hypothesized
track in order to provide a semantic label for known object
categories, which also helps resolve ambiguities between
overlapping object hypotheses. This allows our approach
to achieve competitive tracking performance for the most
common categories of traffic participants, while retaining the
capability to track unknown objects.

The main challenge behind such a generic multi-object
tracking approach is the large number of object region
proposals and the variety of shapes it needs to consider, since
it cannot rely on an initial object detector. To not introduce
further problems by wrong data associations, we require a
very precise, pixel-level region tracking procedure as its main



ingredient.

In this paper, we propose a region tracking method that
relies on pixel-precise masks to perform the frame-to-frame
alignment. The masks are stored and compared efficiently
using a compressed representation with run-length encoding
(RLE). In addition, we track the 3D position of each potential
object, obtained from the stereo point cloud, for precise
3D localization. Finally, our approach takes into account
category predictions from a region-based object classification
method, wherever available, in order to help resolve ambi-
guities between overlapping objects. Altogether, this allows
our approach to robustly track a large number of known and
objects in challenging street scenes.

Our main contributions are: (i) We present a vision-
based tracking approach that performs segmentation-based,
category-agnostic multi-object tracking. (ii) The core com-
ponent of our approach is a novel and efficient segmentation
mask-based region tracker that utilizes a coarse geometric
scene understanding to predict the shape and position of the
masks in future frames, and which uses this information
for pixel-precise data association. (iii) Our approach can
benefit from additional semantic information for known
object classes from a region classifier which we apply to each
object hypothesis. Applying a classifier after tracking instead
of tracking detections enables us to achieve the capability of
model-free tracking when no semantic information is avail-
able. We show experimentally that our method is competitive
with state-of-the-art tracking-by-detection methods for cars
and pedestrians at a distance range of up to 30m. In addition,
we demonstrate that it generalizes well to a large variety of
other object categories.

II. RELATED WORK

Vision-based Multi-Object Tracking in Street Scenes. The
typical vision paradigm for multi-object tracking in street
scenes is tracking-by-detection [46], [22], [18]. Current state-
of-the-art methods focus on learning optimal parameters
for data association [42], [44], designing powerful affinity
measures [6] or explicitly dealing with abrupt camera motion
[45], [27]. Apart from [27], all these methods perform
tracking only in the image-domain and are therefore not
directly applicable to robotics applications.

Model-free Object Tracking. In contrast to the typical
vision tracking paradigm, in robotics a reverse pipeline is
often applied: tracking-before-detection, where the tracking
process is category-agnostic. Motion detection-based meth-
ods such as [15], [25], [7] detect and track moving objects
in LiDAR data. The approaches by [35], [36], [34] use a
pipeline based on LiDAR point cloud segmentation. First,
a coarse preprocessing is applied, including ground/building
facade removal, followed by a grouping of the remaining
points that are then fed to the tracker. The resulting trajecto-
ries are then verified by a classifier using features extracted
from the trajectory and LiDAR segments. An important
property of such approaches is that they have the capability
of tracking objects, even when their categories cannot be rec-

ognized, since LiDAR measurements are a strong evidence
of object presence. However, with such LiDAR clustering-
based methods, under- and over-segmentations still occur due
to occlusions, reflective and low-albedo surfaces and sparsity
increasing with distance. To address these issues, Held et
al. [12] propose a method that uses spatial, temporal and
semantic cues to reduce the number of over- and under-
segmentations.

There have been a few attempts to employ similar ideas in
the vision community. Mitzel and Leibe [24] propose an ap-
proach for tracking pedestrian-sized objects based on stereo
point cloud segmentation using Quick-Shift [38] and an ICP
tracker [4]. Lenz et al. [19] propose a method for model-
free multi-object tracking of moving objects based on sparse
scene flow clustering. [47] and [26] utilize several, possibly
overlapping object proposals to track generic objects. [26]
propose a two-stage segmentation using stereo data. First,
a coarse removal of “background” categories is performed;
second, the remaining “object” points are clustered using a
multi-scale variant of [24] and are fed into a tracker. Zhu
et al. [47] use object proposals to learn appearance models
online for model-free multi-object tracking.

Object Proposal Generation. In the context of LiDAR-
based object instance segmentation, Teichman et al. [35]
project point-clouds on the estimated ground-plane and clus-
ters the points using a simple flood-fill algorithm. Wang et
al. [41] propose to perform first a coarse classification of
points into foreground and background regions and cluster
remaining foreground regions using graph-based clustering
(similar to [26]). Bogoslavskyi and Stachniss [5] propose
a very efficient LIDAR segmentation method that operates
directly on a 2D range image. [17] generates object proposals
by integrating stereo point clouds and coarse semantic infor-
mation over time in a 3D voxel grid. Cells corresponding to
the “object” class are then clustered using DBSCAN [8].

Traditional image-based methods for object proposal gen-
eration and instance segmentation rely on grouping low-level
segmentation cues (e.g. superpixels) and hand-crafted fea-
tures [1], [48], [37]. Recent methods leverage convolutional
neural networks (CNNG5) trained on large datasets with mask-
based annotations (e.g. COCO [20]). Pinhero et al. [29],
[28] propose an object proposal generation method using
CNNs, learned end-to-end. Their SharpMask method [28]
samples rectangular patches at multiple scales. For each
patch, the network outputs a class-agnostic segmentation
mask and a probability estimate of how likely the center
of the patch contains an object. By training their network
on several subsets of the object categories, they demonstrate
that SharpMask generalizes to unseen categories and is thus
category-agnostic.

[14] proposes a method for generating spatio-temporal
object proposals in videos by tracking several, possibly over-
lapping per-frame object proposals using level sets. Short,
stable tracklets then form object candidates. Most recent
methods propose to learn to generate such sequence-level-
based proposals (bounding-box-based) in an end-to-end fash-



ion [16]. While abovementioned are similar to our method,
their ultimate goal is to produce “smoother* object proposals
in video sequences. Multi-object tracking (MOT) is a higher-
level task. MOT methods need to maintain object identities,
gap occlusions, and, especially for robotics applications,
additional information like the 3D pose, velocity, and object
size estimates need to be provided.

III. OUR APPROACH

Fig. | shows an outline of our approach. Instead of
using an object detector we obtain proposal regions, which
are represented as pixel-precise segmentation masks, one
for each proposed object instance. We require that enough
of these masks correspond to actual objects, and that the
reported regions are reasonably stable across frames. While
our approach can handle such inputs from different sources,
we use SharpMask [28] here. The region proposals are then
located in 3D using depth from stereo. These observations are
filtered with our novel integrated 2D-3D tracking approach. It
is able to cope with the large number of tracking hypotheses,
resulting from the large number of class-agnostic proposal
regions.

We maintain an over-complete set of competing spatio-
temporal tracking hypotheses. Using inference in a Condi-
tional Random Field (CRF) model following the hypothesize-
and-select paradigm [18], [6], [27], we choose valid hy-
potheses for reporting. Additionally, our proposed model
can make use of semantic information in the form of class
labels during inference. Knowledge of semantic information
helps to resolve segmentation ambiguities, but our approach
maintains the capability to keep tracking objects that are not
recognized by the classifier.

The SharpMask region proposals help with our goal of
class-agnostic tracking, by providing consistent segmentation
masks. But it is only by applying our proposed tracking
pipeline, and utilizing a combination of 2D and 3D cues,
that we are able to cope with the huge number of over-
and under-segmentations included in the region proposals.
In the inference step we can then select a meaningful subset
of these hypotheses for reporting, by turning the consistent
region proposals into consistent tracking hypotheses, and
rejecting inconsistent proposals which do not result in strong
hypotheses.

A. Segmentation Mask Localization in 3D Space

We begin with the set of region proposals from SharpMask
[28], which is then reduced by applying non-maximum
suppression. We first sort their masks by their score, and then
suppress them using intersection-over-union as a similarity
measure. Afterwards, we perform a coarse geometric filtering
of the segmentation masks. To this end, we fit a ground
plane to the stereo point cloud using RANSAC [9]. Then
we compute the median 3D position and velocity of the
segmentation masks using stereo and scene flow estimates by
[39]. We filter out object proposals that are below and above
certain height thresholds, keeping only the objects that “stick
out” of the ground (with some tolerance, as objects may be

occluded). The remaining masks, together with position and
velocity estimates, represent the inputs (observations) to our
tracker.

In each frame ¢, we obtain a set of observations O =
{of |k € {1...K}}. Each observation is defined by of =
[p, v, m, s], where p = [z, vy, Z}T represents its 3D position,
v = [&,2]" represents its velocity (only = and z compo-
nents) and m represents the segmentation mask. Finally, s
represents the mask score (how likely the mask represents
an actual object, this is an additional output of SharpMask).
In practice, we limit K to 100.

B. Segmentation-based Multi-Object Tracking

In our method we use the hypothesize-and-select tracking
paradigm [18], which allows us to accumulate information
over time. We make delayed decisions as to whether a
tracked object should be reported, based on the history of
the hypotheses, rather than information from a single frame
only. The per-frame input to our method is a large set of
segmentation masks, which contains correct segmentations,
as well as over- and under-segmentations of the objects and
false positives due to the background. In order to cope with
such an input, our tracker needs to be both efficient and
precise, to avoid producing many false hypotheses due to
segmentation clutter. In this section, we present a simple,
yet effective solution.

Our tracker maintains a set of overlapping hypotheses
h' = {h{| i€ {1...M}} by performing two operations in
each frame: (1) We use O! to extend the existing hypotheses,
see Data Association and Correction. (2) We start new
hypotheses from each observation in the current frame in
order to obtain a rich hypothesis set. To initialize hypotheses,
we perform data association and filtering backwards in time,
trying to equip a current observation with enough of a history
to improve the estimation of the initial state.

The hypotheses are represented by the following state:

hi = [, vi,m;], (1

(2

where p! = [z, v, 2)" and vl =i, 2" represent the filtered
3D position and velocity of a hypothesis in world space, and
m! represents the mask of the object in the image plane,
see Fig. [3| (left). This state is estimated using the set of
observations associated with the hypothesis.

Note that often bounding boxes are used to represent
the tracked objects (2D bounding boxes in image-based
tracking or 3D bounding boxes in LIDAR/RGBD tracking).
Our mask-based representations are trivially convertible to
2D bounding boxes and, given depth data, to 3D bounding
boxes.

Prediction. Prediction is performed in two steps. First,
the position and velocity is estimated by a Kalman fil-
ter. The state at time ¢ is computed by applying a
constant-velocity motion model to the state [p},.;,, vE,..,] =
[Phoat + Vioars Vioar] (see Fig. . The mask is predicted

postr Y post
using v}, as follows:

m! =P TS (m"), (2)
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Fig. 2. Our tracking method receives a large set of region proposals, creates a set of “proposal” object hypotheses via tracking, and finally selects those
that are the most likely explanation of the observed cues. Optionally, a classifier can be used to identify the object category.
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Fig. 3. (left) Hypothesis representation. Each hypothesis is represented by
3D position p and velocity v vectors in 3D space and pixel-mask m in the
image. Bounding boxes can be trivially derived from the pixel mask in the
image domain, and 3D space given the point cloud. (right) Mask prediction
visualization. By leveraging ego-motion and velocity information (given in
3D space), we obtain pixel-precise appearance predictions of the tracked
objects in the future frames.

where m* is either the last associated mask m‘~! or the
extrapolated mask m’, ! in case there was no observation.
The operation S'=1(-) lifts the mask m* into the 3D point
cloud of the last time frame. The rigid-body transformation

T =T}, - T} corrects for the relative motion. The ego-
motion transform 77 , is estimated via the visual odometry

approach by [11]. The object’s velocity VZM-O is applied via

Tf;, where the vertical component is set to zero, effectively
constraining the velocity to translations on the ground plane.
The intrinsic camera matrix P performs the projection of the
3D points back into image space.

Note that temporal mask propagation and online 3D model
estimation as in [13], [24], [26] could be beneficial. However,
solely using estimated velocities would result in a drift in
the model estimate, while doing more precise registrations
of the segments would be computationally expensive. With
our approach, we only apply two rigid transformations in
3D space and back-project the points to the image. This
is computationally efficient and provides us with precise
appearance predictions in the image domain.

Data Association and Correction. For the hypothesis 4!,
we select an observation of for association as the one that
maximizes the following score:

3)

Oit = argmax (pmask (Ota hf) * Pmotion (Ota hf)) y
oteOt

where Pmotion (05, 1) = N (Pops | Pps Xn) is the motion

model term, that evaluates the likelihood of the observation

position given the Kalman filter prediction. The appearance

term Ppask (05, h;) = IoU (mf,;, ;,0") scores how well the
predicted mask fits to the observation mask by computing the
per-pixel intersection-over-union (IoU) in the image domain.
This way, we jointly utilize 3D space, motion and image
information for data association.

Then, the position and velocity [pf,.,;,, V5] is updated
via the Kalman filter correction step using the associated
observation and the ground-plane estimate. Since objects are
often occluded, the ground-plane estimate is used to obtain
the bottom-point by projecting the estimated median position
p to the ground. The current mask is replaced by the mask of
the new observation, or the predicted mask m; ,, ; in case
an observation is missing.

Maintaining a Feasible Hypothesis Set. With this pro-
cedure, we may end up with several duplicates in our
hypothesis set, which we remove using the following method.
We consider a temporal window from ¢ — 7 to ¢ (7 is in
practice set to 10). We apply non-maximum suppression to
the hypotheses which were started before frame ¢ — 7. As a
similarity function we use:

. ZteT(h“hj) (IoU (mj, my,))
wimlhty) = |7 (ks ) | ’

7

4)

where T(hi7 hj) denotes the set of common time frames of
the two hypotheses. This way, we allow alternative explana-
tions of the data to develop, and only prune them once they

had the chance to diverge from the other hypotheses.

C. Inference

At this stage, we obtain several conflicting segmentation
hypotheses in the time domain, including over- and under-
segmentations, as well as outliers from the static background,
such as segments that are parts of buildings. We perform
near-online inference using a CRF model to resolve this
ambiguity. Intuitively, hypotheses that are supported by con-
sistent segmentations are more prominent object candidates.
Two additional cues that we use are the segmentation scores
of the associated segmentation masks and the classification
scores. As a counterweight, hypotheses are mutually penal-
ized for occupying the same physical space in the image
domain. We encode these intuitions by performing a MAP
inference using a CRF model (c.f. [18], [27]) by minimizing



the following energy function for each time frame ¢.:

E(b' h) = > bl (hite) + > bibytd (b, iy, te)

h;Eh hi,hjeh
&)

where the binary indicator vector bfe € {0, 1}‘h| picks the
“selected” hypotheses (b; = 1 for selected ones).
The unary potential function computes the confidence that
a hypothesis h; represents an actual object, by summing
up contributions from all frames of the hypothesis, and
weighting them according to e~ lt=tel/A:
[t—

h fel
9 (hza te) = Wpin — Z e A (wsimq)sim (O;c’ h”L) + wsegsﬁ)
t

[t—

el
— Z e /\t (wsem@sem (boxt)) .
t

(6)
Here, A is a temporal decay parameter. The minimal required
hypothesis score is given by w['flin and Wgim, Wseg, and Wem
are weights for the different terms. The similarity function
D (0F, h;) between the hypothesis h; and the associated
observation of at time ¢ is simply a mask IoU between
the hypothesis prediction at time ¢ and the observation. s’
represents the score of the segmentation mask. Given an
object classifier, we denote the classifier score with ¢;. Then,
the semantic term is a truncated classification score:

Do (boxt) = {%t’

where C,,;, 1s the minimal classifier score needed for
contribution to the total score. This way, we encourage the
selection of hypotheses for which the classifier provides
confident responses, while the selection of non-recognized
objects is not discouraged. The pairwise potential function
penalizes physical overlap using segmentation masks:

ct > Cmin
else

; (7

t t
’miﬂmj‘
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(3

Here, |-| is the mask area and N the mask intersection
operator in the image domain. We do not use IoU as an
overlap criterion, which is a common approach. Instead, we
employ intersection over the size of the smaller mask, so
that objects of different sizes can still suppress each other.
This way, over-segmentations can be suppressed by the larger
object.

The pairwise potentials in (5) are not submodular and
hence the problem is NP-hard. However, an approximate
solution can be computed efficiently using the multi-branch
method by [33].

D. Representation

Nearly all vision-based multi-object tracking approaches
represent the tracked objects using bounding boxes in the
image domain [22], [45], [6]. In the area of image-based
single object tracking, there was recently a shift towards
mask (pixel-precise) representations [30], [40]. Tracking
approaches using RGBD, stereo or depth-only data (such

as LiDAR) typically represent objects with centroids or
3D bounding boxes [15], [34], [27]. More accurate rep-
resentations include point-clouds [13] or fixed-dimensional
3D representations such as GCT [24], [23] or voxelgrids
[24], [27], that allow to integrate 3D measurements over
time. However, these representations come at the cost of
additional processing time and memory consumption, which
are major concerns for multi-object trackers that maintain a
large hypothesis space.

We propose to represent the tracked objects by their 3D
positions in the world-space and their pixel masks in the im-
age domain. The masks are stored efficiently with run-length
encoding (RLE, which typically reduces the storage size to
O(+/n), where n corresponds to the number of pixels/points
representing the mask). Most operations can be efficiently
performed directly on this compressed representation (e.g.
intersection-over-union or obtaining a bounding box), hence
there is in general no need to decompress this representation
during tracking - except for the mask prediction step.

E. Parameter Training

We train all hyperparameters of the system in two stages.
Firstly, we optimize the hyperparameters for the hypothesis
generation, using the temporal coverage criterion. Temporal
coverage tcgr for the ground-truth object GT at time ¢t is
defined as:

i Tt
— by . I T T
tegr max Z 5 (e oU (boxj,, boxGT)> 9)

T=t—

here IoU is the intersection-over-union of the bounding
boxes, box; is a hypothesis bounding box, boxgr is the
bounding box of the ground-truth object, and A is a temporal
decay parameter. Intuitively, by maximizing the temporal
coverage for all the annotated objects we are preferring pa-
rameters that produce hypothesis sets that cover the ground-
truth object trajectories within a small temporal window
as good as possible. We regularize this by optimizing the
temporal coverage for the K best-scoring hypotheses, within
a small temporal window of 6 time frames.

We optimized the hyperparameters of the potential func-
tions ¥ (-) and 1 (-) used for the inference for maximal
MOTA [3], by combining the MOTA of the pedestrian and
car categories. In both cases, we used the Tree of Parzen
Estimators method by [2].

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate that our proposed approach
can compete with detection-based baselines in the close cam-
era range on the most frequently appearing object categories.
In addition, we show that the proposed method is able to
generalize to other annotated object categories.

We perform the evaluation using the KITTI tracking
dataset [10], which is the standard dataset for tracking-by-
detection methods in automotive and robotics scenarios. For
classification of the tracked objects, we use the classification
component of Faster-RCNN [32] (trained on the COCO
dataset). In order to keep all the components as generic



as possible, neither the proposal region generation nor the
classification module is fine-tuned on the KITTI dataset.
Fine-tuning the proposal generation method and the classifier
would lead to better performance, but we are interested in
how well our approach can generalize between datasets.

We conducted all experiments using our own splits of
the KITTI tracking training set, for which annotations are
availableﬂ This is necessary for two reasons: a) our proposed
approach is stereo-based, and therefore only an evaluation in
the close camera range is meaningful and b) we demonstrate
results not only for the car and pedestrian categories but on
other categories as well. Furthermore, we report the results
as a function of the distance from the camera, which the
KITTI benchmark does not support.

Note that in the KITTI dataset, only a subset of object cat-
egories is annotated: car, pedestrian, cyclist, van, and truck
(there is an additional misc category, containing objects such
as car trailers, motorcycles, child strollers, efc.). Object tracks
for categories such as animals, street furniture, bicycles, or
street signs would therefore be considered as false positives.

We demonstrate how well our system can track the most
common traffic participants with the following experiment:
We evaluate tracking performance on the car and pedestrian
categories using the CLEAR MOT metrics [3] on the KITTI
dataset. We compare our method to CIWT [27], a state-of-
the-art tracking-by-detection method using the KITTI evalu-
ation scripts. To evaluate our method on these categories,
we report only tracked objects which are recognized as
cars or pedestrians. We evaluated CIWT with two different
detectors: a) Regionlets [43] which are the public detec-
tions used for the KITTI tracking benchmark, fine-tuned
on KITTI (CIWT+Regionlets), and b) Faster-RCNN [32]
with SharpMask [28] as the proposal generation component
(CIWT+SMRCNN).

As evident in Figures [4] and [5] the best performer on
the car and pedestrian tracking tasks is the tracking-by-
detection method using Regionlets (CIWT+Regionlets), that
demonstrates consistently good performance in all camera
ranges. However, both the object detector and the tracker
were fine-tuned on KITTI for the specific task of track-
ing cars and pedestrians. Perhaps surprising, when using
the RCNN-based detector, the tracking performance drops
(CIWT+SMRCNN). We believe that this is due to the fact
that these components were not fine-tuned on KITTIL. In
general, RCNN is a more powerful detection system than
Regionlets. However, in COCO there is no specific pedestrian
category, but only a general person category. In addition,
in COCO cars and persons mainly appear close to the
camera, therefore detecting these objects in far distances is
challenging.

In the case of our proposed Class-Agnostic Multi-Object
Tracker (CAMOT), we used SharpMask (trained on COCO)
as the object proposal component for tracking the generic
objects (which limits the possibly achievable recall). For

I'We used sequences 4, 5, 17, 19 to perform model validation and the rest
for the evaluation of our system.
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Fig. 4. MODA, Recall and Precision by distance range (higher is better)
for cars.

classification of the tracked objects we used a) the classi-
fication part of RCNN (CAMOT+RCNN) or b) Regionlet
detections (CAMOT+Regionlets). Here we use the Region-
lets as a classifier by matching the detections to the bounding
boxes enclosing the masks (in the image domain) and report
the ToU between the patches as a classification score.

We obtain better results when using Regionlets to classify
our tracked objects (CAMOT+Regionlets) in comparison to
RCNN-based verification (CAMOT+RCNN). Again, this is
due to the fact that the Regionlets were trained on KITTI.
On the other hand, the RCNN classifier is capable of rec-
ognizing a much wider range of categories, not only cars,
pedestrians, and cyclists. In addition, CAMOT+Regionlets
outperforms the detection-based tracker that uses the non-
fine-tuned detector (CIWT+SMRCNN). We believe that is is
the first time any vision-based tracking-before-detection sys-
tem can compete with a non-fine-tuned tracking-by-detection
baseline on specific categories, while still being able to
track unknown, arbitrary objects. (CAMOT+RCNN) is on-
par with (CIWT+SMRCNN) up to 20m range, after that, it
lags behind. However, we observed that typically objects are
tracked even in farther ranges, but only recognized by the
RCNN classifier when they appear closer to the camera.

Next, we demonstrate that our system is able to generalize
to other categories annotated in KITTL. In Fig. [f| we evaluate
how well all the tracked objects can cover the annotated
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Fig. 5. MODA, Recall and Precision by distance range (higher is better)

for pedestrians.

categories. We rank the (agnostic) objects tracks using the
unary potential function (6) (without the semantic term, i.e.
setting wge., = 0). We achieve very promising results on
all the categories. While it can be argued that for most of
these categories good detectors already exist, we point out
that we achieve also very good recall on the misc category.
The only outlier here is the bicyclist category - we observed
that SharpMask tends to produce separate proposals for the
bicycle and the rider and we usually track them separately.
We do not consider this to be incorrect. However, in the
KITTI annotations the bicycle and the rider are annotated as
single bounding box (cyclist). Finally, in Fig. [7] we show
qualitatively that our system is capable of tracking both
known and unknown objects simultaneously. Objects are
visualized with their pixel masks and encapsulating bounding

boxes.

V. CONCLUSION

In this paper, we presented CAMOT, a novel method for
tracking arbitrary objects from a mobile robotics platform.
In addition to be able to track the most common traffic par-
ticipants, we demonstrate that we are able to track arbitrary
objects based on category-agnostic proposals. Our system
is a step towards a more generic tracking method, that is
able to operate in rich environments, in which a robot may
encounter previously unseen objects, for which detectors may

be difficult to obtain.
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Fig. 6. Recall for all categories, annotated in KITTI, covered by our
category-agnostic hypotheses.

In future work, we plan to use our system for object
discovery by finding common patterns in the tracked objects,
that were not recognized by the classifier. This way, a mobile
platform could explore its surroundings and learn about novel
objects in an unsupervised or weakly-supervised fashion.
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