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Recognizing Objects In-the-wild: Where Do We Stand?

Mohammad Reza Loghmani', Barbara Caputo? and Markus Vincze

Abstract— The ability to recognize objects is an essential skill
for a robotic system acting in human-populated environments.
Despite decades of effort from the robotic and vision research
communities, robots are still missing good visual perceptual
systems, preventing the use of autonomous agents for real-
world applications. The progress is slowed down by the lack of
a testbed able to accurately represent the world perceived by
the robot in-the-wild. In order to fill this gap, we introduce a
large-scale, multi-view object dataset collected with an RGB-
D camera mounted on a mobile robot. The dataset embeds
the challenges faced by a robot in a real-life application
and provides a useful tool for validating object recognition
algorithms. Besides describing the characteristics of the dataset,
the paper evaluates the performance of a collection of well-
established deep convolutional networks on the new dataset and
analyzes the transferability of deep representations from Web
images to robotic data. Despite the promising results obtained
with such representations, the experiments demonstrate that
object classification with real-life robotic data is far from being
solved. Finally, we provide a comparative study to analyze and
highlight the open challenges in robot vision, explaining the
discrepancies in the performance.

I. INTRODUCTION

Objects are ubiquitous in our everyday lives. Every com-
mon activity, such as cooking or cleaning, implies the ca-
pability of understanding and operating a set of objects to
successfully complete a task. In order for a Service Robot
(SR) to operate in human environments as well, the ability to
recognize objects is a basic requirement. Object recognition
is rarely a self-contained task, but it is rather a proxy
for a large variety of high-level tasks, such as navigation,
manipulation and user interaction, that heavily rely on an
accurate description of the visual scene.

The advent of deep learning has had a huge impact
on the object recognition task after decades of plateaued
results. The progressive design of deeper and more so-
phisticated networks, starting from AlexNet [1], VGG [2],
Inception [3] [4] [S] to ResNet [6] [7], has led to outstanding
results in competitions such as the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [8]. Arguably the
primary driving force of the deep learning revolution is
the availability of large scale datasets. The majority of
these datasets, such as the popular ImageNet [9], Pascal
VOC [10], and Caltech-256 [11], are composed of images
collected through Web search engines. However, the rep-
resentation of the visual world provided by these datasets
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Fig. 1: Glimpse of the data collection process with the robotic
platform (left) acquiring data of a cluttered scene populated
with everyday objects.

implies a bias from the observer (a human photographer)
and the Web search engines [12] that are incoherent with
the representation perceived by, for example, a SR. It is then
legitimate to ask whether the features learned from Web-
based datasets can generalize well to robotic data, despite
the aforementioned bias.

In the last years, computer vision has progressed
enormously due to the establishment of standard references
and benchmarks, e.g. ImageNet, which have enabled
consistent comparison and development of new methods.
Unfortunately, the robot vision community has not
experienced the same progress due to the lack of accurate
testbeds for validating novel algorithms. In the past years,
the RGB-D Object Dataset (ROD) [13] has become “de
facto” standard in the robotic community for the object
classification task [14] [15] [16]. Despite its well-deserved
fame, this dataset has been acquired in a very constrained
setting and does not present all the challenges that a
robot faces in a real-life deployment. In order to fill
the existing gap in the robot vision community between
research benchmark and real-life application, we introduce
a large-scale, multi-view object dataset collected with an
RGB-D camera mounted on a mobile robot (see figure |I[),
called Autonomous Robot Indoor Dataset (ARID). The
data are autonomously acquired by a robot patrolling in a
defined human environment. The dataset presents 6,000+
RGB-D scene images and 120,000+ 2D bounding boxes



for 153 common everyday objects appearing in the scenes.
Analogously to ROD, the object instances are organized
into 51 categories, each containing three different object
instances. In contrast, our dataset is designed to include
real-world characteristics such as variation in lighting
conditions, object scale and background as well as occlusion
and clutter. To our knowledge, no other robotic dataset
embedding all the challenges of real-life data can be found
in the literature. All the collected data, together with the
information needed to replicate the experiments, is publicly
available at https://www.acin.tuwien.ac.at/
en/vision-for-robotics/software-tools/
autonomous—robot-indoor-dataset/.

In addition to introducing a new dataset, we inspect the
effectiveness of features learned from the Web domain on
robotic data and compare them with the features learned
from the RGB-D domain. This comparison is made pos-
sible by collecting a second dataset containing the images
downloaded from the Web representing the same categories
as ARID. The acquisition of this Web-based dataset is
performed by using query expansion strategies from [17] on
different search engines followed by a manual cleaning to
remove noisy images. Exhaustive experiments with different
deep convolutional networks demonstrate that, despite the
greater similarity between the RGB-D and the robotic do-
main, models learned from Web images are more effective.
Finally, the best performing network, ResNet-50, is used to
study the classification results on subsets of ARID represent-
ing three problematic characteristics of robotic data: small
images, occlusion and clutter. The experiments point out
small images as the main challenge of robotic data, indicating
a path to follow for the resolution of the object classification
problem for robotics.

In summary, our contributions are the following:

« anew RGB-D object dataset, collected in-the-wild with

a mobile robot, that provides a “litmus test” for the
validation of object recognition algorithms developed
for robotic applications,

o adetailed analysis of publicly available RGB-D datasets
from a robotic perspective,

o comprehensive experiments with several well-
established deep convolutional networks, comparing the
effectiveness of data coming from the Web and RGB-D
domain in generating features for object classification
in robotics, and

« a study of the main factors responsible for the difficul-
ties faced by classifiers on robotic data.

The rest of the paper is organized as follows: the next
section positions our approach compared to related work,
section [[1I|introduces the proposed robotic dataset, section
presents the experimental results and section [V] draws the
conclusions.

II. RELATED WORK

In the following, we first analyze the characteristics of
existing RGB-D datasets from a robotic perspective. Then,
we review related works on the transferability of learned

features across different domains by focusing on the Web
and RGB-D domains.

A. Datasets

During the last decade, a variety of datasets have been
made publicly available for research. With the populariza-
tion of deep neural networks, which require a consider-
able amount of data for training, the race for large-scale
datasets has become more intense. While Web images exist
in abundance, robotic images are difficult to obtain because
platforms are expensive and data acquisition is time con-
suming. Nevertheless, the robotic community has produced
some interesting datasets. In particular, for indoor objects, the
most relevant datasets are JHUIT-50, BigBIRD, iCubWorld
Transformation, ROD, and the Active Vision Dataset.

ROD [13] contains 300 objects from 51 categories span-
ning from fruit and vegetables to tools and containers.
Despite the availability of multiple views, each object is pre-
sented in isolation and variation in lighting condition, object
scale and background are missing. The corresponding scene
dataset, the RGB-D Scene Dataset [18], presents multiple
objects in the same scene, but considers only five object
categories. BigBIRD [19] contains 125 common human-
made objects, with particular focus on boxes and bottles.
This dataset is specifically designed for instance recognition
and the selected objects belong to very few categories. In ad-
dition, occlusion, clutter, scale and light variation are not cap-
tured. A more recent dataset, the Active Vision Dataset [20],
uses a subset of 33 objects from BigBIRD in densly acquired
scenes. The data is directly acquired by a robot and it embeds
most of the nuisances typical of real-life data. Nevertheless,
the limited number of considered objects makes this dataset
unsuitable for classification. JHUIT-50 [21] contains 50 in-
dustrial objects and hand tools used in mechanical operations.
The objects are captured in isolation and from multiple
viewpoints. Due to its limited scope, this dataset is more
suitable for instance recognition rather that classification.
In addition, nuisances such as occlusion, clutter, scale and
light variation are not captured. The corresponding scene
dataset, JHUScene-50 [22], includes occlusion and clutter,
but limits the number of considered objects to 10. iCubWorld
Transformation [23] contains 150 common indoor objects
from 15 different categories. The data are collected directly
with the iCub humanoid robot [24]. This dataset addresses
specifically variance in the background as well as the vari-
ance in scale and rotation of the object. Nevertheless, each
object is presented in isolation, avoiding problems caused by
cluttered scenes.

Despite the high-quality that characterizes each of these
datasets, their constrained setting makes them incoherent
with real-life data. In addition, only the Active Vision Dataset
and the iCubWorld Transformation present data collected
directly from a robot. Table [I] presents a summary of the
characteristics of the datasets discussed above and highlights
that, differently from other datasets, ARID embeds all these
characteristics.
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TABLE I: Summary of the characteristics of different RGB-D datasets with focus on variation in lighting condition, variation
in scale, multiple views, occlusion, clutter, variation in background and whether or not the data are collected directly from
a robot. Not Available (NA) indicates that the dataset focuses on object instances rather than categories and the number of

categories is unknown.

Dataset Characteristic
Name # classes  light var. scale var. multiview occlusion clutter bkg var.  robot
RGB-D Object Dataset [13] 51 v
RGB-D Scene Dataset [18] 5 v v v v v
BigBIRD [19] NA v
Active Vision Dataset [20] NA v v v v v v
JHUIT-50 [21] NA v
JHUScene-50 [22] NA v v v
iCubWorld Transf. [23] 15 v v v v v
Autonomous Robot Indoor Dataset (ARID) 51 v v v v v v v

B. Transfer Learning

Deep convolutional networks are currently dominating sev-
eral computer vision tasks. One of the key factors contribut-
ing to their success is the transferability of the produced deep
representation for a variety of visual recognition tasks. The
deep representations, also called features, of these networks
have been empirically proven to be superior to traditional
hand-crafted features, e.g. [25] [26] [27]. In order to take
advantage of the generalization power of deep models, the
networks need a large amount of training data. For this
reason, large-scale datasets, such as ImageNet, with millions
of samples, have been extensively used across different
domains. It is common practice to further adapt the deep
representation learned from a large dataset to the specific
domain of interest through fine-tuning [28] [29], i.e., by
refining the representation using annotated data from the
novel task in a subsequent training stage.

The effectiveness of using features learned from the Web
domain in the robotic domain has been previously stud-
ied [17] [30]. In Massouh et al. [17], features learned from
the Web domain are tested on the RGB-D Object Dataset,
while in Pasquale et al. [30], features learned from ImageNet
are used to train a classifier on the iCubWorld28 [30], a
former version of the iCubWorld Transformation. Although
both works exhibit interesting results, we claim that, due to
the intrinsic constraints discussed in section the utilized
datasets cannot be considered as reliable representatives of
real-life robotic data. In addition, only AlexNet and Inception
are used to produce the analyzed features. Our work exhaus-
tively benchmarks deep models obtained with five different
networks against a robotic dataset collected in-the-wild.

III. AUTONOMOUS ROBOT INDOOR DATASET

In the following, we describe the characteristics of the
proposed robotic dataset by highlighting its most significant
peculiarities. In addition, we unveil the protocol used for the
autonomous data collection and the details of the provided
annotation.

A. Scope and Motivation

The Autonomous Robot Indoor Dataset contains RGB and
depth images of daily life objects belonging to 51 categories.
Each object category contains three instances, for a total of
153 physical objects, and it coincides with one of the 51
WordNet leaf nodes used to determine the categories of a
very well-known dataset, the RGB-D Object Dataset. In other
words, there is a complete overlap between the categories
represented in the two datasets, ARID and ROD. Figure 2]
gives a concrete idea of the dataset’s content by showing one
sample object per category.

Since we are mostly interested in autonomous assistive
robots operating in indoor environments, the object classes
considered in ROD are a valid representative. These objects
consist of a large variety of food items, such as fruit, vegeta-
bles and packed goods, and human-made objects common to
homes and offices. Nevertheless, our goal is not to extend
and contribute to ROD, but rather fill the gap between
research-oriented datasets and real-life data by introducing
a robotic dataset collected in-the-wild. While ROD contains
images collected in a constrained setting (fixed camera-object
distance, static background, invariant light conditions), our
dataset includes all the nuisances of robotic data by acquiring
it directly with a mobile robot navigating autonomously in an
indoor environment. More precisely, the following challenges
are taken into account:

« variation of lighting conditions,

« object scale variation,

« significant changes in the viewpoint,
o partial view and occlusion,

o clutter, and

« background variation.

We hope that this work provides the robot vision community
with a tool to advance the visual capabilities of robots in
order to accelerate their integration in our lives.



Origlast *
I SCHOK0- € . %

BANANEN

B. Data Acquisition Protocol

In order to avoid a human bias in data acquisition and to
observe the objects from the robot’s perspective, a mobile
robot with an RGB-D camera is used. In particular, the
mobile robotic platform is powered by a Pioneer P3-DX
with a customized structure that supports an Asus Xtion Pro
camera mounted on a pan/tilt unit (see figure [I).

The data collection is performed in 10 different sessions
conducted during different days and at different times of the
day: this allows a natural variation of the lighting conditions
among the data. At each run, 30-31 objects are spread in
the environment where the mobile robot patrols predefined
waypoints. When a waypoint is reached, the camera scans
the scene with a horizontal movement of the pan/tilt unit
and acquires RGB and depth data, both with a resolution of
640x480 pixels and a frame rate of 30 Hz. The RGB and the
depth frames are later synchronized based on their acquisition
time and unmatched frames are discarded. Each session lasts
for approximately one hour in which the robot continuously
loops over four distinct waypoints. In order to guarantee the
appropriate variability in terms of camera-object distance and
object view, the objects are randomly moved in between two
patrolling loops.

C. Annotation

In order to discard similar frames, every fifth frame is
chosen for annotation for a total of over 6,000 frames. For
each frame, a bounding box annotation indicates the location
and the label (at instance level) of every visible object for
a total of over 120,000 2D bounding boxes for the whole
dataset. A modified version of Sloth annotation tool [31] is
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Fig. 3: Example of an RGB-D frame from the Autonomous
Robot Indoor Dataset with 2D bounding box annotation.

used for this purpose. In case of occlusion or partial view, if
the object is still distinguishable, a bounding box is drawn
around the visible part of the object. Figure [3|shows a sample
frame, together with its bounding box annotation. Since the
objects are captured in a realistic scenario rather than in
isolation, the dataset is also suitable for object detection. In
addition, the availability of object labels at instance level
allows the dataset to be used for object classification as
well as object identification (also referred to as instance
recognition).
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Fig. 4: Accuracy of different deep convolutional networks on
three datasets: Autonomous Robot Indoor Dataset (ARID),
RGB-D Object Dataset (ROD) [13] and Web Object Dataset
(WOD). The results are obtained by training and testing on
different splits of the same dataset.

IV. EXPERIMENTS

We take advantage of the availability of ARID to disclose
the characteristics of robotic data. In particular, we want to (i)
analyze the transferability of features from the Web domain
to the robotic domain (Section and (i) study the
characteristics of robotic data to identify the main source(s)
of complication for classifying objects (Section [[V-B). In
order to accomplish these goals, another dataset, called Web
Object Dataset (WOD), is collected. WOD is composed of
images downloaded from the Web representing objects from
the same categories as ARID. The images are downloaded
from multiple search engines (Google, Yahoo, Bing and
Flickr) using the method proposed by Massouh et al. [17].
This method uses a concept expansion strategy by leveraging
visual and natural language processing information to mini-
mize the noise while maximizing the visual variability. The
remaining noise is then manually removed, leaving a total of
50,547 samples.

A. Baseline and Features Transferability

The limited availability of robotic data raises the question
of whether data coming from a more accessible domain, the
Web domain, can be effectively used instead of data from
the RGB-D domain to learn features that are transferable
to the robotic data. In particular, we want to compare the
performance of well-known deep convolutional networks on
robotic data (ARID), when trained on Web data (WOD) and
on RGB-D data (ROD). In order to allow a fair evaluation, a
subset of 40,000 samples from ARID dataset is selected, such
that all the involved datasets are approximately the same size.
It is worth noticing that, since WOD does not contain depth
information, only RGB data are considered for all datasets.
For this benchmark, we employ some of the most utilized
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Fig. 5: Accuracy of different deep convolutional networks
on Autonomous Robot Indoor Dataset (ARID). The results
are obtained by training independently on ARID, RGB-D
Object Dataset (ROD) [13] and Web Object Dataset (WOD)
and testing on ARID.

network architectures in the literature, CaffeNeﬂ VGG-16,
Inception v2, ResNet-18 and ResNet-50. All networks are
pre-trained on ImageNet and then fine-tuned on the desired
dataset, according to the guidelines provided in [28] [29].

In order to provide a reference for the upcoming evalua-
tions, we assess the performances of all considered networks
for each of the three datasets (ARID, ROD, WOD) when
training and test set come from the same dataset. For each
dataset, multiple training/test splits are considered and the
results are averaged to obtain the final classification accuracy.
In particular, for ARID, each split uses one different object
instance per class in the test set, for ROD, the first three
splits indicated by the authors is used and, for WOD, each
split uses 25% of the data in the test set. From the results
displayed in figure it can be noticed that the different
networks consistently obtain a higher accuracy on WOD.
Unsurprisingly, ARID appears to be the most challenging
dataset and all the networks achieve an accuracy much lower
(on average, ~ 0.4 lower) on ARID than on the other two
datasets.

The networks fine-tuned on ROD and WOD are then tested
on ARID to evaluate the transferability of the learned features
to the robotic data. From the results displayed in figure [3
it can be noticed that, as expected, all the networks undergo
a performance drop when the training and test set belong to
different datasets with respect to the case in which both sets
belong to the same dataset (see figure ). The domain shift
responsible for this negative inflection of the classification
results occurs because the data composing training and test
set are drawn from different distributions [32]. However,
features learned from Web data (WOD) consistently allow
a higher classification accuracy (with improvements up to
0.05) on robotic data (ARID) than features learned from

'A slightly modified version of AlexNet in which the normalization is
performed after the pooling.



TABLE 1II: Accuracy of multiple deep convolutional networks on different training/test combination of three datasets:
Autonomous Robot Indoor Dataset (ARID), RGB-D Object Dataset (ROD) [13] and Web Object Dataset (WOD). For
each training/test set combination, the mean and maximum accuracy among the considered networks is shown.

Dataset Network Statistics
Train on Test on CaffeNet VGG-16 Inception-v2 ResNet-18 ResNet-50 Mean Max
ROD ROD 0.832 0.889 0.897 0.864 0.876 0.872  0.897
ROD ARID 0.291 0.270 0.266 0.243 0.337 0281  0.337
WOD WOD 0.924 0.942 0914 0.953 0.956 0.938  0.956
WOD ARID 0.268 0.297 0.282 0.282 0.388 0.303  0.388
ARID ARID 0.441 0.458 0.481 0.458 0.540 0476 0.540

RGB-D data (ROD) on all networks, with the exception of
CaffeNet. The key factor to interpret this phenomenon is
the greater variability of Web images: while ROD contains
a limited number of instances per class, with some classes
containing only 3 instances, in WOD each sample potentially
represents a different object instance. Very deep networks,
like ResNet-50, with high capacity and generalization power,
take advantage of this richness in information to generate
better models. This is further highlighted by the difference
between the accuracy of ResNet-50 and the mean accuracy of
all tested networks when training with WOD (see table [I).
The results of this experiment have a twofold implication:
(i) despite the greater visual affinity between the RGB-D
and the robotic domain, data from the Web domain generate
more effective models for object classification in robotic
applications, and (ii) the currently well-established deep
convolutional network, when used in their plain stand-alone
form and without any prior, do not perform satisfactorily for
object classification in robotics.

B. Robotic Challenges

In order to better understand which characteristics of
robotic data negatively influence the results of the object clas-
sification task, we independently analyze three key variables:
image dimension, occlusion and clutterﬂ Image dimension is
a variable related to the camera-object distance: when the
camera is not near enough to clearly capture the object,
the object occupies only few pixels in the whole frame,
making the classification task more challenging. For obvious
reasons, this problem is emphasized when dealing with small
and/or elongated objects, such as dry batteries or glue sticks.
Occlusion occurs when a portion of an object is hidden by
another object or when only part of the object enters the
field of view. Since distinctive characteristics of the object
might be hidden, occlusion makes the classification task
considerably more challenging. Clutter refers to the presence
of other objects in the vicinity of the considered object. The
simultaneous presence of multiple objects may interfere with
the classification task.

2Since ARID is collected in-the-wild, by definition, the data acquisition is
performed in an unconstrained manner. For this reason, rigorously isolating
other characteristics of the data, such as light variation, background variation
and different object view is prohibitive.

TABLE III: Accuracy of ResNet-50, trained on Web Object
Dataset and on its augmented version (++), for three sub-
sets of Autonomous Robot Indoor Dataset containing small
images, occluded objects and clutters. The model is also
tested on the whole dataset to show the overall impact of
data augmentation.

Challenge Accuracy

Top-1 Top-5
Small image 0.230 0.511
Occlusion 0.273 0.508
Clutter 0.558 0.777
Small image ++ 0.240 0.513
Occlusion ++ 0.318 0.577
Clutter ++ 0.543 0.802
All ++ 0.441 0.702

Table shows the classification results of the best per-
forming model of section [[V-A] (ResNet-50 trained on WOD)
on three subsets of ARID, each containing samples with the
characteristics discussed above. The set of small images is
obtained by taking half of ARID containing images with the
smallest area, while the occlusion and clutter set have been
manually selected. It is worth noticing that the three sets are
mutually exclusive in order to avoid interference between the
analyzed variables. The occlusion and, especially, the small
images set exhibit low accuracy, thus negatively affecting
the classification score of the whole dataset. It is possible
to improve the classification by performing problem-specific
data augmentation during the training phase. In particular, we
augmented WOD by resizing the original samples to different
scales and by randomly adding rectangular noise patches to
simulate occlusion. These two strategies are commonly used
to encourage the network to learn scale-/occlusion-invariant
models [3] [16] [33]. Table also shows the performances
of ResNet-50 trained with this augmented WOD on the three
subsets and on the whole ARID dataset. Even though the
occlusion set benefits from this strategy (and so does the
whole dataset) the classification of small images does not
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Fig. 6: Accuracy of each of the 51 classes of the Autonomous Robot Indoor Dataset obtained with a ResNet-50 trained on

the augmented Web Object Dataset.

exhibit significant improvement. The difficulty of classifying
small images is further confirmed by the results in figure [6]
where classes representing small or elongated objects have
the lowest accuracy.

V. DISCUSSION AND CONCLUSION

In this paper, we have presented ARID: a large-scale,
multi-view, RGB-D object dataset collected with a mobile
robot in-the-wild. This dataset is designed to capture the
challenges a robot faces when deployed in an indoor en-
vironment and fills the current gap in the robot vision
community between research oriented datasets and real-life
data. Furthermore, with an extensive comparative study, we
have shown that it is possible to overcome the complication
of collecting a large amount of robotic data for training
data-craving deep convolutional networks by using images
downloaded from the Web. We have found that, despite being
relatively easy to obtain, Web-based data allow the generation
of more effective deep models than the RGB-D counterpart
for the classification of robotic images. Nevertheless, object
classification remains a challenging task in robotics and
current algorithms present results that are insufficient for
a successful integration of robotic systems in our homes.
In order to shed light on the difficulties of this task, we
have analyzed the effects of specific factors, such as object
dimension, occlusion and clutter, on the performance. Results
indicate that clutter is rather a secondary problem: occlusions
and, especially, small objects more seriously degrade the
classification accuracy. These observations suggest a research
path in which visual tasks for robotic applications are tackled
through methods designed to cope with domain-specific

challenges. ARID is a valuable resource to pursue this
goal and provides an important testbed for the robot vision
community. In addition, the dataset may also be used to
explore other aspects of robotic data, such as the integration
of RGB and depth information.

Our dataset is available for  download
https://www.acin.tuwien.ac.at/en/
vision-for-robotics/software-tools/
autonomous-robot—-indoor—-dataset/.
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