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Abstract— This paper presents a data-efficient approach to
learning transferable forward models for robotic push manip-
ulation. Our approach extends our previous work on contact-
based predictors by leveraging information on the pushed
object’s local surface features. We test the hypothesis that,
by conditioning predictions on local surface features, we can
achieve generalisation across objects of different shapes. In
doing so, we do not require a CAD model of the object
but rather rely on a point cloud object model (PCOM). Our
approach involves learning motion models that are specific
to contact models. Contact models encode the contacts seen
during training time and allow generating similar contacts
at prediction time. Predicting on familiar ground reduces the
motion models’ sample complexity while using local contact
information for prediction increases their transferability. In
extensive experiments in simulation, our approach is capable
of transfer learning for various test objects, outperforming a
baseline predictor. We support those results with a proof of
concept on a real robot.

I. INTRODUCTION

Pushing is an essential skill for both humans and robots.
While prehensile manipulation is versatile and elegant, nei-
ther is it always possible nor suitable. Objects may be too
large or heavy to grasp or the robot may not be equipped with
grippers. Mobile robots in particular are posed to encounter
an unpredictable variety of real-world manipulation tasks
without the ability to grasp, i.e. adding a gripper to NASA’s
K-Rex rover means extra payload [7]. Rocks on the moon
may nevertheless obstruct its path. In a more mundane
context, precise pushing allows industrial and personal robots
to operate efficiently in cluttered environments by removing
obstacles and reducing pre-grasp uncertainty [3]. In both
described contexts, robots may encounter objects of various
sizes, shapes, and materials. Hence, there is a strong case
for learning transferable forward models of robotic push
manipulation.

However, generalisation across objects is challenging and
still an open problem. Analytical approaches to pushing rely
on knowledge of intrinsic physical parameters which may
not be available, or expensive to obtain. Data-driven pushing
models tend to either generalise poorly, require impractically
large amounts of data, or both.

We present a contact-based approach to push prediction
that enables generalisation across objects of different shapes.
Our aim is not to improve the quality of predictions for a
specific object, but to efficiently learn a generative model that
will enable the robot to make reasonable predictions on novel
objects. We have also based our approach on features that
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Fig. 1. Our test scenario. A Pioneer 3DX equipped with a 3D printed
bumper pushing a novel object. The robot is capable of predicting the effects
of the push even if the dice are not present in the training data.

can be extracted from a point cloud obtained on the fly by
the robot, so to remove the need of modelling various types
of objects. We do so by approximating the global motion of
the object by learning a set of local experts. Each expert is
a specialised predictor learned from demonstration.

In particular, we learn two types of experts: 1) static
contact models and 2) motion models. The former models
encode the contact between the pusher and the object, and
between the object and the environment. Meanwhile, the
latter models make predictions on how the object will behave
under a specific push. In other words, instead of learning
motions for a specific object, we break down the problem to
learn how few local points of interest (i.e. robot-object and
object-environment contacts) will change under a push. We
then use those predictions to estimate the global motion of
the object.

Figure 1 shows our test scenario in which a Pioneer
3DX pushes an object not previously encountered, composed
of two piled dice. All our models have been trained in
a simulated environment, also the one tested in the real
scenario. To cope with the discrepancy between the simulated
and the real world, we learned the motion models by rollouts
with sampled friction coefficients (see Sec. IV-C).

When encountering a novel object, we use the contact
model to generate robot-object and object-environment con-
tacts similar to those seen during training, and apply the
contact-specific motion models to predict how the object will
behave under a push. As the generated contacts are similar
to those seen during training time, the motion models can
predict on familiar ground.
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Fig. 2. An object is pushed from an initial pose (dark grey) to a final pose
(light grey, dotted line). We aim to predict the global motion mb by learning
local predictors for the motions mvL and mvE

k
, for k = 1, . . . , NE . We

represent motion, mx as a rigid body transformation that moves the frame
xt into frame xt+1. The rigid body transformations hL and hE

k describe the
estimated contacts on the object’s surface w.r.t. the estimated global frame
of the object, b. This relation does not change over time, thus once we
estimate the local motions mvL and mvE

k
we use the relations hL and hE

k

to estimate bt+1. The transformations uL and uE
k denote the relative pose

of the bodies in contact, respectively the robot link lt and the environment
zk , w.r.t. the feature contact frames vL and vEk . This allows us to learn
independent contact-specific motion models.

Our main contributions are thus twofold. First, we pro-
pose a novel approach to transfer learning of robotic push
manipulation. Second, we test that approach in extensive
experiments in a simulated environment, and in a proof of
concept on a real robot.

II. RELATED WORK

One approach to predicting the result of a push involves
building models informed by classical mechanics [12], [13],
[11]. In order to be precise, such models require explicit
representation of intrinsic physical parameters such as fric-
tion. Most of those approaches focus on planar sliding of
simple two-dimensional (2D) objects. Recently, there has
been a promising stream of work, however, that aims to
augment analytical models with data-driven approaches, e.g.
for modelling the stochastic nature of friction [16].

In view of avoiding the tuning of physical parame-
ters, a second approach is to learn forward models from
data, thereby implicitly encoding physical parameters in
the model. A wide range of features and machine learn-
ing techniques have been used for pushing prediction, e.g.
recently [2]. However, most approaches tend to work well
only on the objects that they have been trained on, although
notable exceptions exist, e.g. [10]. Recently, artificial neural
networks have been applied to robotic pushing. Such deep
learning approaches typically use RGB images as input,
and may be used to construct end-to-end systems which
optimise perception, prediction, and control jointly for task
performance. While such work holds great promise, existing
approaches require hundreds of hours of video material
corresponding to thousands of actions for training to be
applicable in real world scenarios [1], [4]. Generalisation
across objects further increases sample complexity.

Most related to our approach is our own previous work
[10], [17], [9]. In [10], [17], we dealt with the problem of
learning forward models to predict how objects behave under
push operations, and in [9], we proposed to use local features
to transfer learned grasps to novel objects. In this paper, we

investigate both approaches further to learn contact-specific
motion models for push operations.

III. BACKGROUND

A. Surface features

A central aspect of our approach is the probabilistic mod-
elling of surface features, extracted from three-dimensional
(3D) object point clouds. Features are composed of a 3D
position, a 3D orientation, and a 2D local surface descriptor
that encodes local curvatures. Let us denote by SO(3) the
group of rotations in three dimensions. A feature belongs to
the space SE(3)×R2 , where SE(3) = R3 × SO(3) is the
group of 3D poses, and surface descriptors are composed of
two real numbers. We thus represent an object as a set S of
NS surface features xj

S = {xj : xj ∈ R3 × SO(3)× R2}j∈[1,NS ]. (1)

Let us denote the separation of a feature x into p ∈ R3 for
position, a quaternion q ∈ SO(3) for orientation, and r ∈ R2

for the surface descriptor. For compactness, we also denote
the pose of a feature as v. As a result, we have x = (v, r),
and v = (p, q).

We now describe how we compute r, the local curvature
descriptors. The surface normal at p is computed from the
nearest neighbours of p using a PCA-based method, e.g.
[6]. Surface descriptors correspond to the local principal
curvatures [15]. The curvature at point p is encoded along
two directions that both lie in the plane tangential to the
objects surface, i.e. perpendicular to the surface normal at p.
The first direction, k1 ∈ R3 , is a direction of the highest
curvature. The second direction, k2 ∈ R3, is perpendicular to
k1. The curvatures along k1 and k2 are denoted by r1 ∈ R
and r2 ∈ R respectively, forming a 2-dimensional feature
vector r = (r1, r2) ∈ R2. The surface normals and principal
directions allow us to define the 3D orientation q that is
associated to a point p. Next, we introduce the notation and
concepts required to represent motion models.

B. Rigid body motions

Let us now consider the problem of a robotic agent with
link L pushing an object B, observed at discrete time steps
t, t+1; see Fig. 2 for a visual representation of the notation.
We assume that both L and B are 3D rigid bodies and that
the interaction between them is quasi-static. In this context
quasi-static means that the object only moves when it is being
pushed by the robot with a constant low-speed velocity. Let
lt ∈ SE(3) denote the pose of link L and bt ∈ SE(3) the
pose of B, measured at time t in an inertial reference frame
W which we will refer to as the world frame. In this paper,
we aim to determine the motion of an object resulting from
a pushing action a from an action set A. Let mb ∈ SE(3)
denote the rigid body transformation from bt to bt+1. Using
the same notation introduced for 3D poses, we represent
the separation of mb into p ∈ R3 for the translation, and
a quaternion q ∈ SO(3) for the rotation. Our approach is
probabilistic in that we we aim to learn not a deterministic



mapping a 7→ mb but rather a conditional probability density
function (PDF) over rigid body motions P (mb | a).

In order to determine P (mb | a), we use a PoE. The key
idea of this approach is that candidate motions are evaluated
by a set of models (the experts), each giving a likelihood
(opinion). For a candidate to be considered likely, all experts
must agree. This is implemented by taking the product of
opinions. In contrast to mixture models, each expert thus
has a veto in the sense that a single zero probability results
in an overall zero likelihood.

In our context of motion prediction, we consider multiple
local predictors of the global object motion mb (see Fig.
2). Each of those models predicts the object’s local motion
at point where the object is in contact with the robot or the
environment. The PoE is a natural fit for this context as each
contact encodes a local kinematic constraint on the object’s
motion. To be considered probable, a motion mb must satisfy
all of those constraints simultaneously. To formalise this, let
us denote a local surface feature in contact with robot link L
as xL = (vL, rL). We represent the contact by the pose uL ∈
SE(3) of L relative to the local feature frame vL. In addition
to the robot-object contact, we consider at set of NE contacts
uEk with corresponding features xEk = (vEk , r

E
k ). Let us now

again consider the robot applying a pushing action a to the
object. In addition to mb, we can now additionally observe
the motion of each local feature frame, namely mvL for the
robot-object contact, and mvE

k
for the object-environment

contacts where k = 1, . . . , NE .
We note that each local contact feature frame vL and vEk

resides at a relative pose h to b which, for a particular
v is given by h = v−1 ◦ b, where ◦ denotes the pose
composition operator, and v−1 is the inverse of v, with
v−1 = (−q−1p, q−1). As we assume that we are dealing
with rigid bodies, ht = ht+1 ∀ t. For any given v, mv and h,
we can thus compute the corresponding mb. In other words,
given the initial pose of a local contact frame, its relative pose
to the object pose, and its local motion, we can compute the
corresponding object motion. Coming back to our previous
set-up, we learn a model for the motion of the robot-object
contact frame vL given by P (mvL | a) and a motion model
for object-environment contact frames, given by P (mvE

k
| a)

where k = 1, . . . , NE . Given the relative poses hL and hEk ,
those motion models also define probability densities over
mb. Crucially, this formulation is transferable in that the
learned motion is given in the local contact frame. When
predicting the motion for a novel object, the corresponding
relative poses hL and hEk are used to generate P (mb | a).
In the next section, we discuss how we estimate probability
densities from data.

C. Kernel density estimation

In this paper, we represent PDFs non-parametrically with
a set of features, or particles. The underlying PDF is created
through kernel density estimation [14], by assigning a kernel
function to each particle supporting the density. For contact
models, we consider PDFs defined on surface features x, i.e.
on SE(3)×R2. For that purpose, let us denote by µ a surface

feature given by µ = (µp, µq, µr), and by σ a triplet of real
numbers σ = (σp, σq, σr). We thus define our kernel as

K(x | µ, σ) = N3(p | µp, σp)Θ(q | µq, σq)N2(r | µr, σr),
(2)

where µ is the kernel mean point, σ is the kernel band-
width, Nn is an n-variate isotropic Gaussian kernel, and Θ
corresponds to a pair of antipodal von Mises-Fisher distri-
butions which form a Gaussian-like distribution on SO(3)
(for details see [5]). Given a set of K surface features, the
probability density in a region of space is then determined
by the local density of the particles in that region, as

P (x) '
K∑
j=i

wjK(x | xj , σ), (3)

where σ ∈ R3 is the kernel bandwidth and wj ∈ R+ is a
weight associated to xj such that

∑
j wj = 1. For motion

models, we consider a kernel function defined over surface
features and 3D motions, hence over SE(3)× SE(3)×R2.
That kernels is defined as the product of K and the kernel
function

M(m|µ, σ) = N3(p | µp, σp)Θ(q | µq, σq), (4)

where m = (p, q) is the motion to be evaluated, µ =
(µp, µq), and σ = (σp, σq).

IV. PROPOSED APPROACH

At training time, we learn a contact model comprising
both a robot-object contact model and an object-environment
contact model. For each action in our action set, we then
learn local motion models specific to that contact model. At
prediction time, we can query any novel point cloud to find
the closest set of contacts and interpolate a prediction for the
object movement.

A. Contact model

A contact model encodes the joint probability distribution
of surface features and of the 3D pose of the robot’s link in
contact. At prediction time, we obtain a point cloud O of the
novel object from a single shot taken from a depth camera.
Given a set of NO surface features {xj}NO

j=1, with xj =

(vj , rj) and vj = (pj , qj), a robot-object contact model CL is
constructed from features from the object’s surface. Surface
features close to the link surface are more important than
those lying far from the surface. Features are thus weighted,
to make their influence on CL decrease with their squared
distance to the link. Let us denote by uj = (pj , qj) the pose
of L relative to the pose vj of the jth surface feature. In other
words, uj is defined as

uj = v−1j ◦ s, (5)

where s denotes the pose of L in the world frame, ◦ denotes
the pose composition operator, and v−1j is the inverse of vj .
The contact model is then estimated as



CL(u, r) '

1

Z

NO∑
j=1

wjN3(p | pj , σp)Θ(q | qj , σq)N2(r | rj , σr), (6)

where Z is a normalising constant, and u = (p, q).
Additionally, we learn an object-environment contact

model CE from NCE samples obtained from O. For each
sampled feature xj , we attach a frame zj to the closest point
in the environment and represent the environment contact by
the pose uj of zj relative to vj . For the object-environment
contact model, we opted for a simple binary weighting
function

wj =

{
1 if ‖pj − zj‖ < δE

0 otherwise,
(7)

where δE is a cut-off distance. We then estimate the object-
environment contact model using the same formulation given
for the robot-object contact model.

B. Query density

A query density results from the combination of a learnt
contact model with a novel object point cloud O. The
purpose of a query density is both to generate and evaluate
poses of the corresponding robot’s link (or the environment)
on the new object. Imagine you have only learned how to
push a cube from one of its side faces. When you need to
push a triangular prism you will not place your finger on one
of the corners, expecting it to move like the cube. However,
if you place your finger on a side face you may be able to
use your experience on the cube to make a prediction. We
refer the reader to [9] for further details on how to compute
the query density, providing only a brief overview here. In
summary, a query density Q is a PDF defined as

Q = P (s, u, v, r), (8)

where v denotes a point on the objects surface, expressed in
the world frame, r is the surface curvature of such a point,
u denotes the pose of a body relative to a local frame on the
object, and s is the absolute pose in the world frame of the
body. In our context, the body is either the robot’s link or a
local environment frame.

At prediction time, we use a robot-object query density
QL to generate poses of the robot’s link on the new object,
and to attach a robot-object contact frame as an expert for
prediction. We achieve the former by marginalising with
respect to u, v, and r, obtaining the distribution QL(s) which
models the pose s in the world frame of the link L. We
approximate the robot-object query density by KQL kernels
centred on the set of weighted robot link poses obtained from
the pose sampling algorithm proposed by [9]. To generate
a robot-object feature frame vL, we choose it such that
it maximises QL(v). For optimisation we use simulated
annealing [8].

In addition to the robot-object query density, we create an
object-environment query density by combining the object-
environment contact model with O. While we are free to
position the robot in the world, we consider the state of
the environment as fixed for a given time t. We hence use
the object-environment query density only to select the set
of NE query object-environment contact frames vEk . This
is equivalent to marginalising QE with respect to s, u, and
r to obtain the distribution QE(v) over poses in the world
frame of local feature frames on the object’s surface. We
then sample from QE(v) for a total of NE times.

C. Motion model

Having learned a contact model, we then proceed to
learning both a robot-object motion model, and an object-
environment motion model for each action a in the action
set. We learn those models from the data by observing the
local motion of robot-object and object-environment frames
at training time. For each action a, we simulate a set of Na

rollouts which are the kernels of the corresponding motion
model. Each rollout has a different friction coefficient for the
contacts uniformly sampled from a distribution in the range
[0.15, 0.35], similar to the approach taken by [16].

In doing so, we learn to predict motion conditional on
both the contact pose u and the local curvature r in the form
of PDFs P (mvL | uL, rL, a) and P (mvE

k
| uEk , rEk , a). At

prediction time, we use the relative poses hL and hEk of the
contact frames with respect to the object pose b to define
PDFs over object motion P(mb | uL, rL, a) and P (mb |
uEk , r

E
k , a) from the local motion PDFs, as discussed before.

Each kernel in the PDF of each motion model is defined
over SE(3)×SE(3)×R2. In order to generate predictions,
we obtain an opinion on candidate motions from each local
expert defined as the conditional PDF

M(mb | c, a) =

∑Na

j=i wjM(mb | mj , σm)K(c | cj , σc)∑Na

j=i wjK(c | cj , σc)
,

(9)
where mb = (pmb

, qmb
) is the candidate object motion

to evaluate, c = (u, r) is the relative pose and surface
curvature associated with the conditioning contact frame, mj

is the jth motion kernel, σm is the motion kernel bandwidth
parameter, and σc = (σp, σq, σr) is the contact feature
bandwidth parameter. Finally, we combine all local motion
models in a PoE, as introduced in the background section,
and select the best prediction by obtaining the argument with
the maximum likelihood. For that purpose, we again use
simulated annealing as a convenient optimisation procedure.

V. EXPERIMENTS

We evaluated our approach empirically in experiments on
a simulated and a real Pioneer 3DX mobile robot equipped
with a bumper for pushing objects. Our experiments focus on
object transfer, the main aspiration of this paper. We learned
contact and motion models in simulation for one object (i.e.
the cube), and then evaluated the predictive performance of



the learned models on a set of five test objects in simulation,
and two test objects in a real world scenario. We also
compared our approach to a baseline predictor which encodes
the planar sliding constraints (Sec. V-D).

For our experiments, we varied the trained models along
two dimensions, first the contact information used for pre-
diction, and second the number of training samples. We
considered three values in each dimension and all combi-
nations between them, leading to a total of nine evaluated
models. During both training and testing, all objects were
placed in an obstacle-free planar environment. Due to the
geometry of the objects considered, and the kinematics of
our robot, our experiments are a study of planar sliding
behaviour. Investigating performance in the context of rolling
and toppling, as well as in cluttered environments, is future
work. For all simulation experiments, we used the Gazebo
simulator in version 7.8 with the Open Dynamics Engine
(ODE).

A. Training set

As our training object, we chose a cube with side length
0.2 m and mass 0.5 kg. Using a Kinect depth camera, we
took a single shot of the object, and learned contact models
from the thus obtained point cloud. Specifically, we learned
two robot-object contact models. Due to the symmetry of
the bumper, we only distinguish between front and side link
without differentiating between left and right.

In the case of the first robot-object contact model, the
bumper’s front link is in full contact with one face of the
cube. In the case of the second robot-object contact model,
the bumper’s side link is in full contact with a face of
the cube. In both cases, we used a cut-off distance of 1
cm for the weighting function. Furthermore, we learned
an object-environment contact model from 1, 000 surface
features sampled from the point cloud. Here, we used a cut-
off distance of 5 cm for the weighting function. We note
that in our set-up devoid of obstacles and clutter, the object’s
environment contacts are exclusively made with the ground.

In the next step, we learned a motion model for each
combination of action and robot-object contact model. To
that end, we generated training pushes as follows. For each
robot-object contact model, we constructed a query density
from which we generated 100 feasible training contacts,
discarding infeasible instances that placed the robot in mid-
air or in collision with either the object or the environment.
At each feasible contact, we then repeatedly applied a set of
pushes. Specifically, we considered an action set of three
pushes, one straight linear push and two angular pushes.
In all cases, a velocity command was fed to the robot’s
controller for a fixed duration. We used a duration of four
seconds. Linear velocity amounted to 0.1 m in the x-direction
of the robot’s base frame for all pushes. For the straight linear
push, all components of the angular velocity vector were set
to the zero, while for the two angular pushes, we considered
angular velocities of 10◦/s and −10◦/s respectively, directed
around the z-axis of the robot’s base frame. In the case of
the side link’s contact model, we excluded the angular push

directed away from the contact surface from the action set
due to its resulting in a loss of contact without applying a
push.

At each training contact, we executed each action five
times (i.e. rollouts, Sec. IV-C), gathering a set of 2, 500
training pushes, 1, 500 for the front link’s contact model,
and 1, 000 for the side link’s contact model.

B. Test set

We evaluated the learned motion models both in sim-
ulation and on a real robot. Considering the simulated
environment first, we generated a test set of pushes covering
five objects, one being the cube seen during training, and
the other four being unseen objects. This design reflects
our focus on object transfer. The unseen objects comprise
a cuboid with side lengths 0.2 m and 0.3 m, an equilateral
triangular prism with side length 0.2 m, a cylinder of radius
0.1m and height 0.2 m, and a shape derived from the
equilateral triangular prism by rounding off one of its edges.
We will refer to the latter object as a rounded triangular
prism. All considered objects have the same mass of 0.5 kg.
We chose the objects such that they exhibit variance with
respect to the shape, area, and curvature of their surfaces
which in turn determine the nature of the contacts that can
be generated.

We generated test pushes for the selected objects following
the same process used to gather training data. For each
test object, we obtained a single shot from a Kinect depth
camera. For each of the two learned contact models, we
constructed a query density and sampled 50 query poses.
For each query pose, we then applied each action from
the corresponding action set four times. For each test push,
we sampled the contact friction coefficients from the same
distribution used during training. Hence, we obtained a test
set of 1, 000 pushes per training object, 600 for the front
link’s contact model and 400 for the side link’s contact
model. Considering all objects, our test set thus comprised
5, 000 pushes. For model selection, we additionally generated
a separate validation set of 1, 000 pushes. We tuned the
kernel bandwidth parameters on the validation set and kept
them constant across all experiments.

Regarding, the evaluation on the real robot, we considered
a test set of two boxes. The first, with length 0.35 m, width
0.16 m, and height 0.15 m, we will refer to as the large box.
Further, we will refer to the second, with length 0.22 m,
width 0.17 m, and height 0.12 m, as the small box. Again,
we obtained point clouds of the objects from single shots of
a Kinect camera. Subsequently, we estimated each object’s
initial pose from the point cloud. First, we approximated the
position of its centre of mass (COM) as the centroid of the
point cloud. Then, we computed the object’s orientation from
the eigenvectors of the point cloud’s covariance matrix. After
applying the push, we obtained the object’s final pose from
a new shot of the depth camera using the same approach.
As in simulation, we considered both contact models (front
and side), and generated test contacts from the query density.
However, we pruned the angular pushes from the action set,



Fig. 3. Pushes with predictions: initial object pose (green, in contact with
robot), true final object pose (green, displaced), and predictions (blue).

considering only the linear case. Following the described
process, we generated 40 test pushes for this initial proof
of concept. We will extend the scope of those experiments
in prioritised future work.

C. Predictions

We now proceed to describe how we generated predictions.
For each generated test contact, we attached a set of frames.
First, we attached a global object frame at the object’s
estimated COM. Both in simulation and on the real robot,
we estimated the location of the COM as the centroid of the
point cloud.

Subsequently, we determine the robot-object and the
object-environment contact frames by using the query density
as described in Sec. IV-B. In our experiments, we also
aim to investigate the benefit of learning object-environment
contacts to improve predictions. Hence, in our results, we
denote the predictor based on only robot-object contact
information as RO, and the predictors with additional access
to three and five object-environment contacts as RO+3OE,
and RO+5OE respectively.

Additionally, we varied the number of training pushes
available to our models. In simulation, we considered the
cases of 100, 200, and 500 training pushes; on the real robot,
we considered 500 pushes only. We thus trained nine differ-
ent models, namely each of RO, RO+3OE, and RO+5OE
with the three considered training set sizes. Based on the
available input information, and number of samples, each
predictor generated 500 candidate object motions for each
test contact using simulated annealing. Every one of those
candidates was generated as the likeliest of 100 samples ob-
tained from the probability density over object motions, and
then optimised in 100 iterations of the simulated annealing
algorithm. Of the 500 optimised candidates, we kept the 10
predictions with the maximum likelihood scores. Finally, we
computed error statistics for all predictions and compared
them to a baseline predictor. We describe our methodology
used thereby next.

D. Baseline predictor

As a performance baseline for comparison, we used a
baseline predictor to all test pushes. Although simple, this
predictor has several advantages over our proposed models.
First, it knows the object’s true COM. Foremost, though, it
encodes the planar sliding constraints of our set-up. Thus, the
predictor knows that objects will not topple or roll, and that
they cannot penetrate the ground. In contrast, our contact-
based predictors need to learn those constraints from the
data.

We implemented it such that for the ith action from the
action set, it applies a translation b to the initial pose in world
coordinates of the object’s true COM, to which the predictor
has access. For the linear push that translation b is computed
by transforming the translation given by ai ·l from the robot’s
base frame into world coordinates. Here, ai is the linear
velocity vector of the velocity command corresponding to the
ith action, and l is the action duration. For angular pushes,
we followed the same process but instead of ai compute
the translation from the vector ãi which is the vector in the
xy-plane of the robot’s base frame that lies at an angle α to
ai, where α is the angular velocity around the z-axis of the
robot’s base frame corresponding to the ith action.

E. Performance measure

For each prediction, we computed both a linear and an
angular distance metric with regard to the final object pose.
For linear distance dlin, we opted for Euclidean distance. For
angular distance dang , we used a quaternion distance metric
defined as

dang = 1− (qtest · qpred)2, (10)

where where qtest and qpred are unit quaternions represent-
ing the final orientation in world coordinates of the object in
test sample, and prediction respectively. To obtain a unified
distance measure, we combine dlin and dang by computing
the normalised error dnorm as

dnorm =
1

2
dang +

1

2L
dlin, (11)

where L is a normalisation constant. We set L = ‖alin‖ · l
where ‖alin‖ is the Euclidean norm of the linear velocity
vector alin representing the linear push from our action set,
and l is the duration of the push applied during experiments.
We chose that normalisation constant because it constitutes a
critical parameter of the problem. All else equal, the longer
the push, the more challenging the prediction. In our specific
set-up, L = 0.4.

F. Results

In simulation and in experiments with the real robot, all of
the trained models outperformed the baseline predictor for
all test objects with regard to the average normalised error.
The lowest overall error value across contact information and
sample sizes, with a magnitude of 0.084, was achieved by
RO+3OE with 500 test samples (see Fig. 4). Breaking this
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Fig. 4. Left: Performance of predictors in simulation, by size of training set. Right: Performance of predictors trained on 500 training pushes, by object.

TABLE I
AVERAGE NORMALISED ERROR, MODELS TRAINED ON 500 TRAINING PUSHES

Object Baseline RO RO+3OE RO+5OE
Simulation
Cuboid 0.185± 0.126 0.035± 0.041 0.036± 0.035 0.036± 0.036
Cube 0.176± 0.127 0.059± 0.081 0.052± 0.067 0.052± 0.067
Rounded 0.196± 0.141 0.057± 0.075 0.059± 0.068 0.061± 0.071
Triangular 0.254± 0.130 0.153± 0.086 0.124± 0.095 0.129± 0.097
Cylinder 0.219± 0.111 0.129± 0.068 0.149± 0.111 0.160± 0.119
Total 0.206± 0.131 0.087± 0.085 0.084± 0.091 0.088± 0.096
Real robot
Large box 0.213± 0.098 0.127± 0.027 0.161± 0.053 0.163± 0.054
Small box 0.276± 0.077 0.064± 0.054 0.113± 0.071 0.106± 0.076
Total 0.244± 0.093 0.096± 0.052 0.137± 0.066 0.135± 0.072

down into its non-normalised components, it is equivalent to
an average linear error of 6.171 cm, and an average angular
error of 0.031. All trained models furthermore exhibited a
lower standard deviation of the normalised error than the
baseline predictor. Nevertheless, we see great variability in
predictions with some of the standard deviations similar in
magnitude to the average error itself.

Concerning the size of the training set (Fig. 4, left), our
data indicates a relationship between model complexity and
sample complexity. For 100 training samples, the simplest
model RO performs best while RO+5OE fares worst. As the
number of training pushes increases, the performance of RO
remains approximately flat. Meanwhile, the error values for
RO+3OE and RO+5OE decrease. At 500 pushes, RO+3OE
surpasses RO as the top performer while while RO+5OE
reaches a similar performance level as RO.

Considering differences between objects (Fig. 4, right),
we find that, overall, the object-environment contacts do
not significantly improve the quality of predictions, besides
for the triangular prism. In some cases, discordant outputs
from the local predictors diminished performance, which can
happen with the PoE. Nevertheless, the predictions are still
more accurate than the baseline predictor.

VI. DISCUSSION & FUTURE WORK

The experimental results obtained in simulation provide
empirical support for the hypothesis that our approach en-
ables object transfer. For objects with sufficiently similar
contact geometry, performance is comparable or even better
than for the training object. Objects with very different
curvatures (the cylinder), and a different area of the support
surface (the triangular prism) challenge our predictors. In the
first case, the query density is unable to generate sufficiently
similar contacts. In the latter case, although similar contacts
can be generated, the dynamics of the test object are too
different from those encoded by the motion model. In the
case of the rounded triangular prism, predictions are accurate
as the query density is able to generate contacts on the flat
faces while the support surface is large enough to result in
motions similar to those of the training cube. One possible
approach to increasing prediction accuracy further is to try
to increase the generalisation capabilities of the learned
models. A more simple, yet promising alternative is learning
additional contact and motion models, and selecting the most
suitable ones at prediction time. We expect that learning one
model for flat surface and one for curved surfaces alone will
greatly increase prediction accuracy.



Regarding the high variability of prediction accuracy, we
find a large difference in performance between the two con-
tact models. For the front link’s contact model, the average
normalised error across all models is 0.072, compared to
a value of 0.113 for the left link’s contact model. Further
analysis of the data shows that for contacts with the left
link, depending on the query pose and contact friction, the
object came in contact with the robot’s wheels, leading
to highly variable results. This is a problem that can be
more readily addressed through improved robot design than
through modifications of the predictors.

Another reason for variable prediction performance lies
in the differing quality of generated query poses. Not all
generated query poses are equally similar to the contacts
seen during training time. Hence, predictions may require
more or less generalisation capability depending on the
query pose. Investing more effort into generating optimised
query poses may thus be worth the cost depending on the
achieved performance yield. Investigating this question is an
interesting route for future work.

With regard to performance gains achieved by adding
further contact information, our results are mixed. Overall
best performance is achieved by RO+3OE but RO performs
better for small training sets. Even in the case of 500 training
samples, for some objects, adding contact information indeed
worsens performance. To illuminate those results, we note
that combining object-environment contacts in a PoE entails
the risks of obtaining small numbers. In the extreme case,
this may result in numerical instability or predictions of
barely diminishable likelihoods. When few kernels support
the density, likelihoods are more prone to be small than in the
case of abundant training data. Our findings that RO+3OE
and RO+5OE improve with the size of the training set are
consistent with those observations. Whether this explains all
of the observed differences, and whether their accuracy will
continue to increase at a similar rate with the number of
training pushes, are questions which we aim to address in
future work by utilising our full training set.

In the light of this discussion, a particularly interesting
result of our experiments is that additional contact infor-
mation worsens performance for the cylinder in simulation,
and for the large and small boxes in experiments with the
real robot. Notably, in all cases the objects exhibit surface
features which are comparably dissimilar to those seen
during training time: the cylinder because of its rounded
shape, the test boxes because real point clouds are noisier
than the simulated ones seen during training. As motion
candidates’ likelihoods are evaluated conditional on surface
features, this may exacerbate the aforementioned challenge
of small numbers. At this point, we emphasise that this paper
represents a first investigation into the proposed approach,
and rigorously scrutinising the posed questions will require
further experiments which we will conduct in future work.
In particular, we aim to train models on real point cloud data
to evaluate whether they fare better in predicting real pushes
from noisy point clouds.

With regard to limitations of our approach, we already

noted that our experiments focus on planar sliding, and have
primarily been conducted in simulation. Complementing this
with further experiments on real robotic platforms, and with
objects that are free to topple and roll, are prioritised items
for future work. Alleviating the requirement of learning a
separate motion model for each action would furthermore
greatly increase the range of applications for our approach.
Evaluating the predictive performance of alternative surface
features, such as surface material, is another interesting route
for further investigations. So is using information obtained
from force-torque sensors for prediction. Furthermore, we are
interested in learning dynamic contact models, i.e. predicting
how contacts will change over time. Finally, we aim to use
the presented feature-based predictors as transition models
for reinforcement learning.
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