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AA-ICP: Iterative Closest Point with Anderson Acceleration

A.L. Pavlov!, G.V. Ovchinnikov?, D. Yu. Derbyshev®, D. Tsetserukou? and 1.V. Oseledets®

Abstract—Iterative Closest Point (ICP) is a widely used
method for performing scan-matching and registration. Being
simple and robust method, it is still computationally expensive
and may be challenging to use in real-time applications with
limited resources on mobile platforms. In this paper we propose
novel effective method for acceleration of ICP which does not
require substantial modifications to the existing code.

This method is based on an idea of Anderson acceleration
which is an iterative procedure for finding a fixed point of
contractive mapping. The latter is often faster than a standard
Picard iteration, usually used in ICP implementations. We show
that ICP, being a fixed point problem, can be significantly
accelerated by this method enhanced by heuristics to improve
overall robustness. We implement proposed approach into
Point Cloud Library (PCL) and make it available online.
Benchmarking on real-world data fully supports our claims.

I. INTRODUCTION

The localization is one of the fundamental problems of
modern robotics. Robots commonly use the laser scanner
data presented in the form of point clouds. To relate one
scan to another scan-matching algorithms are used with
Iterative Closest Point [1] being one of the most popular
approaches. Scan-matching problems also arise outside of
the robotics domain, for example, in the context of medical
image comparison and registration [2], [3], for which ICP is
widely used as well.

In practice, different modifications are implemented to
speed up the matching process and to improve the ICP reli-
ability. (see section Nevertheless, underlying iterative
structure of ICP is general remains almost unchanged. In this
paper, we propose to accelerate ICP through modification
of iteration procedure, so we can keep all benefits from
the above-mentioned modifications, thus making ICP even
faster. Instead of using “state-less” approach which depends
only on the last iteration, the proposed idea is to select the
next iteration point based on solution of specific optimization
problem over history of previous iterations. The optimization
problem itself is quite simple and therefore can be solved on

*The research was supported by RSF (project No. 17-11-01376)

LA.L. Pavlov is a PhD student with Space Center, Skolkovo Institute
of Science and Technology, Skolkovo Innovation Center, Moscow 143026
Russia artem.pavlov@skolkovotech.ru

2G.V. Ovchinnikov is a Research Scientist with the Center for Compu-
tational and Data-Intensive Science and Engineering, Skolkovo Institute of
Science and Technology ovgeorge@yandex.ru

3D. Yu. Derbyshev is a PhD student with Moscow Institute of Physics
and Technology

4D. Tsetserukou is a Associate Professor with Space Center, Skolkovo In-
stitute of Science and Technology D . Tset serukou@skoltech.ru

4LV. Oseledets is a Associate Professor with the Center for Computa-
tional and Data-Intensive Science and Engineering, Skolkovo Institute of
Science and Technology I.0seledets@skoltech.ru

0
-10 -5 0 5 10 -10 -5 0 5 10

-1
-10 -5 0 5 10 =10 -5 0 5 10

c©n=3 dn=4

Fig. 1: Demonstration of Anderson acceleration behaviour
for simple 2D case with whirlpool-like mapping; n is the
number of iteration, vectors denote mapping G(u), cross
mark shows position of w41

any hardware, which is capable of running ICP in the first
place.

This paper is organized as follows. In section 2 we provide
theoretical background by describing basic form of ICP
and Anderson acceleration, and then highlight the main
theoretic properties for both. Next, we propose modifications
necessary to make Anderson accelerated version of ICP
(AA-ICP) to work with the real world data, which is often
violates underlying assumptions. In section 3 we provide
experimental results, which prove that our modification of
ICP with Anderson acceleration achieves significant speed-
up (more than 30%) and the slight error improvement (0.3%)
on dataset from [4].

In this work we focus on 3D datasets, but proposed method
can be applied to 2D ICP variants as well.

We implement AA-ICP as part of the widely used Point
Cloud Library (PCL), and the source code is freely available
in our fork repositoryﬂ Finally, section 4 summarizes the

paper.
II. BACKGROUND

There are many variations of ICP: [5], [6] and [7] available

nowadays, but for our discussion it is important that ICP

Ihttps://github.com/SkoltechRobotics/pcl/tree/
anderson
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essentially boils down to a fixed point problem:
u=G(u), )

which is usually solved with the simple (or also called Pi-
card) iteration procedure: u**! = G(u*). Here and thereafter
u € R™ and describes the roto-translation between two scans
(u can be represented by translation coordinates and Euler
angles for rotation).

Anderson acceleration [8] (also known as Anderson mix-
ing in computational chemistry) is a different method of
finding u**! based on the history of m 4+ 1 latest iterations
and residuals. In case of m = 0 it is equivalent to Picard
iteration.

In general, Anderson acceleration is theoretically and
practically superior to Picard in many cases [9], [10] and
additional cost of selecting different points is equal to solving
least squares problem of size m, which for ICP is negligible
compared to the cost of a single iteration.

A. Iterative Closest Point

ICP algorithms are often used in robot navigation for
performing scan-matching of data provided by LIDARs,
RGB-D cameras or stereo-cameras. Thus, it is quite common
underlying algorithm in different simultaneous localization
and mapping (SLAM) setups as discussed in [11] and in a
two-part survey [12], [13].

ICP operates on two sets of points S and S"°/, where
Si, S;ef € R™ (usually n = 2 or n = 3) , with initial proper
rigid transformation guess u°. The simplest algorithm variant
[1] can be described as follows:

1) Transform S using u°.

2) For every point in S find the closest point in S7¢/,
pairs of such points are called correspondencies.

3) Find such transform u« which minimizes the mean
distance between correspondencies (i.e. error).

4) Apply transformation v to S.

5) If change in the error falls below a given threshold -
then terminate; otherwise - go to step 2.

As mentioned before various modifications are usually
used in practice, such as:

« Different metrics (point-to-plane, feature based)
o Usage of indexes (e.g. K-d trees)

¢ Dynamic caching

« Point sampling

« Random restarts

o And others

But in general those modification still use basic Picard
iteration.

B. Anderson acceleration

We notice several properties of ICP, which make finding
fixed point of eq. |I| computationally expensive and hard to
accelerate with higher-order methods.

The main problem is the unavailability of derivatives
because function G in ICP case is not even differentiable.
While this limitation can be side-stepped with continuous

relaxation (see, for example [14] applying Newton-Raphson
method to ICP formulated in terms of differentiable energy
functions), even with continuous relaxation computation of
gradients is often prohibitively expensive. Moreover, contin-
uous relaxation is both hard to implement from scratch and
to apply to the existing code, e.g., to PCLE] or CSME[, which
are widely used in community. The other option could be the
usage of numerical differentiation, but its computational cost
is also high. Additionally, due to noise in the input data finite-
difference approximation of gradients becomes unreliable.

As was outlined above, in this work we propose to use
Anderson acceleration to speed up the convergence process
of ICP. For differentiable functions it is analogous to pseudo-
Newton methods [15] and in linear case it is equivalent to
GMRES [16].

In our perspective, Anderson acceleration is the best
iteration scheme we could employ here: it almost always
requires less iterations to converge to the same error than
simple iteration; it does not require additional calls to the
expensive and memory demanding ICP function; it relies on
the history of iterations alone with overhead being negligible
compared to the cost of a single ICP iteration step. Last, but
not least, it could be trivially added into the existing ICP
implementations, thus many existing implementations of ICP
could benefit from it.

The simple variant of Anderson acceleration is represented
by algorithm [T}

Algorithm 1: Anderson acceleration
0

Data: initial guess «°, contraction mapping G,
maximum iterations limit 7,44
Result: fixed point u

9° = Gu%);
FO = g0 — 0,
ul = go;

for n in 1.n,,,, do
fn — G(un) _ un;
Find o € R"*" which minimizes || 327, a; f|l2
subject to >, o =13
+1 _ .
uttt =370 5 a;G(u);
if convergence criteria is true then
| break;
end

end
return u";

Here a..b denotes sequence of integers from a (including)
to b (excluding), so 1..4 implies the following sequence: 1,
2 and 3.

The minimization problem for o can be reformulated as
the linear least-squares problem. Constraint can be replaced
by substitution ag = 1 — 377, @, which leads to the

Zhttp://pointclouds.org/
3ttps://censi.science/software/csm/
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following unconstrained problem:

n
affl.i.%n llfo+ Zai(fi — fo)ll-
i=1

The behavior of AA for 2D translations (without rotation)
can be is presented in fig. |1} It clearly showcases “jumpy” na-
ture of the algorithm, which enables much faster convergence
compared to simple Picard iteration. Such jumps can be
viewed as attempts to predict the most plausible convergence
point based on the history of previous iterations.

C. Heuristics

The main problem of Anderson acceleration is the serious
instability when working with non-contractive mappings,
which is quite common when processing real-world data.
For example, existence of several convergence points au-
tomatically makes related mapping non-contractive. Even
the existence of a single convergence point does not make
mapping contractive. To illustrate this, imagine a drainage
basin, in which all water flows towards single lake, but on
the ridge, which divides two tributaries, water will flow in
different directions.

Due to this instability, in practice we cannot use simple
AA demonstrated in alg. [T} Usually various heuristics and
modifications can be added, such as: limiting history length;
introduction of dumping factors; linear search using easier
to compute but less precise approximations. In this work we
propose a specific set of heuristics developed considering
ICP properties.

Our final algorithm can be represented by alg.

In this algorithm we use u for denoting concatenated vec-
tor of translation coordinates and Euler angles for rotation,
eg u=(x,y,2 ¢,0,1) , thus for 3D case u € R® and for
2D case u € R3. Due to assumption that two given scans are
spatially close, singularity in Euler representation of rotation
does not impact us. It could be argued that reduction of roto-
translation for 3D case to such vector and operating with it
as described here is not strictly correct, since the addition of
rotations is not a commutative operation.

The first heuristic in algorithm checks whether the error
estimate returned by ICP step is not considerably large than
error for previous iteration (the most common error estimate
is the mean distance between correspondences). In case this
condition is true, the history is reset iterations start from
g" ™!, i.e. a full reset of history occurs and we leave only
last known “trustworthy” point. It’s a safeguard against cases,
when the second heuristic fails to filter out bad jumps. This
heuristic results in “empty” iteration, i.e. only error estimate
is used from ICP step call, but such cases are relatively rare
(3 — 5% of iterations) and associated costs are out-weighted
by provided robustness.

The second heuristic loops over the incremented history
length, which is used for Anderson acceleration and checks
whether computed alphas fall within the specified range. It
also checks whether oy > 0, thus ensuring that jump occurs
in general direction defined by last G call. In case those
conditions are not met, the last result is returned. This way

Algorithm 2: AA-ICP

Data: initial guess u°, history length limit m, alpha
limit ¢, maximum iterations limit 72,,,44
Result: convergence point u"*!

h=0; // history cut-off cursor
9° = G(u);
fO=g"—u
ul = g%
for n in 1.n,,4, do
g" =Gu");
fn — gn —um:
if ICP error is too big then
h=n; // "resetting" history
u71,+1 — gn—l.
continue;
end
un+1 — gn

for i in 1..min(m,n — h) do
a1, =min [ fo + >0 ;i (f; = fo)lls
n
o = 1-— Ej:l Oéj;
if (—oy < a; <, Vj) and (ap > 0) then
|t =Y g
else
| break;
end

end

if convergence criteria is true then
| break;

end

end
return u"t1;

only points most probably residing inside a local contractive
area are selected for the calculations. It also ensures that the
next jump doesnt occur in the reverse direction in respect to
the last ICP step.

The overall cost of solving several small linear systems is
negligible compared to the cost of G, as in practice ¢ in the
alg. [ rarely exceeds 5-10.

III. EXPERIMENTAL RESULTS

To measure the performance of AA-ICP we modified Point
Cloud Library (PCL) and added AA-ICP implementation.
The modified code is freely available in our fork repositoryE]
and it is intended for the inclusion into the upstream. Tooling
used for acquiring data are also available in the separate
repository.

We used two datasets for our experiments: “RGB-D
SLAM Dataset and Benchmark” [4] and the “Stanford
Bunny” [17]. The first one was collected using RGB-D
camera and the second — with the laser range scanner.

4https://github.com/SkoltechRobotics/pcl/tree/
anderson
Shttps://github.com/SkoltechRobotics/aa-icp-tools
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Fig. 2: Frame examples from Freiburg dataset
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Fig. 3: Example of error estimate behaviour for simple ICP
and AA-ICP

A. RGB-D SLAM Dataset and Benchmark

The following sequences from freiburgl set was used:
room, desk and xyz. To emulate keyframes we matched not
subsequent frames, but the Sth scan from the current one.
Thus, in total 2738 scan pairs were processed without any
filtering or sampling.

The examples of RGB images are presented in fig. 2] In
our experiments only depth channel was used.

Example of error behaviours for AA-ICP and default PCL
ICP is shown in fig[3]. Both methods generally converge to
the same point.

However these criteria in approximately 1% of cases
terminated AA-ICP too early, thus algorithm was improved
by requiring the convergence criteria to hold true for two
iterations in a row. It addeds one iteration to AA-ICP (al-
though with smarter convergence criteria it can be removed).
Nevertheless, even with such handicap statistically AA-ICP
converged faster than simple ICP. There was one exception
though: if criteria were satisfied earlier than 4th iteration, the
confirming iteration was not required, since this indicated
that camera movement between scans was negligible. The
maximum number of iterations was limited to 100.

Fig. f] demonstrates the statistical properties of accelera-
tion over the number of iterations required for convergence,
which were calculated for € = 0.001 El and «; = 10. Fig.

6See documentation for setEuclideanFitnessEpsilon method of
pcl::Registration class
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Fig. 4: The iterations number required for the simple ICP
and AA-ICP to converge
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Fig. 5: AA-ICP speed-up relative to the simple ICP

shows the relative change between the number of iterations
for the same pair of scans. (see fig.) Median speed-up in this
case equals to 35%, mean to 30%, and overall more than
90% of AA-ICP runs got accelerated relative to the simple
ICP.

In addition to the smaller number iterations required for
convergence, AA-ICP generates results with better quality.
This can be seen from fig. [f] which depicts relative final
errors produced by AA-ICP and the simple ICP. More than
97% of runs converged to smaller errors with AA-ICP.
The median improvement equals to approximately 0.3% and
mean to 0.4%. Note that convergence criteria modification
does not provide a big contribution to those values, as a
single iteration of nearly converged AA-ICP usually results
in error change with order of magnitude equal of 0.001% —
0.01%.

Finally we demonstrate dependence between ¢ and accel-
eration improvement in fig. [7] As we can see relative speed-
up of AA-ICP increases with rising quality criteria for final
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Fig. 6: Final error improvement of AA-ICP relative to the
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754
F
A
A
251
" A
a A
3 0 1 —_
2
g 4
% )
—50 4 —_
—75 4
—100 A

T T T T
0.005 0.001 0.0005 0.0001

Epsilon

T T
0.05 0.01

Fig. 7: Box-plot of relative AA-ICP speed-up depending on €
value for RGB-D dataset. Triangle mark denotes mean value.

results, while if convergence criteria is overly-relaxed AA-
ICP results in bigger number of iterations.

B. Stanford Bunny

To test acceleration properties of AA-ICP depending on
misalignment of scans we chose to use the “Standford
Bunny” m probably one of the most well known 3D test
models taken by laser scanner. You can see its photo in fig.
[Bland point clouds in fig.[9] It provides highest quality ground
truth data for performing initial scan alignment.

In this work we have used two scans taken under 0 and
45 degrees (each contains approximately 40000 points). First
we aligned them, and them applied random translations and
rotations and measured acceleration of the AA-ICP compared
to unmodified ICP. The same parameters have been used as
in the previous section: £ = 0.001 and «; = 10.

Thttp://graphics.stanford.edu/data/3Dscanrep/
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random translation distance for partial bunny scans.

To test acceleration properties of AA-ICP we introduced
1000 random iterations per given degree and ecorded relative
acceleration compared to simple ICP. Results of this experi-
ment can be seen in fig. [I0] As we can see relative speed-up
of AA-ICP rises up to 5 degrees and than stays on the slope
of approximately 35%.

Next experiment was done for translations, we did the
same 1000 random translations for a given distance. Results
can be seen in fig. they look quite similar to experiment
with random rotations. Here relative speed-up rises up to 2.5
cm and then stays on the slope of approximately 35%.

This behaviour can be explained by the fact that with
bigger misalignment more iterations are needed to perform
scan-matching, thus more room for AA-ICP to show its
acceleration property, otherwise with small number of iter-
ations (be it due to small initial misalignment or relaxed
convergence criteria) its behaviour will be more similar to
the simple ICP.

IV. CONCLUSIONS

In this work we proposed and analyzed AA-ICP - the
novel modification of Iterative Closest Point algorithm based
on Anderson acceleration. This method can be easily applied
to existing implementations and has negligible runtime cost.
It substantially reduces the number of iterations required
for achieving desired scan-matching quality compared to the
unmodified version.

We also implemented AA-ICP as part of Point Cloud
Library and benchmarked it against unmodified ICP on real-
world data, acquired by RGB-D camera and laser scanner. In
addition to the successful demonstration of the acceleration
properties of AA-ICP, we showed that with the same con-
vergence criteria our algorithm provides better final results.
Thus for same quality of convergence it can be used with
less strict convergence criteria.

Further work can be done on the following topics: im-
proving heuristics; benchmarking on other datasets; applying

method to 2D case; and development of better theoreti-
cal foundation of Anderson acceleration for roto-translation
group with not-fully contractive mappings.
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