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Abstract— Robotic assistance allows surgeons to perform dex-
terous and tremor-free procedures, but is still underrepresented
in deep brain neurosurgery and endonasal surgery where the
workspace is constrained. In these conditions, the vision of
surgeons is restricted to areas near the surgical tool tips,
which increases the risk of unexpected collisions between the
shafts of the instruments and their surroundings, in particular
in areas outside the surgical field-of-view. Active constraints
can be used to prevent the tools from entering restricted
zones and thus avoid collisions. In this paper, a vector field
inequality is proposed that guarantees that tools do not enter
restricted zones. Moreover, in contrast with early techniques,
the proposed method limits the tool approach velocity in the di-
rection of the forbidden zone boundary, guaranteeing a smooth
behavior and that tangential velocities will not be disturbed.
The proposed method is evaluated in simulations featuring
two eight degrees-of-freedom manipulators that were custom-
designed for deep neurosurgery. The results show that both
manipulator-manipulator and manipulator-boundary collisions
can be avoided using the vector field inequalities.

I. INTRODUCTION

Surgical robots have received considerable attention in the
context of minimally invasive surgery, as aids in procedures
performed through small incisions, in systems such as the da
Vinci, the RAVEN [1], and the SteadyHand [2]. Their use has
been extended to procedures in restricted workspaces such
as deep brain microsurgery [3], [4] and endonasal surgery
[5].

In minimally invasive surgery and microsurgery, the sur-
geon operates with long thin tools, and views the workspace
through an endoscope or microscope. Their vision is fre-
quently limited to a region near the surgical tool tips. As the
surgeon operates the tools, the tool shaft may inadvertently
collide with neighboring structures. In particular in micro-
surgery, the amplitude of hand tremor can be higher than
size of the structures being treated. In this context, surgical
robots are used as equipment to assist the surgeon in order
to increase accuracy and safety, and reduce surgeon’s mental
load and the effects of their hand tremor.
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To increase accuracy and attenuate hand tremor, surgical
robots are commanded in task space coordinates either
through teleoperation or comanipulation. Joint space control
inputs are generally obtained by using a kinematic control
law, which is usually based on the robot differential kine-
matics [6]. Kinematic control laws are valid when low ac-
celerations are imposed in the joint space, and are ubiquitous
in control algorithms designed for surgical robotics [5], [7]–
[10], since low accelerations are expected in such scenarios.

An increase in safety and a reduction in the surgeon’s
mental load has been achieved through the generation of
active constraints (virtual fixtures) that can, for instance,
act as a layer of safety to prevent the surgical tool from
entering a restricted region, even if this contradicts the
commands given to the robot [5], [7], or transparently
generate constrained motion [8]–[10]. An in-depth survey of
active constraints was presented by Bowyer et al. [11]. More
recent papers published after this survey addressed the use
of guidance virtual fixtures to assist in knot tying in robotic
laparoscopy [12], and to allow surgeons to feel the projected
force feedback from the distal end of a tool to the proximal
end of a tool in a comanipulation context [13].

The generation of active constraints using kinematic con-
trol laws requires obtaining a Jacobian that relates the
constraint to the task at hand. For instance, for the generation
of the remote center of motion in minimally invasive surgery,
some groups [8], [9] developed Jacobians to maintain a
low remote center of motion error. Aghakhani et al. [8]
constrained lateral motion in the pivoting point by using the
pivoting point dynamics, and Pham et al. [9] used the so-
called constrained Jacobian to project the desired end effector
velocity into a constrained velocity in the pivoting point
frame. Additional requirements, such as the desired tool tip
pose following and obstacle avoidance are usually projected
in the null space of the constrained task or stacked to
form an augmented Jacobian. The main problem from which
both approaches suffer is the difficulty in adding inequality
constraints, which are useful in the design of virtual fixtures
[14].

II. RELATED WORKS

A framework for manipulator control in surgical robotics
that can take inequalities into account was developed by
Funda et al. [14] using quadratic programming. Their frame-
work was extended by Kapoor et al. [7], who developed
a library of virtual fixtures, including five task primitives
that can be combined into customized active constraints. Li
et al. [5] used the extended framework to aid operators to
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move a surgical tool in a highly constrained space in sinus
surgery without collisions. In all these studies, non-linear
constraints were used. Solving for non-linear constraints
requires an initial guess and takes longer than solving for
linear constraints, and therefore, the authors also considered
the use of linear approximations, which reduce computation
time but may result in errors [7]. This raises the question
of whether the constraints can be written directly in linear
form, avoiding approximations. An additional consideration
is that the closed-loop stability of their approach has never
been formally proven.

Gonçalves et al. [15] developed a Lyapunov-stable kine-
matic controller that takes into account both equality and
inequality constraints, which are linear with respect to the
joint velocities. They experimentally validated their approach
using a humanoid robot. Their framework was extended by
Quiroz-Omana and Adorno [16] to the control of a mobile
manipulator byadding a unilateral equality constraint that
pushes the mobile manipulator out of a forbidden zone. This,
however, was a reactive constraint and did not impede the
mobile robot from entering the restricted zone in the first
place. Such reactive behavior is particularly undesirable in
medical robotic applications, in which the patient may be
harmed if a tools enters a forbidden zone.

It is important to note that, in prior approaches [5], [7],
[14], when the tool reaches a restricted zone boundary the
obstacle constraint is suddenly activated, which might cause
the robot to show acceleration peaks. Researchers attempted
to address this issue. For instance, Xia et al. [17] reduced the
proportional gain in an admittance control law proportionally
to the distance between the robot and the nearest obstacle.
This allowed the system to smoothly avoid collisions, but
also impeded motion tangential to the obstacle boundary.
Prada and Payandeh [18] proposed adding a time-varying
gain to smooth the attraction force of attractive virtual
fixtures.

A. Statement of contributions

In this paper, we propose a new concept of vector field
inequality applied to active constraints that further extrends
the developments of Gonçalves et al. [15] and Quiroz-Omana
and Adorno [16]. The proposed vector field inequality allows
the designer to set a maximum approach speed in the
direction of the restriction boundaries, which guarantees that
the robot can smoothly approach restricted zones without
trespassing on their limits, and that the velocities orthogonal
to the restriction boundaries are undisturbed.

Moreover, in this study we also developed a set of control
primitives for restricted zones, including point, plane, line,
and cylinder relations, which can be customized to model
complex environments and interactions. The effectiveness
of the proposed approach is shown in realistic simulated
experiments.

The current work was conducted in the context of Project
2: Smart Arm, part of the ImPACT Bionic Humanoids
Propelling New Industrial Revolution project, the objective

of which is to develop robotic systems and control frame-
works to allow robot-aided surgical procedures in constrained
spaces, such as those involved in transnasal pituitary gland
resection and surgeries in deep and narrow regions of the
brain.

III. MATHEMATICAL BACKGROUND

The proposed virtual fixtures framework extensively uses
dual quaternion algebra because of its several advantages
over other representations. For instance, unit dual quaternions
do not have representational singularities and are more
compact and computationally efficient than homogeneous
transformation matrices [19]. Moreover, their strong alge-
braic properties allow different robots to be systematically
modeled [16], [19]–[21] and, in addition to representing rigid
motions, dual quaternion algebra is very useful for describing
twists, wrenches, and several geometrical primitives—e.g.,
Plücker lines and planes—in very straightforwardly [22]. The
next subsection introduces the basic definitions of quater-
nions and dual quaternions; more information can be found
in [20], [22], [23].

A. Quaternions and dual Quaternions

Quaternions can be regarded as an extension of complex
numbers. The quaternion set is defined as

H ,
{
h1 + ı̂h2 + ̂h3 + k̂h4 : h1, h2, h3, h4 ∈ R

}
,

in which the imaginary units ı̂, ̂, and k̂ have the properties
ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. The dual quaternion set is defined
as

H ,
{
h+ εh′ : h,h′ ∈ H, ε2 = 0, ε 6= 0

}
,

where ε is the dual (or Clifford) unit [23]. Addition and
multiplication are defined for dual quaternions analogously
to complex numbers, and hence we need only to respect the
properties of the imaginary and dual units.

Given h ∈ H such that h = h1 + ı̂h2 + ̂h3 + k̂h4 +

ε
(
h′1 + ı̂h′2 + ̂h′3 + k̂h′4

)
, we define the operators

P (h) , h1+ı̂h2+̂h3+k̂h4, D (h) , h′1+ı̂h
′
2+̂h

′
3+k̂h

′
4,

and

Re (h) , h1 + εh′1,

Im (h) , ı̂h2 + ̂h3 + k̂h4 + ε
(
ı̂h′2 + ̂h′3 + k̂h′4

)
.

The conjugate of h is defined as h∗ , Re (h)− Im (h), and
its norm is given by ‖h‖ =

√
hh∗ =

√
h∗h.

The set Hp , {h ∈ H : Re (h) = 0} is isomorphic
to R3 under the addition operation. Thus, the quaternion(
xı̂+ ŷ+ zk̂

)
∈ Hp represents the point (x, y, z) ∈ R3.

The set of quaternions with unit norm is defined as S3 ,
{h ∈ H : ‖h‖ = 1}, and r ∈ S3 can always be written
as r = cos (φ/2) + v sin (φ/2), where φ ∈ R is the
rotation angle around the rotation axis v ∈ S3 ∩ Hp [22].
Elements of the set S , {h ∈ H : ‖h‖ = 1} are called
unit dual quaternions and represent tridimensional poses (i.e.,



combined position and orientation) of rigid bodies. Given
x ∈ S, it can always be written as x = r+ε (1/2) tr, where
r ∈ S3 and t ∈ Hp represent the orientation and position,
respectively [23]. The set S equipped with the multiplication
operation forms the group Spin(3)nR3, which double covers
SE (3).

Elements of the set Hp , {h ∈ H : Re (h) = 0} are
called pure dual quaternions and are useful for representing
Plücker lines. More specifically, a Plücker line belongs to
the set Hp ∩ S and thus is represented by a pure unit dual
quaternion such as [20], [22]

l = l+ εm, (1)

where l ∈ Hp ∩ S3 is a pure quaternion with unit norm that
represents the line direction, and the line moment is given
by m = pl × l, in which pl ∈ Hp is a point in the line and
× is the cross product. Given a, b ∈ Hp, the inner product
and the cross product are respectively defined as [20], [22]

〈a, b〉 , −ab+ ba
2

, a× b , ab− ba
2

. (2)

The operator vec4 maps quaternions into R4 and vec8
maps dual quaternions into R8. For instance, vec4 h =[
h1 h2 h3 h4

]T
and vec8 h =

[
h1 h2 h3 h4 h

′

1 h
′

2 h
′

3 h
′

4

]T
.

Finally, given h1,h2 ∈ H, the Hamilton
operators are matrices that satisfy vec4 (h1h2) =
+

H4 (h1) vec4 h2 =
−
H4 (h2) vec4 h1. Analogously,

given h1,h2 ∈ H, the Hamilton operators satisfy

vec8 (h1h2) =
+

H8 (h1) vec8 h2 =
−
H8 (h2) vec8 h1 [22].

It can be shown by direct calculation that, when a, b ∈ Hp,
the inner product can be written as

〈a, b〉 = (vec4 a)
T
vec4 b = (vec4 b)

T
vec4 a

and the cross product between a and b, which is analogous
to the case of vectors in R3, can be mapped into R4 by using
the operator S (·) as

vec4 (a× b) =


0 0 0 0
0 0 −a4 a3
0 a4 0 −a2
0 −a3 a2 0


︸ ︷︷ ︸

S(a)

vec4 b

= S (a) vec4 b = S (b)
T
vec4 a.

Finally, the time-derivative of a quaternion a ∈ Hp is given
by

d (‖a‖)
dt

=
ȧa∗ + aȧ∗

2 ‖a‖ =
〈ȧ,a〉
‖a‖ =

1

‖a‖ vec4 a
T vec4 ȧ, (3)

since for any a ∈ Hp we have a∗ = −a.

B. Differential kinematics

Differential kinematics is the relation between task space
velocities and joint space velocities, in the general form ẋ =
Jq̇, in which ẋ ∈ Rm is the vector of task space velocities,
q̇ ∈ Rn is the vector of manipulator joint velocities, and J
∈ Rm×n is the Jacobian matrix.

For instance, given the robot end effector pose x ,
x (q (t)) ∈ Spin(3)nR3, the differential kinematics is given
by vec8 ẋ = Jxq̇, where Jx ∈ R8×n is the dual quaternion
analytical Jacobian, which can be found by using dual quater-
nion algebra [19]. Similarly, given the end effector position
t , t (q (t)) ∈ Hp and the orientation r , r (q (t)) ∈ S3,
we have

vec4 ṫ = J tq̇, (4)
vec4 ṙ = Jrq̇, (5)

where J t,Jr ∈ R4×n are calculated from Jx also by using
dual quaternion algebra [24]. It is important to note that, in
general applications, x, t, and r may refer to any relevant
coordinate system related to the robot, and not only to the
end effector.

C. Linear programming for differential inverse kinematics

In closed-loop differential inverse kinematics, first a de-
sired task space target, xd, and the task error x̃ = x − xd
are defined. For η ∈ (0,∞), the minimum-norm analytical
solution of the optimization problem

min
q̇
‖Jq̇ + ηx̃‖22 (6)

is J†ηx̃ = q̇, in which J† is the generalized Moore-Penrose
pseudoinverse of J .

Adding inequality and equality constraints in Problem 6
turns it into a quadratic programming problem requiring a
numerical solver [25]. The 1-norm analogue of Problem 6 is

min
q̇
‖Jq̇ + ηx̃‖1 . (7)

A Lyapunov stable solution for Problem 7 that considers both
equality and inequality constraints is given by the following
linear program in canonical form [15],

min
g

[
−1TJ 1TJ 2 · 1T 0T 0 0T

]
g − η1T x̃

subject to

 J −J −I I 0 0
1T 1T 0T 0T 1 0T

W −W 0 0 0 I

 g =

 −ηx̃β ‖x̃‖1
w

 , (8)

g ≥ 0

where g =
[
q̇TP q̇

T
N y

T zTA zB zTC
]T

is the vector of decision
variables. Moreover, 0T and 1T are row vectors of ones and
zeros of appropriate dimensions, respectively. In the canoni-
cal form, all decision variables should be non-negative, and
hence the joint velocities are split into the non-negative q̇P
and q̇N such that

q̇ = q̇P − q̇N . (9)

Moreover, y is a vector of residuals for the objective func-
tion, and the slack variables zA, zB , and zC are used to
transform inequality constraints into equality ones.

The matrix of constraints has three horizontal blocks from
top to bottom. The first block concerns error convergence,
the second block guarantees that the joints will stop moving
when x̃ → 0 with β ∈ (0,∞), and the third block is a
generic block of r constraints, in which W ∈ Rr×n and w



∈ Rr×1. The vector field inequalities proposed in this work
concern an appropriate choice of W and w to generate active
constraints, as described in the following section.

IV. VECTOR FIELD INEQUALITY

restricted region

safe region

controlled element
allowed approach velocity decreases with distance

boundary

Fig. 1. Proposed vector field inequality method. The vector field is
given by an inequality constraint, and to each point in space is assigned
a maximum approach velocity (the red vector in each vector pair), and a
maximum separating velocity (the green vector in each vector pair) in the
direction perpendicular to the restricted zone boundary. Tangential velocities
are unconstrained.

The vector field inequality proposed in this paper is a
general method for active constraints. It requires:

1) A function d(t) ∈ R that encodes the (signed) distance
between the two collidable entities, and

2) The Jacobian relating the time derivative of the dis-
tance and the joint velocities in the general form

ḋ(t) =
∂ (d(t))

∂q︸ ︷︷ ︸
Jd

q̇. (10)

Using the distance function and the Jacobian, complex re-
stricted zones can be generated, by either maintaining the
distance above a desired level or keeping the distance below
a certain level. The vector field inequality is illustrated in
Fig. 1.

A. Preventing the robot from entering a restricted region

We first define a minimum safe distance, dsafe ∈ [0,∞),
that delineates the boundary of the restricted zone. We then
define a distance error as

d̃(t) , d(t)− dsafe, (11)

which will be positive when in the safe-zone, zero along the
boundary, and negative within the restricted zone.

Assuming a constant safe distance, the distance error
dynamics is given by ˙̃

d(t) = ḋ(t). A positive ˙̃
d(t) means

that the system is moving away from the restricted space
boundary and a negative ˙̃

d(t) means that the system is
moving closer to the restricted space. The goal is to constrain
the distance dynamics by the inequality

˙̃
d(t) ≥ −ηdd̃(t), (12)

where ηd ∈ (0,∞).
To understand Constraint 12, let us suppose that d̃(t) >

0, which means that the system is outside the restricted

zone. In this situation, any increase in distance is always
allowed, which implies ˙̃

d ≥ 0 ≥ −ηdd̃. However, when the
system is approaching the boundary from the safe region
(i.e., 0 ≥ ˙̃

d ≥ −ηdd̃), it can approach with a maximum
velocity that decreases, in the worst case, exponentially with
the distance d̃(t), because the maximum decreasing rate is
achieved when ˙̃

d(t) = −ηdd̃(t). Thus, the closer the object
is to the boundary, the slower it can move in its direction.
Any slower motion toward the boundary is also allowed, and
hence ˙̃

d(t) ≥ −ηdd̃(t). As soon as d̃(t) = 0, the restriction
becomes ˙̃

d(t) ≥ 0 and therefore the system will not enter
the restricted zone.

Considering (10), Constraint 12 is written explicitly in
terms of joint velocities as

Jdq̇ ≥ −ηdd̃(t) ⇐⇒ −Jdq̇ ≤ ηdd̃(t). (13)

To turn Constraint 13 into an equality and fit it into the linear
programming formalism, we introduce the slack variable zD
and decompose q̇ as in (9) to find

− Jdq̇P + Jdq̇N + zD = ηdd̃(t). (14)

Notice that any number of constraints in the form of Con-
straint 14 can be found for different interactions within the
robot workspace.

Remark 1: Consider that the system is initially inside the
restricted zone; that is, d̃(t) < 0. In this case, Constraint 12
will be fulfilled only if ˙̃

d(t) is greater than zero, which means
that the system will, at least, be pushed back to the boundary
exponentially.

B. Maintaining the robot inside a safe region

Using the same reasoning as in Section IV-A, if we want
to maintain the robot inside a safe region, we must redefine
dsafe; that is,

d̃(t) , dsafe − d(t),

with the final solution, assuming the desired error dynamics
(12), given by

Jdq̇P − Jdq̇N + zD = ηdd̃(t).

V. DISTANCE FUNCTIONS AND JACOBIANS FOR ACTIVE
CONSTRAINTS

The proposed vector field inequality discussed in the
previous section requires a distance function d(t) and the
corresponding distance Jacobian Jd for each collidable pair.
In this section, we find four distance functions and Jacobians
for pairs in which one element is static and the second
element is dynamic.

A. Point–static-plane distance Jacobian, J t,π
One of the primitives for virtual fixtures is the constraint of

a point such that it is above a static plane. Given a reference
frame F , a plane π in dual quaternion space is given by [22]

π , nπ + εdπ,



in which nπ ∈ Hp ∩ S3 is the normal to the plane and dπ ∈
R is the signed perpendicular distance between the plane and
the origin of the reference frame. Moreover, the distance dπ
is given by dπ = 〈pπ,nπ〉, where pπ is an arbitrary point in
the plane. If Fπ is a frame attached to the plane, the signed
distance between t, an arbitrary point in the robot kinematic
chain, and the plane, from the point of view of the plane, is
given by

dπt,π , 〈t,nπ〉 − dπ. (15)

The time derivative of (15) is

d
(
dπt,π

)
dt

=
(4)
〈ṫ,nπ〉 = (vec4 nπ)

T
J t︸ ︷︷ ︸

Jt,π

q̇. (16)

B. Line Jacobian, J lz
The line Jacobian is a pre-requisite for the more complex

Jacobians described in the following sections.
The Plücker line [22] lz ∈ Hp ∩S collinear to the z-axis

of a frame represented by x = r + ε (1/2) tr is given by

lz = lz + εmz, (17)

where lz = rk̂r∗ and mz = t × lz. The derivative of (17)
is

l̇z = l̇z + εṁz. (18)

Hence,

vec4 l̇z =
(5)

(
−
H4

(
k̂r∗
)
+

+

H4

(
rk̂
)
C4

)
Jr︸ ︷︷ ︸

Jrz

q̇ (19)

in which C4 = diag(1,−1,−1,−1). In addition,

vec4 ṁz=

(
−
H4 (lz)−

+

H4 (lz)

)
J t+

(
+

H4 (t)−
−
H4 (t)

)
Jrz

2︸ ︷︷ ︸
Jmz

q̇.

Finally, (18) can be re-written in term of joint velocities as

vec8 l̇z =

[
Jrz
Jmz

]
q̇ , J lz q̇. (20)

C. Line–static-point distance Jacobian, J lz,p
The line–static-point Jacobian can be used to generate a

remote center of motion. First, we notice that the distance
between lz ∈ Hp ∩ S and an arbitrary static point p ∈ Hp
is given by

dlz,p = ‖p× lz −mz‖ . (21)

The derivative of (21) is

ḋlz ,p =
1

dlz ,p
vec4 (p× lz −mz)

T vec4
d ((p× lz −mz))

dt

=
(20)

1

dlz ,p
vec4 (p× lz −mz)

T (S (p)Jrz − Jmz
)

︸ ︷︷ ︸
Jlz,p

q̇. (22)

D. Point–static-line distance Jacobian, J t,l

The point–static-line Jacobian can be used to keep a point
inside/outside a cylinder. First, we notice that the distance
between an arbitrary line l ∈ Hp ∩S, such that l = l+ εm,
and a point t ∈ Hp in the robot kinematic chain is given by

dt,l = ‖t× l−m‖ . (23)

The derivative of (23) is given by

ḋt,l =
1

dt,l
vec4 (t× l−m)

T
vec4

d ((t× l−m))

dt

=
(4)

1

dt,l
vec4 (t× l−m)

T
S (l)

T
J t︸ ︷︷ ︸

Jt,l

q̇. (24)

E. Line–static-line distance Jacobian

The line–static-line Jacobian is particularly useful for
avoiding collisions between a moving cylinder and a static
cylinder. In order to obtain the line–static-line Jacobian, we
use the concept of dual angle between Plucker lines.

1) Inner product Jacobian, J 〈lz,l〉: The dual cosine be-
tween Plücker lines l, lz ∈ Hp ∩ S is obtained by using the
inner product [20]

〈l, lz〉 = ‖l‖︸︷︷︸
1

‖lz‖︸︷︷︸
1

cos (φ+ εdl) = cosφ− εdl sinφ, (25)

where dl ∈ [0,∞) and φ ∈ [0, 2π) are the distance and the
angle between the lines, respectively.1

Since the line l is static, l̇ = 0 and thus the derivative of
(25) is given by

vec8
d (〈lz, l〉)

dt
= −

(
+

H8 (l) +
−
H8 (l)

)
2

J l︸ ︷︷ ︸
J〈lz,l〉

q̇

[
vec4 Ṗ (〈lz, l〉)
vec4 Ḋ (〈lz, l〉)

]
=

[
JP(〈lz,l〉)
JD(〈lz,l〉)

]
q̇. (26)

2) Cross product Jacobian, J lz×l: Given the dual angle
φ = φ + εdl, where dl ∈ [0,∞) and φ ∈ [0, 2π), and the
Plücker line s ∈ Hp ∩ S, with s = s + εms, the cross
product between lz and l is given by [20]

lz × l = ‖lz‖︸︷︷︸
1

‖l‖︸︷︷︸
1

s sinφ

= (s+ εms) (sinφ+ εdl cosφ)

= s sinφ+ ε (ms sinφ+ sdl cosφ) , (27)

in which s is the line perpendicular to both lz and l. The
time derivative of the cross product between lz and the static

1Given a function f : D → D, where D , {h ∈ H : Im (h) = 0}, it
is possible to show that f (a+ εb) = f (a) + εbf ′ (a). For more details,
see [22].



line l is

vec8
d (lz × l)

dt
=

(
−
H8 (l)−

+

H8 (l)

)
2

J l︸ ︷︷ ︸
Jlz×l

q̇

[
vec4 Ṗ (lz × l)
vec4 Ḋ (lz × l)

]
=

[
JP(lz×l)
JD(lz×l)

]
q̇. (28)

3) Distance Jacobian between non-parallel lines: The
distance dlz,l6‖ between lz and l when they are not parallel
(i.e., φ ∈ (0, 2π) \ π) can be obtained as

dlz,l 6‖ =
‖D (〈lz, l〉)‖
‖P (lz × l)‖

=
‖dl sinφ‖
‖sl sinφ‖

= dl. (29)

Noting that both the numerator and denominator of (29)
are real numbers, we can find the derivative of (29) as

ḋlz,l 6‖ =
1

‖P (lz × l)‖︸ ︷︷ ︸
a

d (‖D (〈lz, l〉)‖)
dt

− ‖D (〈lz, l〉)‖
‖P (lz × l)‖

2︸ ︷︷ ︸
b

d (‖P (lz × l)‖)
dt

. (30)

We obtain the derivative of the norm of D (〈lz, l〉) using (3)
and (26) as

d (‖D (〈lz , l〉)‖)
dt

=
1

‖D (〈lz , l〉)‖
vec4D (〈lz , l〉)

T JD(〈lz ,l〉)︸ ︷︷ ︸
J‖D(〈lz,l〉)‖

q̇ (31)

and similarly we obtain the derivative of the norm of
P (lz × l) using (3) and (28) as

d (‖P (lz × l)‖)
dt

=
1

‖P (lz × l)‖
vec4 P (lz × l)

T JP(lz×l)︸ ︷︷ ︸
J‖P(lz×l)‖

q̇. (32)

Finally, we substitute (31) and (32) in (30) to find

ḋlz,l 6‖ =
(
aJ‖D(〈lz,l〉)‖ + bJ‖P(lz×l)‖

)
︸ ︷︷ ︸

Jlz,l6‖

q̇. (33)

4) Parallel distance Jacobian, J lz,l‖: In the degenerate
case in which lz and l are parallel (i.e., φ ∈ {0, π}), the
distance between them can be retrieved as

dlz,l‖ , ‖D (lz × l)‖ = ‖sdl‖ = dl. (34)

Resorting once more to (3), we find the derivative of (34) as

ḋlz ,l‖ =
1

‖D (lz × l)‖ vec4 (D (lz × l))T JD(lz×l)︸ ︷︷ ︸
Jlz,l‖

. (35)

T

x(t)

C1

l

prcm

C2

xd(t)
t6(t)

C3

t(t)lz(t)

C4

lc(t)

π

Fig. 2. Task and constraints used in the simulations. The task T consists
of moving the end effector, x (t), of one of the tools in a given trajectory
xd(t). The constraints are: C1, a line-static-line distance constraint, to avoid
collisions between tool shafts, where the shaft of the moving tool has a
center-line given by lz(t) and the static shaft has a center-line l; C2, a
line-static-point distance constraint to generate the entry sphere with the
center given by prcm; C3, a point-static-line distance constraint to prevent
the lower part of the moving tool given by t6(t) from colliding with
the cylindrical workspace with center-line lc; and C4, a point-static-plane
distance constraint to prevent the end effector from crossing the lower bound
of the cylindrical workspace given by the plane π.

5) Manipulator line-to-line distance Jacobian, J lz,l: The
line-to-line distance Jacobian is given by combining (33) and
(35) as

J lz,l =

{
J lz,l 6‖ φ ∈ (0, 2π) \ π
J lz,l‖ φ ∈ {0, π}

, (36)

in which φ can be obtained as φ = arccosP (〈l, lz〉).
The distance between lines can be given by the composi-

tion of the distance (29) and (34) as

dlz,l =

{
dlz,l 6‖ φ ∈ (0, 2π) \ π
dlz,l‖ φ ∈ {0, π}

. (37)

VI. SIMULATIONS

In order to validate our approach,2 we developed a realistic
simulated version, using V-REP3 and DQ Robotics for MAT-
LAB4, of a deep neurosurgical robotic system that we previ-
ously developed in close cooperation with neurosurgeons [4]
(see Fig. 2). In deep neurosurgery, the workspace is highly
constrained in the microscopic view. The diameter of the
tools is 3.5mm, and the radius and depth of the workspace
cylinder are 2.8 cm and 8 cm, respectively.

In this preliminary evaluation, one of the tools was kept
fixed while the second tool moved. Five simulations (S1-S5)
with increasing complexity were run, as follows. S1: the task
T consisted of moving the end effector along the desired
trajectory with no virtual fixtures; S2: constraint C1 iwas
added to prevent the shafts from colliding with each other
using J lz,l from (37) and dlz,l as in (37); S3: in addition
to C1, a spherical entry-point constraint C2 was added to
avoid collisions with the top part of the cylinder using J lz,p
from (22) and dlz,p as in (21); S4: in addition to constraints
C1 and C2, a point line distance constraint C3 was added

2See accompanying video.
3http://www.coppeliarobotics.com/
4http://dqrobotics.sourceforge.net



to avoid collisions of the lower part of the shaft with the
workspace boundary, which is represented by a cylinder,
using J t,l from (24) and dt,l as in (23); and finally, S5: in
addition to constraints C1, C2, and C3, a point–static-plane
distance constraint C4 was added to prevent the end effector
from crossing the plane π, using J t,π from (16) and dt,π as
in (15).

The robot has eight degrees-of-freedom in which the first,
second, and fifth joints were prismatic and the remaining
joints were revolute. The robots’ initial configurations were
such that the shafts were at a long distance from each other.
The trajectory, which was the same for all simulations, was
the screwlinear interpolation of four poses. The final form
of the linear program, when all constraints were used, was

min
g

[
−1TJx 1TJx 2 · 1T 0T 0 0T 0 0 0 0

]
g

s.t.



Jx −Jx −I I 0 0 0 0 0 0
1T 1T 0T 0T 1 0T 0 0 0 0
W l −W l 0 0 0 I 0 0 0 0

J lz ,l −J lz ,l 0T 0T 0 0T 1 0 0 0
−J lz ,p J lz ,p 0T 0T 0 0T 0 1 0 0
−J t,l J t,l 0T 0T 0 0T 0 0 1 0
J t,π −J t,π 0T 0T 0 0T 0 0 0 1


g =



−η vec8 x̃
β ‖vec8 x̃‖1

wl

ηlz ,ld̃C1

ηlz ,pd̃C2

ηt,ld̃C3

ηt,πd̃C4


g ≥ 0

g =
[
q̇TP q̇TN yT zTA zB zTl zC1 zC2 zC3 zC4

]T
,

in which W l and wl are constraints for the joint limits [16],
zTl , zC1, zC2, zC3, zC4 are slack variables, d̃C1 = dsafe,C1 −
dlz,l, d̃C2 = dlz,p−dsafe,C2, d̃C3 = dt,l−dsafe,C3, and d̃C4 =
dsafe,C4 − dt,π .

For all simulations, the trajectory tracking gain was η =
50, and β = 40. Whenever present in a given simulation,
vector field inequality gains were set at the same value
ηlz,l = ηlz,p = ηt,l = ηt,π = 0.5. The safety distances for
each constraint were dsafe,C1 = 5mm, dsafe,C2 = dsafe,C3 =
14mm, and dsafe,C4 = 0.

VII. RESULTS AND DISCUSSION

The results of the simulation are shown in Fig. 3 in terms
of the distance between shafts, the distance between the entry
point and tool shaft, the distance between the lower point
of the shaft and the cylinder centerline, and the distance
between the tool tip and the lower plane.

Simulation S1, in which no virtual fixtures were applied
caused collisions between the shafts and between the moving
tool and the workspace boundaries. Constraining only the
shafts in S2 was sufficient to avoid collisions between the
shafts, but tool-boundary collisions still occurred. Constrain-
ing both the shafts and the entry point in S3 provided a
collision-free shaft motion and prevented collisions with the
uppermost part of the cylinder. Simulation S4 violated only
the plane constraint, and S5 provided a collision-free path.
From the point of view of trajectory error, as shown in Fig. 4,
naturally S1 was able to follow the trajectory closely since
no active constraints were applied. All other simulations
presented tracking errors given the gradual imposition of

restrictions. The trajectories for all the experiments are
shown in Fig. 5.

In S3, the robot showed a low amplitude vibration near the
end of the trajectory, which may occur when the trajectory
tracking error is unable to stabilize at the origin. It can be
somewhat reduced by tuning β; however, other solutions,
such as regularizing the objective function, are being ana-
lyzed in ongoing research.

VIII. CONCLUSIONS

In this paper a novel method for applying active constraints
using vector field inequalities was proposed. The method can
be used to prevent a robot from entering a restricted zone or
for maintaining its location inside a safe area, and is based on
a Lyapunov stable solution that can handle both equality and
inequality constraints. The vector field inequalities limit the
velocity of the robot in the direction of the forbidden zone’s
boundary while leaving tangential velocities undisturbed. To
use the method, a Jacobian describing the relation between
the time derivative of the distance and joint velocities is
required. In this work, four of the Jacobians are obtained
for relations in which one of the entities is static. Simulation
results for two eight-DOF neurosurgical arms showed that,
by using the vector field inequalities and relevant primitives,
all collisions could be avoided and the robot safely navigated
through a restricted workspace.

The proposed method does not require a high-accuracy
model of the environment, but the environment must be
decomposed in sufficient primitives. However, it still requires
high-accuracy calibration between the primitives and the
robot. A practical methodology for achieving this is the topic
of ongoing work. An additional topic of ongoing work is the
tracking of a user generated trajectory, which raises points
of discussion such as gain tunning for minimum trajectory
tracking error and latency analysis. The implementation on
the real platform is currently in progress.
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