
Coverage Control for Wire-Traversing Robots*

Gennaro Notomista and Magnus Egerstedt

Abstract— In this paper we consider the coverage control
problem for a team of wire-traversing robots. The two-
dimensional motion of robots moving in a planar environment
has to be projected to one-dimensional manifolds representing
the wires. Starting from Lloyd’s descent algorithm for coverage
control, a solution that generates continuous motion of the
robots on the wires is proposed. This is realized by means of
a Continuous Onto Wires (COW) map: the robots’ workspace
is mapped onto the wires on which the motion of the robots
is constrained to be. A final projection step is introduced to
ensure that the configuration of the robots on the wires is a
local minimizer of the constrained locational cost. An algorithm
for the continuous constrained coverage control problem is
proposed and it is tested both in simulation and on a team
of mobile robots.

I. INTRODUCTION

Robots with constrained motion, e. g. those with the abil-
ity to move only along pre-designed infrastructures, lend
themselves to a large variety of applications, such as envi-
ronmental monitoring [1] and agricultural robotic tasks [2].
Some of the reasons of their success can be recognized in
the following features [1], [3]:
• low energy requirements
• simplicity in the motion control
• small localization errors
• absence of navigation problems even in unknown envi-

ronments.
However, these advantages are obtained to the detriment of
a more complex infrastructure. Nevertheless, there are a lot
of applications in which an infrastructure is already present
and it can be exploited virtually at no additional cost. An
example is power transmission line maintenance [4].

A particular category of constrained motion robots are
wire-traversing robots [3], [5]. This paper focuses on the
motion planning and control for this kind of robots whose
objective is sensor coverage of the surrounding environment.

Wire-traversing robots have already found their application
in several domains. In [6] the development of a mobile
robot which is able to autonomously navigate on power
transmission lines is described. The goal is automating the
inspection of power transmission lines and their equipment.
Robotics in agriculture and forestry [2] has already expe-
rienced an automation process that introduced the use of
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cable-driven robots whose tasks consist in harvesting fruits
and vegetables, dispensing fertilizer and monitoring growth
and health of plants. Moving to a different branch, in [7]
an algorithm to monitor traffic starting from videos recorded
from Skycams ([8]) suggests the viability of wire-traversing
autonomous robots for traffic and road network management.
In [1], [9] a cable-based robotic platform is described, whose
objective is monitoring the environment and characterizing
its phenomena. As also pointed out before, the strength of
such a system lies in its overall robustness and reliability,
accurate and reproducible motion, long range mobility even
in complex environments as well as low energy consumption
that enables sustainable operation.

Although the technology for the deployment of wire-
traversing robots in the environment is somewhat mature,
none of the above-mentioned approaches explicitly deals
with the motion planning of the robots on the wires on which
they are constrained to navigate. In [10] the concept and the
design of a mobile manipulator for autonomous installation
and removal of aircraft-warning spheres on overhead wires
of electric power transmission lines are presented. [11]
describes the development of a mobile robot that can navigate
aerial power transmission lines autonomously with the goal
of automating inspection of power transmission lines. In
[12] a multi-unit structure wire mobile robot is proposed,
which allows the robot to transfer to a branch wire and avoid
obstacles on the wire.

The motion planning for robots on wires is typically left to
general purpose motion planners that use search algorithms
on grid maps in order to plan a route to a desired location
(see e. g. [13]). The main contribution of this paper is a
solution to the motion planning problem for wire-traversing
robots and, in general, for robots constrained on grid maps.
This is achieved by including the motion constraints in
the formulation of the motion control law. This concept is
applied to a coverage task, where the robots have to spread
in the environment in order to monitor its phenomena. Con-
strained locational optimization has already been considered
in [14], where the author proposes a decentralized gradient
projection method in order to obtain the motion control
law. The advantage on this method will be highlighted
in Section II-B. Moreover, a hybrid method, which uses
both locational optimization and path planning algorithms
to generate robots’ motion, is presented in [15].

The remainder of the paper is organized as follows. In
Section II, after a brief overview on the Lloyd’s algorithm
for coverage control for multi-robot systems, the definition of
the constrained coverage control problem is introduced and
a solution to it is proposed. In Section III the main results of
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the paper are used to synthesize a motion controller for the
robots on the wires in order to solve the constrained coverage
control problem. In Section IV the derived algorithm is
deployed on a team of mobile robots.

II. COVERAGE ON WIRES

In this section we first introduce the notation that will
be used throughout the paper and then derive the results
on constrained coverage control. These will be used in
Section III to derive the motion control law to be applied
to a group of wire-traversing robots.

A. Locational Optimization

Let X ( R2 be a closed and convex polygon and ∂X
its boundary. Let p1, . . . , pN ∈ R2 denote the locations of
N robots moving in the space X . We further assume that
the motion of the N robots can be modeled using the single
integrator dynamics:

ṗi = ui,

where ui ∈ R2 is the control input of robot i. Define

J (p1, . . . , pN ) =
N∑

i=1

∫

Vi

‖x− pi‖22 dx (1)

as the locational optimization function [16].
V(p1, . . . , pN ) = {V1, . . . , VN} is called a Voronoi
partition of the polygon X , whose i-th Voronoi cell Vi
corresponding to robot i is defined as:

Vi = {x ∈ X | ‖x− pi‖2 ≤ ‖x− pj‖2 ∀j 6= i}. (2)

The integrand function in the expression of J (p1, . . . , pN )
is an increasing function of the Euclidean norm ‖·‖2 and it
describes the degradation of the sensing performances of the
robots.

The Lloyd’s descent algorithm is given by the following
motion control law for robot i:

ui = kp(ρi − pi), (3)

where kp ∈ R+, and ρi ∈ R2 is the centroid of the Voronoi
cell Vi. It is derived by solving the following minimization
problem using gradient descent:

min
p1,...,pN

J (p1, . . . , pN ). (4)

In [16] the set of critical points of J (p1, . . . , pN ) has been
demonstrated to be the set of centroidal Voronoi configu-
rations on X where the location of each robot, pi, is the
centroid of the Voronoi cell Vi.

B. Constrained Locational Optimization

In order to describe the constrained motion of the robots
on the wires, we define the following function that identifies
the i-th wire:

gi : x ∈ X 7→ aT
i x+ bi ∈ R,

g2(x
) = 0

∂X

gi(x
) = 0

g
1 (x) = 0

pU
1 pU

2

pC?
2

pC
2

X

pC?
1

pC
1

Fig. 1: Robots’ workspace X with the i-th wire defined
by gi(x) = 0. The points pU

1 and pU
2 (gray circles) are

the solution of the unconstrained locational optimization
problem; the points pC

1 and pC
2 belong to the set G, while

pC?
1 and pC?

2 (gray squares) are solutions of the minimization
problem (7)

where ai ∈ R2 and bi ∈ R for i = 1, . . . , Nw, Nw being the
number of wires present in the environment. The wires are
then identified as the set:

G = {x ∈ X | gi(x) = 0 for some i ∈ {1, . . . , Nw}} ∪ ∂X,
(5)

where we assume that the boundary of X , denoted by ∂X ,
can also be traversed by the robots. The wire-traversing
constraint can be formalized as:

pi ∈ G ∀i ∈ {1, . . . , N}. (6)

Since the robots are constrained to move on wires, the
problem we aim at solving is a constrained version of (4).
The integrand function in (1) is non-decreasing therefore,
in order to minimize (4), we want to minimize the distance
from pi while remaining on the wires. This can be done by
solving the following minimization problem for each robot:

min
pC
i∈G

∥∥pC
i − pU

i

∥∥
2
, (7)

where pU
1 , . . . , p

U
N are solutions of (4). The superscripts U

and C used in (7) distinguish the positions of the uncon-
strained robots from those of the wire-constrained robots (see
Fig. 1).

The following theorem establishes the equivalence be-
tween the minimization problem (4) with the wire-traversing
constraints (6) and the minimization problem (7). We say
that two minimization problems are equivalent if they have
a common local minimizer.

Theorem 1. Given the locational optimization function
J (p1, . . . , pN ) defined in (1), the set G defined in (5)
and pU

1 , . . . , p
U
N , solutions of (4), the following minimization

problems are equivalent:

min
p1,...,pN

J (p1, . . . , pN )

s.t. p1, . . . , pN ∈ G
(8)

min
pC
i∈G

∥∥pC
i − pU

i

∥∥
2
, i = 1, . . . , N. (9)



Proof. Let us start proving that (8) ⇒ (9), with which we
mean that a solution to (8) is also a solution of (9).
Let C(pi) =

∏Nw
j=1(aT

jpi + bj). This way we can describe
the wire-traversing constraints as follows:

pi ∈ G ⇔ C(pi) = 0, pi ∈ X.

Writing the Lagrangian for the constrained minimization
problem (8), one obtains:

L(p1, . . . , pN , λ) = J(p1, . . . , pN ) +
N∑

i=1

λiC(pi),

where λ = [λ1, . . . , λN ]
T is the Lagrange multiplier. Let

p?1, . . . , p
?
N be a local minimizer of (8). The following

necessary condition has to be satisfied ([17]):

∂L

∂pi
(p?i ) =

∂J

∂pi
(p?i ) + λi

Nw∑

k=1

aT
k

Nw∏

j=1
j 6=k

(aT
jp
?
i + bj) = 0

∀i = {1, . . . , N}.

(10)

Assume that robot i is on wire k̄: as a result aT
k̄
p?i + bk̄ = 0.

So, (10) reduces to:

∂L

∂pi
(p?i ) =

∂J

∂pi
(p?i ) + λia

T
k̄

Nw∏

j=1
j 6=k̄

(aT
jp
?
i + bj) = 0

∀i = {1, . . . , N}.

From [18] we know that ∂J
∂pi

(p?i ) ‖ (ρi− p?i ), where ‖ is the
parallel symbol. Since λi

∏Nw
j=1
j 6=k̄

(aT
jp
?
i + bj) ∈ R is a scalar,

we have that (ρi − p?i ) ‖ ak̄. So, (ρi − p?i ) is orthogonal to
the wire k̄ and, therefore, p?i minimizes the distance from
ρi. From [18], we know that ρi, i = 1, . . . , N are solutions
of (4). Hence, p?i is a local minimizer of (9).

We now prove that (9) ⇒ (8), i. e. a local minimizer of
(9) is also a local minimizer of (8). The constraints on (9)
are equivalent to pU

i = ρi ∀i ∈ {1, . . . , N}, as shown in
[16]. Substituting this expression of pU

i in (9), one obtains
the following unconstrained minimization problem:

min
pC
i∈G

∥∥pC
i − ρi

∥∥
2
, (11)

whose solution pC?
i is the closest point to ρi that is on the

wires defined by G. This means that
(
pC?
i − ρi

)
‖ ak for

some k ∈ {1, . . . , Nw}. Since also ∂J
∂pi

(
pC?
i

)
‖
(
pC?
i − ρi

)
,

∃λi ∈ R
∣∣∣ ∂L
∂pi

(
pC?
i

)
= 0 . Hence, a solution of (9) is also a

local minimizer of (8).

Remark 2. The equivalence established in Theorem 1 allows
us to solve (9) instead of (8). What this entails is that, instead
of solving a constrained minimization problem, we can
solve an unconstrained minimization problem and project
its solution onto the constraints’ set. Moreover, since we
have the motion control law (3) that solves the minimization

X

A

B

C

D

E
g i(
x)

=
0

Fig. 2: The areas shaded in red highlight regions where the
operator that projects points pU

i of the workspace X onto the
closest wire is discontinuous. The wires are depicted as thick
black lines, while the dash-dot lines represent the medial axis
of the polygon ABCDE formed by the wires. The gray
circles are points of the blue trajectory that are mapped to
the gray squares onto G, the set of wires

problem (4), we can proceed by just projecting it onto the
wires.

Remark 2 points out the advantages of solving an uncon-
strained optimization problem followed by a projection of
the solution onto the constraints set (as in (9)), over solving
a constrained minimization problem like (8). However, the
set of constraints, G, is the union of affine sets; in fact,
each wire is defined as the set {x ∈ X | gi(x) = 0} =
{x ∈ X | aT

i x + bi = 0}, i ∈ {1, . . . , Nw}. So, G is not
convex. As such, the solution of (9) requires optimization
methods for non-convex problems. Even though the latter can
be also solved efficiently (see [17]), the main objective of the
constrained coverage control problem is that of generating a
motion control law to be executed by the robots on the wires.
A solution to (9), i. e. an orthogonal projection onto the
wires (as proposed in [14]), does not fulfill this requirement.
In Fig. 2 an example of a discontinuous projection on the
wires is shown. In particular, the set of discontinuity points
coincides with the set of points that have more than one
closest point on the set G. It follows that the medial axes
(or the topological skeletons) of the polygons bounded by
the wires, defined as the boundaries of the Voronoi diagrams
of the edges of the polygons, are the sets of discontinuity
points for the projected motion of the robots onto the wires.

C. From Projection to Mapping

In this section we describe a method to relax the condi-
tions imposed by Theorem 1 in the interest of producing a
continuous motion of the points pi. This will be done by
using a Continuous Onto Wires (COW) mapping to the set
G defining the constraints.

Let

M : p ∈ X ( R2 7→ pM ∈ G ( R2 (12)

be the operator that maps the robot workspace X to the set of



Pk

P1

P2

Fig. 3: The polygonal tessellation induced by the wires
consists of all closed and convex polygons Pk as they results
from the intersection of half planes

wires G, where pM does not necessarily solve the program:

min
x∈G
‖x− p‖2 .

In order to find a suitable expression for such a mapping,
elements from complex analysis will be required. For this
reason they are recalled in the following.

First of all, let us define the following isomorphism
between R2 and C:

I :

[
a
b

]
∈ R2 7→ a+ ιb ∈ C, (13)

where ι is the imaginary unit. Moreover, in the following
we will use <(·) to denote the operator that extracts the real
part of a complex number. With abuse of notation, we denote
with X̃ = I(X) ( C the image of the robots’ workspace
X through the isomorphism (13). Let p̃1, . . . , p̃N ∈ X̃ ( C
be the robots’ positions in the complex plane. Similarly, we
can define g̃i and G̃.

The following results will be used in the definition of a
mapping (12).

Definition 3 (Conformal map [19]). Let X1 and X2 be two
open subsets of C. A map f : X1 → X2 is said to preserve
angles if for every two differentiable curves γ1 : t ∈ [−ε, ε] (
R 7→ c ∈ C and γ2 : t ∈ [−ε, ε] ( R 7→ c ∈ C, where
γ1(0) = γ2(0) = c?, the angle formed by their tangents at
c? is the same as the angle formed by the tangents of the
mapped curves f ◦γ1 and f ◦γ2 at f(c?). A conformal map
from X1 to X2 is a differentiable bijection that preserves
angles.

With this definition, we can now state the following
theorem.

Theorem 4 (Riemann mapping theorem [20]). Let X ( C
be a simply connected region of the complex plane, and let
x ∈ X . Then, there is a unique conformal map f : X → D,
where D is the unit disc, such that f(x) = 0 and f ′(x) = 0.

From this theorem the following corollary can be proven.

Corollary 5. Two simply connected regions of the complex
plane, X1, X2 ( C, are homeomorphic.

Fact 6. The wires defined by the set G̃ induce a polygonal
tessellation of X̃ . The resulting polygonal areas Pk are
closed and convex as they come from the intersection of half
planes (see Fig. 3).

G1

P1

G2

P2

Pk

Gk

lkj

p
(1)
kj

p
(2)
kj

Tkj

Fig. 4: Quantities used in the formulation of a COW map M̃

Using the result of Corollary 5, we can construct a map-
ping from each of the polygons of the polygonal tessellation
introduced in Fact 6 onto their boundaries, i. e. the wires.
This can be realized as follows.

Let Pk ⊆ X̃ ( C, k = 1, . . . ,K be the K polygons
resulting from the polygonal tessellation defined by the wires
G̃, and let Gk ∈ C, k = 1, . . . ,K be their corresponding
centroids. Let lkj ( X̃ ( C, j = 1, . . . , J denote the J

sides of the polygon Pk, and p
(1)
kj ∈ C and p

(2)
kj ∈ C the

two endpoints of the side lkj . Note that G̃, the subset of the
complex plane isomorphic to G through (13), indicated with
abuse of notation by I(G), can be defined as:

G̃ = I(G) =
K⋃

k=1

J⋃

j=1

lkj . (14)

Let us define Tkj ( X̃ ( C as the triangle with vertices
p

(1)
kj , p(2)

kj and Gk. Fig. 4 shows all the quantities that have
been just introduced.

With these premises, let us define the mappings mkj as
follows:

mkj =




Tkj ( X̃ ( C→ lkj ( X̃ ( C

X̃ \ Tkj ( X̃ ( C→ {0} ( C
.

So, the mapping

M̃ : x ∈ X̃ ( C 7→
K∑

k=1

J∑

j=1

mkj(x) ∈ G̃ ( C (15)

transforms the robot workspace X̃ ( C to the set of wires
G̃ ( C in the complex plane.

Remark 7. Let x ∈ C and p ∈ R2 such that I(p) = x. By
the properties of the isomorphism (13) and by the definitions
of the mappings (12) and (15), we characterize M by the
following equations:

M̃(x) = I
(
M
(
I−1(x)

))

M(p) = I−1
(
M̃ (I(p))

).

Now the expression of mkj is left to define. In order to
do so, let us introduce a particular conformal mapping.



Tkj
p

(1)
kj

p
(2)
kj

lkj
w1 w2

<

=

Fig. 5: Schwar-Christoffel mapping between the upper-half
plane H and the triangular region Tkj of the complex plane.
The prevertices w1 and w2 are mapped to the vertices of the
triangle p(1)

kj and p(2)
kj , respectively

Definition 8 (Schwarz-Christoffel mapping [21]). A
Schwarz-Christoffel mapping is a conformal mapping from
the upper half-plane H = {x ∈ C | <(x) ≥ 0} (the
canonical domain) to a region P of the complex plane
bounded by a polygon (the physical domain). Its expression
is given by:

f : x ∈ H 7→ x0 + c

∫ x

x0

J−1∏

j=1

(χ− wj)αj−1
dχ ∈ P,

where x0, c ∈ C are two constants that translate, rotate and
scale the polygon that bounds P, J is the number of sides
of the polygon, αj is the interior angle at the j-th vertex of
the polygon and wj ∈ R, j = 1, . . . , J − 1 are called the
prevertices and have the property of being mapped to the
vertices of the polygon. In case of triangular domains, i. e.
J = 3, the prevertices can be arbitrarily set to any location
on the real axis.

Definition 9. Let

fkj : H→ Tkj (16)

be the Schwarz-Christoffel mapping between the upper-half
plane and the triangular region Tkj defined above. The real
axis is mapped to the boundary of Tkj and the prevertices w1

and w2 are mapped to p(1)
kj and p(2)

kj , respectively (see Fig. 5).
Because of the fact that for triangular physical domains the
prevertices can be arbitrarily chosen on the real axis, we
assume that their value does not depend on the indexes k
and j.

The following theorem defines a COW map, i. e. a con-
tinuous and onto mapping, from the robots’ workspace X̃ to
the set G̃ defined in (14).

Theorem 10. Let fkj be the Schwarz-Christoffel mapping
defined by (16), w1 and w2 the prevertices of the mapping
fkj; let p(1)

kj , p(2)
kj and Gk the vertices of the triangular

boundary of the region Tkj . The mapping M̃ defined in (15)

Tkj1Tkj2

p
(1)
kj1

p
(1)
kj2

= p
(2)
kj1

p
(2)
kj2

lkj12

(a)

p
(1)
k1jn

= p
(2)
k2jmTk1jn

Tk2jmp
(2)
k1jn

= p
(1)
k2jm

lk12

(b)

Fig. 6: Adjacent triangular regions over whose common
edges the continuity of the function M̃ has to be shown

where mkj is given by the following onto mapping:

mkj(x) =





p
(1)
kj if <

(
f−1
kj (x)

)
≤ w1

fkj

(
<
(
f−1
kj (x)

))
if w1 < <

(
f−1
kj (x)

)
< w2

p
(2)
kj if <

(
f−1
kj (x)

)
≥ w2

,

defines a continuous mapping from the robots’ workspace

X̃ \
(

K⋃
k=1

{Gk}
)

( C to the set G̃ ( C defined in (14).

Proof. By the Definition 3 of conformal map, f−1 exists and
it is continuous as it is the map f itself. As the operator <(·)
is continuous and the composition of continuous functions is
continuous, one has that mkj is continuous for the vertical
strip of the complex plane defined by w1 < <

(
f−1(x)

)
<

w2. For <
(
f−1(x)

)
≤ w1 and <

(
f−1(x)

)
≥ w2, mkj

is constant and so continuous. For <
(
f−1(x)

)
= w1,

f
(
<
(
f−1(x)

))
= f (w1) = p

(1)
kj by Definition 9 of fkj .

Hence mkj is continuous on the vertical line of the complex
plane defined by <

(
f−1(x)

)
= w1. A similar argument

holds for when <
(
f−1(x)

)
= w2. Hence, the mapping M̃

is continuous over each triangular domain.
Now the continuity of mkj across adjacent domains Tkj1 and
Tkj2 or Tk1jn and Tk2jm is left (see Fig. 6). Let us define
lkj12 to be the common segment of the two adjacent regions
Tkj1 , Tkj2 ( Pk (see Fig. 6a). For x ∈ lkj12 one has that
<
(
f−1
kj1

(x)
)
≥ w2 and <

(
f−1
kj2

(x)
)
≤ w1. Therefore, in

the former case x is mapped to p(2)
kj1

, whilst in the latter case
x is mapped to p

(1)
kj2

. The two points coincide, hence M̃ is
continuous on lkj12 . Let us now define lk12 the common
segment of the two adjacent regions Tk1jn ( Pk1 and



Tk2jm ( Pk2 , that is also the only common segment between
the two polygons Pk1 and Pk2 (see Fig. 6b). By Defini-
tion 9, for x ∈ lk12 one has <

(
f−1
k1jn

(x)
)

= f−1
k1jn

(x) and

<
(
f−1
k2jm

(x)
)

= f−1
k2jm

(x). Since w1 < <
(
f−1
k1jn

(x)
)
< w2

and w1 < <
(
f−1
k2jm

(x)
)
< w2, we can write:

mk1jn(x) = fk1jn

(
<
(
f−1
k1jn

(x)
))

=fk1jn

(
f−1
k1jn

(x)
)

= x

mk2jm(x)=fk2jm

(
<
(
f−1
k2jm

(x)
))

=fk2jm

(
f−1
k2jm

(x)
)

= x.

So mk1jn(x) = mk2jm(x) ∀x ∈ lk12 . Hence, M̃ is continu-
ous on lk12 .

Remark 11. Solving an optimization problem such as (11)
performs a projection operation in the physical domain P of
a Schwarz-Christoffel mapping. The same result is obtained
in the canonical domain H by means of the operator <(·).

III. MOTION CONTROL ON THE WIRES

The COW map M̃ defined by Theorem 10 allows the
direct derivation of a motion control law to be executed by
each of the robots on the wires. The resulting motion is
continuous and inherently takes into account the constraints
defined by the wires.

A. Mapped Gradient Descent

As the motion control law derived in this section are to
be applied to all the robots without distinction, the subscript
i will be dropped from now on.

Note also that all the quantities used in the following
are complex numbers, subsets of the complex plane and
complex-valued functions of complex variables. Due to the
isomorphism (13), the formulation in C and that in R2, even
though formally different, are substantially equivalent.

The COW mapping derived in Theorem 10 that transforms
the domain X̃ into G̃ is denoted by:

xM̃ = M̃(x), (17)

where M̃ is defined in (15). Differentiating (17), one obtains:

ẋM̃ =
∂M̃

∂x
ẋ =

∂M̃

∂x
kp(ρ̃− x), (18)

where ρ̃ = I(ρ) and ẋ = kp(ρ̃− x) comes from (3).
As far as the expression of ∂M̃∂x is concerned, starting from

(15), it can be written as:

∂M̃

∂x
=

K∑

k=1

J∑

j=1

∂mkj

∂x
.

It has to be noticed that, since the operator <(·) is not
differentiable, ∂mkj

∂x is not well-defined. However, since we
are interested in deriving a motion control law for the robots
on the wires, we actually need only the directional derivative
of M̃ and mkj along the wires, denoted by ∂G̃M̃ and ∂G̃mkj ,
respectively. Consequently, we need the directional derivative

of < only along the real axis. The latter is well-defined and
it is identically equal to 1. Thus, we can write:

∂G̃mkj =





0 if <
(
f−1
kj (x)

)
≤ w1

m′kj if w1 < <
(
f−1
kj (x)

)
< w2

0 if <
(
f−1
kj (x)

)
≥ w2

,

where m′kj is given by

m′kj =

(
∂fkj
∂x
◦ <

(
f−1
kj (x)

))(∂<
∂x
◦ f−1

kj (x)

)
∂f−1

kj

∂x
=

=

(
∂fkj
∂x
◦ <

(
f−1
kj (x)

))(
1 ◦ f−1

kj (x)
) ∂f−1

kj

∂x

=

(
∂fkj
∂x
◦ <

(
f−1
kj (x)

)) 1
∂fkj

∂x

,

where
∂fkj
∂x

=

2∏

i=1

(x− wi)αi−1,

and all the quantities used here and specified in Definition 8
are specific for the triangular region Tkj .

The theorem stated below follows directly from the deriva-
tion of (18).

Theorem 12. Let xi = I(pi), i ∈ {1, . . . , N} be the
positions of N robots expressed as points of the complex
plane C. Let

J̃ (x1, . . . , xN ) = I
(
J
(
I−1(x1), . . . , I−1(xN )

))
(19)

be the locational cost defined based on (1). The motion
control law

ẋM̃ = ∂G̃M̃ ẋG̃ , (20)

where the subscript G̃ indicates quantities mapped onto the
wires, applied to robots whose motion is constrained to be in
the set G̃ = I(G) ( C defined in (14), solves the constrained
optimization problem:

min
x1,...,xN

J̃ (x1, . . . , xN )

s.t. M̃(xi) = xi ∀i ∈ {1, . . . , N}
. (21)

B. From Mapping to Projection

In Section II-C, in order to derive a motion control law that
ensures a continuous motion of the robots on the wires, we
relaxed the constraints imposed in the optimization problems
defined in Theorem 1. Now we propose an algorithm that
restores those constraints and ensures the best coverage
quality that is achievable when the robots are constrained
to move on wires.

Let us start stating the following result.

Fact 13. Employing the Euclidean distance as a metric to
measure the distance d(x, l) between a point x and a segment
l, required for the evaluation of Voronoi partitions, the
Voronoi cells determined by the edges of a convex polygon



are convex polygons themselves. This also means that the
medial axis of a convex polygon consists of all straight lines.

This allows the definition of conformal mappings, similar
to fkj introduced in (16), between the upper-half plane H and
the convex and polygonal Voronoi cells related to polygon
Pk.

With the objective of mapping the point x ∈ X to its
closest wire, each triangular region Tkj of polygon Pk is
continuously deformed to its corresponding Voronoi cell

Vkj = {x ∈ Pk | d(x, lkj) ≤ d(x, lkj̄) ∀j̄ 6= j}, (22)

with which it shares the side lkj . See Fig. 7a to Fig. 7e.
The optimization problem (21) is solved using gradient

descent that results in the control law (18) applied to each
robot. Let us define τf as the time instant at which the
velocities given by kp(ρ̃ − x) become sufficiently small for
all the robots. For a given time interval [τf , τf + τ ], let

Dkj : t ∈ [τf , τf + τ ] 7→ T
(t)
kj , (23)

with

Dkj(τf ) = T
(τf )
kj = Tkj

Dkj(τf + τ) = T
(τf+τ)
kj = Vkj ,

be the deformation operator that transforms the region Tkj
into the Voronoi cell Vkj during the time interval [τf , τf+τ ].

Following the definition in (15), let us define the following
COW map at time t ∈ [τf , τf + τ ]:

M̃ (t) : x ∈ X̃ ( C 7→
K∑

k=1

J∑

j=1

m
(t)
kj (x) ∈ G̃ ( C,

where

m
(t)
kj =




T

(t)
kj ( X̃ ( C→ lkj ( X̃ ( C

X̃ \ T (t)
kj ( X̃ ( C→ {0} ( C

.

The velocity ẋM̃
(t)

is evaluated using (20) where M̃ (t) is
used in place of M̃ .

Remark 14. By definition of Voronoi cell (22), once the
transformation (23) is completed, i. e. t = τf + τ , the COW
map M̃ (τf+τ) transforms each point x to a point belonging
to G̃ on the closest wire. Therefore, the robots can execute
gradient descent on the wire on which they are at time t ≥
τf + τ in order to get to the positions that minimize (19).

Algorithm 1 outlines the motion control strategy executed
by each robot on the wires. The resulting behavior is depicted
in Fig. 8a to Fig. 8d.

Based on the derivation of Algorithm 1, we can state the
following theorem.

Theorem 15. Algorithm 1 solves the following constrained
optimization problem:

min
x1,...,xN

J̃ (x1, . . . , xN )

s.t. x1, . . . , xN ∈ G̃
. (24)

Algorithm 1 Continuous Constrained Coverage Control

Require: x (robot initial position), M̃ , M̃ (t), Dkj
Ensure: Continuous Constrained Coverage Control

while |kp(ρ̃− x)| ≥ ε do
ũ← compute ẋM̃

execute ũ
end while
for t = τf to τf + τ do

for all adjacent regions Tkj do
T

(t)
kj ← Dkj(t)
m

(t)
kj ← compute m(t)

kj

end for
M̃ (t) ←∑K

k=1

∑J
j=1m

(t)
kj (x)

ũ← compute ẋM̃
(t)

end for
execute gradient descent on the current wire

IV. EXPERIMENTS

The algorithm to execute the continuous constrained cov-
erage control described in Algorithm 1 has been deployed
on a swarm of ground mobile robots on the Robotarium, a
remotely accessible swarm robotics testbed [22], where the
robots have been artificially constrained to move on wires.

The algorithm has been implemented in MATLAB and
submitted through the Robotarium web interface1 in order
to be executed on the real robots.

Fig. 9a to Fig. 9e show images taken from the video
recorded during the experiments. An overhead projector
visualizes the wires on which the robots are constrained
(thick gray lines). The virtual robots projected on the testbed
are linked to the real ones by means of the mappings M̃ and
M̃ (t) and they move in order to minimize the unconstrained
locational cost (1). In Fig. 9a the robots are initialized to
random positions on the wires. In Fig. 9b and Fig. 9c the
robots execute the control law (20) moving on the wires until
the velocities of the projected robots are below a minimum
threshold (Fig. 9d). At this point the deformation (23) is
performed, and executing gradient descent on the wires on
which the robots are at time τf + τ brings them to the final
positions that solve the constrained locational optimization
problem (24).

V. CONCLUSIONS

In this paper we propose a solution to the coverage
control problem for wire-traversing robots. Starting from
coverage control derived for robots moving in a planar envi-
ronment, the resultant two-dimensional motion is mapped, in
a continuous fashion, onto one-dimensional manifolds which
represent the wires. The main contribution of this paper is
the derivation of a continuous motion control law that is to
be executed by the robots on the wires in order to minimize
the constrained locational cost. This is realized by defining a
Continuous Onto Wires (COW) map that continuously maps

1http://www.robotarium.org/



(a) (b) (c) (d) (e)

Fig. 7: Continuous deformation of the triangular regions Tkj (a) to the corresponding Voronoi cells Vkj (e)

(a) t = 0 (b) t < τf (c) t = τf (d) t ≥ τf + τ

Fig. 8: Motion of the robots under coverage control constrained by the wires resulting by the application of Algorithm 1.
The thick lines are the wires that constrain the motion of the colored robot. The gray robots move according to the control
law derived from the minimization of the locational cost (1). The colored area represent the Voronoi cells (2) related to the
gray robots. Each gray robot is linked to the corresponding colored robot on the wires to which it is mapped

(a) Beginning of the experiment
(t = 0 seconds)

(b) t = 23 seconds (c) t = 41 seconds (d) t = τf = 80 seconds (e) t = 99 seconds

Fig. 9: Algorithm 1 is deployed on a team of robots on the Robotarium. An overhead projector is visualizing information
related to the experiment: the thick lines are the wires on which the real robots are constrained to move, the motion of the
the projected robots is determined by solving the minimization problem (4), the thin lines are the boundary of the Voronoi
cells (2). As in Fig. 8, the projected robots are linked with the robots on the wire to which they are mapped

the robot workspace onto the wires on which the robots
are constrained to move. A final projection step ensures
that the locational cost subject to the motion constraints is
minimized. The motion that results by the application of
the derived algorithm minimizes the constrained locational
cost, thus solving the constrained coverage control problem.
The derived control algorithm is tested in simulation and
deployed on a team of mobile robots.
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