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Robot Composite Learning and the Nunchaku Flipping Challenge
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Abstract— Advanced motor skills are essential for robots
to physically coexist with humans. Much research on robot
dynamics and control has achieved success on hyper robot
motor capabilities, but mostly through heavily case-specific
engineering. Meanwhile, in terms of robot acquiring skills in a
ubiquitous manner, robot learning from human demonstration
(LfD) has achieved great progress, but still has limitations
handling dynamic skills and compound actions. In this paper,
we present a composite learning scheme which goes beyond
LfD and integrates robot learning from human definition,
demonstration, and evaluation. The method tackles advanced
motor skills that require dynamic time-critical maneuver, com-
plex contact control, and handling partly soft partly rigid
objects. We also introduce the ‘“nunchaku flipping challenge”,
an extreme test that puts hard requirements to all these three
aspects. Continued from our previous presentations, this paper
introduces the latest update of the composite learning scheme
and the physical success of the nunchaku flipping challenge.

I. INTRODUCTION

We present a scheme of composite robot learning from hu-
man that empowers robots to acquire advanced manipulation
skills that require

1) dynamic time-critical compound actions (as opposed to
semi-static low-speed single-stroke actions),

2) contact-rich interaction between the robot and the
manipulated objects exceeding that of firm grasping
and requiring control of subtle bumping and sliding, and

3) handling of complex objects consisting of a combination
of parts with different materials and rigidities (as opposed
to single rigid or flexible bodies).

We also introduce the “nunchaku flipping challenge”, an
extreme test that includes hard requirements on all three
elements listed above. Continued from our presentations in [1],
[2], this paper introduces the latest updates of the proposed
learning scheme and the experimental success of the nunchaku
flipping challenge.

Advanced motor capabilities are without a doubt necessary
for ubiquitous coexistence of robots and humans. Much
research on robot dynamics and control does show success in
realizing hyper robot motor capabilities. Representative work
includes the running and hopping humanoid robot ASIMO by
Honda Motor [3], the hyper balancing quadruped [4], biped
[5], and wheeled [6] robots by Boston Dynamics, the high
speed running cheetah robot by MIT [7], the dynamic vision
guided baseball [8], regrasping [9], knotting [10], and pen
spinning [11] robots by the University of Tokyo. Despite
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the application of adaptive and learning control, these works
require extensive case-specific engineering that rely heavily
on ad hoc models and control strategies, and lack scalability
to ubiquitous applications.

Regarding the ubiquity of robot skill acquisition, a potential
solution lies in robot reinforcement learning (RL) from trial
and error as well as robot learning from human demonstration
(LfD), which have become two hot topics in robotic research.
First studied in the 1980s, LfD aims at providing intuitive
programming measures for humans to pass skills to robots.
[12] and more recently [13] give comprehensive surveys of
LfD. Among the latest and most achieved, one well-known
work is by the University of California, Berkeley, where a PR2
robot learned rope tying and cloth folding [14]. However, most
LfD achievements so far are for semi-static decision-making
actions instead of dynamic skills, partly due to the reliance
on parameter-heavy computationally-intensive (for real-time
evaluation) models such as deep neural networks (DNNs). In
order to make the motion presentable to an audience, typical
demonstration videos feature accelerated playback rates of
up to x50.

A few works in LfD do have achieved dynamic skills such
as robots playing table tennis and flipping pancakes [15] as
well as ball-paddling and ball-in-a-cup tricks [16], but with
recorded human demonstration as the initial trajectories for the
following robot reinforcement learning (RL) from (self) trial
and error. The application of RL often features structurally
parameterized control policies (e.g., [17], [18]) in the form
of the combination of a few basis elements and can thus
reduce the real-time computation load. The choice of the basis
elements, however, are often quite case-specific. [19] gives a
comprehensive survey of robot RL, which enables a robot to
search for optimal control policy not from demonstrative data
but from trial-and-error practice, with the goal of maximizing
a certain reward function. Proper design of the reward function
and the corresponding maximization strategy is another factor
that is usually quite case-specific. The same authors of the
survey (at Technische Universitdt Darmstadt) also achieved
dynamic robot motor skills such as robots playing table tennis
[20] and throwing darts [21] via applying RL and using
motion primitives as basis elements. However, these works
are mainly for stroke-based moves, and have not addressed
compound actions.

Regarding these issues, we started studying a composite
learning scheme, which showed success in a simulated
nunchaku flipping test [1] and in an inverted pendulum swing-
up experiment [2]. Since then, with the latest update of the
scheme (Section II), we have achieved experimental success
in the nunchaku flipping challenge (Sections III and IV).



II. COMPOSITE SKILL LEARNING

So far, the majority of the robot learning from human
research community has been focusing on the concept of robot
learning from demonstrations (LfD). In many occasions, LfD
has become a synonym of robot learning from human [13].
A few went further and explored techniques such as allowing
robot learners to ask questions [22] and human mentors to
give critiques [23] along with demonstration. Theories of
human learning point out that effective learning needs more
than observation of demonstrations [24]. In particular, explicit
explanation of the underlying principals (e.g., [25], [26]) and
testing with feedbacks (e.g., [27], [28], [29]) are necessary
in effective teaching of complex skills. Expecting a learner
to master new skills solely from observing demonstrations is
analogous to learning from a silent teacher, which certainly
could only achieve limited outcomes. This explains why the
reinforcement learning (RL) assisted LfD shows effectiveness
in learning dynamic motor skills - because the RL is in some
sense a follow-up testing and feedback mechanism.

In regards to the limit of LfD, we propose a composite
learning method that integrates robot learning from definition,
demonstration, and evaluation.

Composite Skill Learning

1 The human mentor gives initial definition of the skill
using a Petri net;

2 The human mentor demonstrates the skill for multiple
times and self-evaluates the demonstrations;

3 The robot learner starts from the initial definition, use
the demonstration data to learn the control policies for
each transition and the judging conditions specified in
the definition;

4 the robot also learns the evaluation criteria from the
mentor’s self-evaluated demonstration;

5 The robot tries out the skill and uses the learned criteria
to conduct self-evaluation;

6 Additional human evaluations are optional and might
help improve the fidelity of the evaluation criteria
learned by the robot;

7 if evaluated as failure then

8 The robot checks the scores of subprocedures,

locates problematic spots, and modifies the initial

definition by creating an adaptive Petri net;

9 Go to 5;

10 else if evaluated as success then

11 The robot weights up the data from the successful
trials so as to improve the learned control policies
and conditions;

12 After reaching a stable performance above a certain
successful rate, the skill is considered learned.

A. Adaptive Learning from Definition

We use Petri nets (PN) to define compound skills that
includes multiple subprocedures. The places in the PN consist

of the state variables of the robot, such as posture, joint
velocities, and torques. The states and transitions in a PN
represent the subprocedures and the corresponding motion
actions respectively. Each transition in the PN features
a relatively coherent motion pattern and can be realized
using a single motion/force control policy. Petri nets are
abstract enough to be composed intuitively by humans, while
sufficiently symbolic for machines to parse. Despite being
widely used in robotics (e.g., [30], [31]), Petri nets have yet
not been used to teach robots dynamic skills.

Due to possible improper human description and very often
the physical difference between the human mentor and the
robot learner, modification of the initial definition is necessary.
Starting from an initial definition provided by the human
mentor, we use adaptive measures to enable autonomous
correction of the initial definition. Instead of a standard 4-
tuple Petri net PN = (P, T, A, My), we introduce a 6-tuple
adaptive Petri net APN = (P, T, A, My, A, C), where P is the
set of places, T is the set of transitions, A is the incident matrix
that defines the relationship among places and transitions,
M is the initial marking, A is a set of firing probabilities of
transitions, and C is a set of firing conditions.

An APN allows the robot learner to revise the initial
definition through learning from evaluation (Section II-C). By
adjusting the P set, T set and A matrix, places and transitions
can be added or dropped from the initial definition. Our
previous paper [2] presented an inverted pendulum test, in
which a transition is added by the learning agent to recover
from a wrong state. In addition, adjustment of the firing
probability set A and the condition set C changes the learned
skill towards more suitable to the mechanical characteristics
of the robot. Section IV gives an example.

The state equation of the Petri net is

M =M+ Au (1)

where the M is the previous marking, M’ is the marking after
a transition fires. u is a column vector indicating whether the
transitions fire with its boolean elements. It is controlled by
the set of firing probability A and the set of conditions C
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where d; is a boolean decision value indicating if the firing
condition ¢; € C of the ith transition is satisfied. p; is a
boolean random value that follows Bernoulli distribution
Pr(p; = 1) = A;, where A; € A defines the firing probability
of the ith transition.

Starting from the initial C and A assigned by the human
mentor, the robot carries out modification through trying out
the skill. When a problematic transition is identified, its firing
probability A; is updated to

X = i, 3)



where k < 1. Once A; drops below a certain level, the
corresponding firing condition ¢; will be updated to

-
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where w; is a weight parameter derived from the evaluation
of the jth trial. sf is the recorded state when firing the ith

transition at jth trial. The firing probability resets when the
corresponding condition is updated.

= [w

B. Learning from Demonstration with Data Conditioning

The Petri net definition divides a compound skill in a way
that each transition has a relatively coherent motion pattern
and can be governed by a single control policy regressed
from the human demonstration data. To avoid case-specific
engineering of model-based control, we use nonparametric
regression methods. Nowadays, more and more research
involving nonparametric learning use deep neural networks
(DNNs) with convolutional or spiking modules, taking the
advantage that a large amount of training parameters (e.g.,
18 million parameters in [32]) benefits the approximation
of complicated state-control mappings. The price, however,
is the difficulty of executing the learned control policy in
real-time for dynamic actions. [33] combined DNN with
parametrized policy search and obtained a model of relatively
smaller scale with around 92 000 parameters. The reduced
size, however, still only allows a control rate of 20 Hz, which
is difficult for dynamic actions that usually require a control
rate at several hundreds to over a thousand Hz.

Instead of counting on standalone LfD with a huge amount
of parameters, we seek breakthrough from the power of com-
posite learning and turn to the more computationally efficient
Gaussian Process Regression (GPR), aiming at realizing a
high control rate with regular control systems. GPR has a
strong history in learning control of robots. One pioneering
work is presented in [34]. In our work, the regression learns a
mapping from the system state x to the control u. The learned
mapping is used as the motion control policy to realize a
specific transition in the PN definition. Consider a set of data
{(xj,u;) :i=1,2,...,n} from human demonstrations. GPR
assumes that the mapping u = u(x) follows a multi-variable
joint distribution with certain statistical characteristics. We
apply the squared exponential kernel function in the state
space

1
k (xi, x;16) = o exp _l_2(xi - x]-)T(xi - xj) 5)

where 6 = {o,1} includes the so-called hyperparameters to
be trained, with o being a covariance scaling factor and /
being a distance scaling factor. Because the whole skill is
divided into multiple subprocedures that each has a relatively
simple motion pattern, there is no need to use advanced
kernels (e.g., [35] Section 5.4.3 ), which lead to demanding
and case-specific parameter training. The covariance matrix
of the data is

k(x1,x1) k(x1, xp)

K = (6)

k(xp, xl) k(xp, xn)

and the covariance matrix relating the queried state x, to the
data is

K. = [k (x*, X]) k (.X'*, xn)] (7)

The control u, for the queried state x. can be inferred using
the conditional expectation

E[u.] = K.K'U, (8)

where U, is the stack of the controls in the training data.
Note that the computation load of u. very much depends on
the sizes of K and K., which in turn depend on the size of
the data set. In order to achieve high computing efficiency
for real-time control as well as improve the fidelity of the
regressed mapping, we have developed a data conditioning
method [36] using rank-revealing QR (RRQR) factorization.
The RRQR factorization of the stack S; of the states from
the data set is in the form of
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where I1 is a permutation matrix, Q is orthogonal, and R} €
R™™ is well conditioned. The columns in S; identified by the
first m columns of I1 form a well conditioned subset. Various
algorithms are available to compute an RRQR factorization,
providing different lower bounds of R;;’s smallest singular
value, with a general form of
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where [ (m, n) is bounded by a polynomial of m and n [37].
The subset selected from the raw data stack features improved
condition number and leads to more reliable regression fidelity,
while takes only a fraction of the original computation.

C. Learning from Evaluation

After acquiring the skill definition and regressing control
policies from human demonstration, we use evaluations to
tune the learned skill. The human mentor and the robot
learner often have nontrivial physical difference, and the
skills learned right off the human demonstration are often not
optimal or even less feasible to the robot learner. Learning
from evaluation handles this problem. When the robot tries to
carry out a learned skill, both the success of the whole skill
and the performance of each subprocedure will be evaluated.
In order to avoid case-specific engineering, the scoring
formulae are not explicitly specified by the human mentor.
Instead, the human mentor labels his/her demonstration with
success/failure flags and performance scores. The learning
agent learns the scoring criteria from the labeled data and
use it to self-evaluate the robot’s practices, which always
have variations due to the dynamic and compound nature
of the skills. The evaluation result is in turn used to refine
the learned skills by taking in the data from more successful
practices, while the data from lower scored demonstrations
are less weighted. Examples are discussed at the end of
Section IV.



III. HARDWARE PREPARATION

A. A robot arm and real-time control system

We use a 6-DOF AUBO i5 6-joint robot arm. It features
a modular design similar to the popular UR series by
Universal Robots, while provides a much simpler open
control interface that allows the users to fully access real-
time position/velocity/torque control. The control deployment
(Fig. 1) is based on a target computer directly connected to
the robot arm via a Controller Area Network (CAN bus) cable.
Other than a National Instruments PCI-CAN interface, no
additional interfacing hardware is used. MATLAB/Simulink
is used to implement sensing, control, and safety algorithms.
The MATLAB Vehicle Network Toolbox is used to facilitate
the CAN communication protocol. The sampling rate of the
control system is 1 kHz.

. AUBO i5
Workstation robot arm
(intel i5, PCI-CAN  [J1— N with Robot
MATLAB/ interface N—11
M embedded
Simulink) X
servo drives
Fingered 6-axis load
1 N hand & -axis loa
Ethernet USB 3.0 Tactile cell
sensors
L Signal
conditioning
Fig. 1. Control deployment of the test setup

B. A bionic robot hand

In order to facilitate advanced manipulation skills involving
finger actions, we developed a bionic robot hand with haptic
sensors. The hand features a bionic five-finger design and
tendon-driven actuation. The majority of the hand is 3D-
printed, including the palm and finger segments in PET,
finger joints in the rubbery TPU (for auto extension), and a
motor pack in stainless steel. TakkTile sensors developed by
Righthand Robotics are used as haptic sensors. They are built
up on the NXP MPL115A2 MEMS barometer by casting a
rubber interface [38]. In addition, an ATI 6-axis load cell is
installed at the wrist to perceive the centrifugal force brought
by the motion of any payload manipulated by the hand.

6-axis load cell

Tactile Sensors

3D-printed stainless
steel servo pack

Fig. 2. A fingered robot hand with haptic sensors

C. Motion capture systems

Motion capture is used in learning from demonstration.
Accurately capturing the necessary details of a highly dynamic
skill is a challenge. It is also important to provide an intuitive
interface for efficient teaching. In order to satisfy these criteria,
we have experimented several options.

The Microsoft Kinect seems to be a first choice because
it offers real-time bare-hand motion capture, and has been
recognized as a top product among commercial camera and
image processing-based systems. Not requiring markers or
hand-held gadgets makes it very intuitive for the mentor to
demonstrate a skill. However, such camera-based systems
suffer from limited sampling rate (usually up to 30 frames per
second) and considerable delay caused by image processing
(usually takes up to an entire sampling period), plus low
accuracy as reported in [39], which in turn make the
velocity estimation difficult. We tried to compensate these
problems, otherwise known as visual sensing dynamics using
a predictive filtering technique [40]. First, the position signal
s(t) being sensed is decomposed using it’s Taylor expansion
with respect to time
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where r is the order of the expansion, and & € (0,¢). The
expansion can be written into a state space model:
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where the state vector x = [s s’ s(’)]T contains
s and its derivatives. i is the time step index. T is the
algorithm sampling time, which is much shorter than the
camera sampling time. u comes from the residual term in
Eq. (11). It is treated as an unknown input, and handled
using an equivalent noise approach [41]. y is the position
identified by image processing. v is the artifacts and rounding
noise. j = N,2N,3N, ... is the index of the camera sampling
actions. L is the delay caused by image processing.

A dual-rate adaptive Kalman filter is then be applied to
Eq. (12) and (13) to compensate for the delay and recover
the information between sampling actions. Despite reported
success of this type of compensation techniques [40], we
found that it still requires the camera to sample at least 15
times faster than the desired bandwidth of the motions being
sensed. For the highly dynamic maneuvers targeted in our
work, such a limit excludes the use of any commercial camera
and image processing-based motion capture systems.

Another type of non-contact motion capture systems is
the ones using active infrared makers and infrared sensors.
Consumer level products of such type include the Nintendo



Wii and Sony PS Move, which unfortunately are of very
limited accuracy [42]. Meanwhile, the high-end options such
as the one introduced in [43] and its commercial peers (e.g.,
PhaseSpace and NDI Optotrak), although are capable of
obtaining very high quality measurement, are much beyond
the space and cost considerations in our long term goal of
making the technology available to everyday life.

A balanced choice between cost and capability is a
mechanical motion capture system in the form of a passive
multi-bar mechanism equipped with rotation sensors at the
joints. Compared to the previous two options, such systems,
either the commercial ones such as Geomagic Touch or a
customized design (Fig. 3 left) provide both an feasible cost
and sufficient capability to our application. Although the usage
is not as intuitive as non-contact motion capture systems, the
additional difficulty is acceptable. In addition, a sensing glove
with Flex sensors is used to capture the motion of the fingers.
The glove is also equipped with vibrating motors to provide
tactile feedback to the user (Fig. 3 right).

sensing

glove tactile

\ motors
~

wireless

hand position module

tracker ‘L//’
1’5

Fig. 3. Motion capture gadgets used in the tests: Left: a mechanical motion
capture device. Right: a wireless sensing glove.

Flex
sensors

IV. THE NUNCHAKU FLIPPING CHALLENGE

We introduce the nunchaku flipping challenge to test
the proposed learning scheme. Nunchaku is a traditional
Okinawan martial arts weapon widely known due to its
depiction in film and pop culture. It consists of two rigid sticks
connected by a chain or rope. Among the numerous tricks of
using nunchaku, the flipping trick as shown in Fig. 4 is one
that puts hard challenges to all three elements we consider in
advanced manipulation skills, i.e., dynamic maneuver, hand-
object contact control, and handling partly soft partly rigid
objects. The trick includes three subprocedures: swing-up
(1-3 in Fig. 4), chain rolling (4-6), and regrasping (7, 8).

With the composite learning scheme, the nunchaku flipping
trick is first described by a human mentor using an initial
Petri net definition. As shown in Fig. 5, Py is the initial state,
in which the robot hand holds one of the sticks and is in
no motion. When the start-of-motion transition f( fires, the
robot begins the swing-up procedure. The swinging ?1, the
stop motion fg, and the hand-releasing action #, fire based
on the probability and the judging conditions in P;. If the
running time goes beyond a threshold, the action stops by
firing the stop motion #s. If the sensor reading is below a
certain level, the swing #; fires and the amplitude of the swing
is increased. After the sensor reading exceeds the threshold,

Fig. 4. The nunchaku flipping trick

1> has a possibility to fire. Similar to the swing-up procedure,
when the hand-releasing action #, successfully fires, the robot
goes on to chain-rolling. The back palm contact control 3,
the stop motion #;, and the regrasping action #; fire based
on the probability and the judging conditions in P,. The
robot regrasps by firing 74. If the regrasping is successful
according to the condition in Pz, stop motion #5 fires and
leads to the final success Pr(success)- Otherwise, stop motion
tg fires and leads to the final failure Pgg,). The possibilities
and conditions could change during the learning process.

P F(success)

O

, P t, P, t Py t

() L) ()l
Py
tg i -t,
: 4

5

t

Fig. 5. Initial Petri net definition of the nunchaku flipping trick
The bionic robot hand described in Section III-B is installed
on the robot arm to resemble human hand maneuvering. In
order to keep a reasonable fidelity to human sensory control,
no sensor is installed on the nunchaku. The motion of the
sticks and the chain is perceived by the haptic sensors and
6-axis load cell in the robot hand. In addition, without explicit
inference of the position, attitude, and layout of the sticks
and the chain, the sensor readings are directly mapped to
the motor controls of the fingers and the arm joints by the
learning algorithm. Such an end-to-end learning scheme has
earned increasing preference recently and is believed to be a
good approximation of human neural response (e.g., [33]).
Multiple demonstrations of the nunchaku flipping trick
are performed by a human mentor and recorded by the
motion capture systems. The human mentor labels if each
demonstration is a success and scores the performance. The
control policies of the transitions and the judging conditions
are learned from successful demonstrations weighted by
their scores. The grading criteria for robot self-evaluation
are learned from both successful and failed demonstrations.
Starting with the initial definition, the robot conducts multiple



trials. After each trial, the robot grades its own performance
using the learned criteria. The final score and the score of
every transition are given to determine if the trial is a success
and which part in the definition should be adjusted.

Such adjustment is important because of the physical
differences between the human mentor and the robot learner.
This is especially true for the ending part of the swing-up
which requires certain vertical speed to enter chain-rolling.
The human mentor tends to use a sudden jerk-up to realize
this part. Despite being a small move, this action is at the
border of the robot’s mechanical limit. As a result, the
learning agent avoids learning from demonstrations featuring
this move because of a low success rate during the trial
runs, while weights up the data form demonstrations with
a more back-and-forth type swing-up, which achieves much
more successes in the trial run evaluations. Similar situation
applies to the condition of switching from swing-up to chain
rolling. The initial switching condition learned from human
demonstrations is not the optimal for the robot, which can
be adjusted through learning from evaluation during the trial
runs.

Fig. 6. Nunchaku flipping learned by a robot (video uploaded to PaperPlaza)

V. CONCLUSIONS

In regard to the difficulties of robot learning from demon-
stration on tackling dynamic skills and compound actions, this
paper introduces a composite robot learning scheme which
integrates adaptive learning from definition, nonparametric
learning from demonstration with data conditioning, and
learning from evaluation. The method tackles advanced motor
skills that require dynamic time-critical maneuver, complex
contact control, and handling partly soft partly rigid objects.
We also introduce the “nunchaku flipping challenge”, an
extreme test that puts hard requirements to all these three
aspects. Details of the hardware preparation and control
system deployment of a physical test are explained. The

proposed robot learning scheme shows promising performance
in the challenge.

Future work will focus on introducing a fusing method to
merge the learning from multiple human mentors, as well
as testing the composite learning method with additional
challenges, including more advanced tricks of nunchaku usage
and skills of handling other complex objects such as yo-yo
and kendama. Hardware-wise, vibration suppression of the
fingers during the highly dynamic motion is an issue.
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