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Towards Globally Consistent Visual-Inertial Collaborative SLAM

Marco Karrer and Margarita Chli
Vision for Robotics Lab, ETH Zurich, Switzerland

Abstract— Motivated by the need for globally consistent
tracking and mapping before autonomous robot navigation
becomes realistically feasible, this paper presents a novel back-
end to monocular-inertial odometry. As some of the most
challenging platforms for vision-based perception, we evaluate
the performance of our system using Unmanned Aerial Vehicles
(UAVs). Our experimental validation demonstrates that the
proposed approach achieves drift correction and metric scale
estimation from a single UAV on benchmarking datasets.
Furthermore, the generality of our approach is demonstrated
to achieve globally consistent maps built in a collaborative
manner from two UAVs, each equipped with a monocular-
inertial sensor suite, showing the possible gains opened by
collaboration amongst robots to perform SLAM.
Video – https://youtu.be/wbX36HBu2Eg

I. INTRODUCTION

One of the key pre-requisites in the quest of employing
mobile robots with navigational autonomy is the develop-
ment of their ability to perceive their workspace and estimate
their ego-motion within it, which is commonly referred to
as Simultaneous Localization And Mapping (SLAM). While
initial attempts to address SLAM have been utilizing range
sensors, it was the emergence of monocular and real-time
capable SLAM systems, such as [6] and [12] that paved the
way towards the use of SLAM onboard small Unmanned
Aerial Vehicles (UAVs). The employment of Visual-Inertial
(VI) sensing cues and the successful demonstration of vision-
controlled flights using onboard sensing only [21], rendered
this sensor suite as the standard choice for the control and
navigation of small aircrafts.

With increasing maturity and robustness in this field, two
state of the art methods for Visual-Inertial Odometry (VIO)
open-sourced their implementations, namely OKVIS [15]
and ROVIO [3]. Such systems permit reliable state estimation
even during complicated UAV maneuvers. However, as these
algorithms are only local, the current UAV pose that is being
estimated is prone to drift over longer trajectories. Aiming
to address drift during real-time monocular state estimation,
ORB-SLAM [16] pushed the state of the art, tackling large-
scale loop correction at an unprecedented robustness and
accuracy in monocular systems. Incorporating additional
inertial data to the monocular setup, the most recent VI-
ORB-SLAM [17] was the first VI-SLAM system capable of
correcting drift via loop-closure detection and optimization,
while maintaining an estimate of metric scale with high
accuracy. Despite constituting a milestone, VI-ORB-SLAM
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Fig. 1: A snapshot of the proposed system in a collaborative setup
with two UAVs. On the left the viewpoints from each UAV are
shown, while on the right is the joint 3D map built collabora-
tively.Trajectories and landmarks are colored in white and green
for UAV A and UAV B, respectively. Landmarks that are shared
across both UAVs are indicated in magenta, while covisibility edges,
connecting keyframes accross the two UAVs are also in magenta,
magnified in the inset for clarity.

remains closed source and based on the authors’ evaluation
[17] as the only source of information, its accuracy is
reportedly fluctuating across different datasets, highlighting
the need for deeper analysis in VI-SLAM.

Moving on from single-robot SLAM systems, the com-
munity started making the first steps towards investigating
collaborative SLAM in multi-robot scenarios. While [22]
for example, leverages the multi-camera setup with view
overlap to perform SLAM in challenging dynamic scenes,
[8] and [19] explore the advantages of employing multiple
UAVs equipped with cameras for efficient mapping and
collaborative SLAM, respectively. Due to the lack of metric
measurements (e.g. inertial data), these systems can only
provide estimates up to scale. Instead, the approach in [1] for
collaborative stereo from two UAVs is capable of estimating
the relative pose of two VI systems in simulation, albeit
avoiding to address the global consistency of the estimation
processes.

While the aforementioned open-sourced VIO systems have
been very influential in robot navigation, their inevitable
tendency to drift, limits their applicability in real scenarios,
where global state estimation is required. In this spirit, we
present a carefully designed back-end, which in combination
with a nominal VIO system enables the generation of a
globally consistent map at comparable accuracy with the
state of the art VI-SLAM systems – at times even achieving
error reduction of over 50%, solely considering the back-
end optimization. Moreover, here we go a step further to
illustrate the use of the proposed back-end with two UAVs
to achieve collaborative mapping, while correcting for drift



upon loop-closures, both within each trajectory as well as
across trajectories of different UAVs as shown in Figure 1.
This paper outlines a new, complete back-end system in
enough detail to enable reproducability of the proposed
system, employable in combination with an off-the-shelf VIO
system requiring only minimal modification. Furthermore,
our evaluation on benchmarking datasets reveals that the
proposed framework can achieve significant improvement in
accuracy over the state of the art.

II. PRELIMINARIES

A. Notation

In this paper, we use bold capital letters for matrices
(e.g. A), bold small letters for vectors (e.g a), and capital
letters for coordinate frames (e.g. A), while sets of variables
are denoted by calligraphic letters (e.g. A ). A rigid body
transformation from coordinate frame B to A is denoted by
TAB , while the rotational part of any transformation T is
denoted by R and the translational part by t. A vector x
expressed in coordinate frame A is written as Ax. The origin
(i.e. the inertial frame) of the system is denoted by W (also
referred to as the world frame), the camera coordinate system
by C, and the IMU body frame by S.

B. IMU Model and State Representaion

It is well known that readings from MEMS-IMUs do
not capture the true acceleration and rotational velocity, but
rather a biased version of them. While some errors, such
as cross-couplings and scaling errors are constant and can
be compensated for via factory calibration, other influences
are time-variant and need to be estimated online. In order
to model the IMU measurements, we use the standard mea-
surement model, assuming that the accelerometer Sa(t) and
the gyroscope measurements SωWS(t) are both corrupted by
additive white noise η and have a sensor biases b, which are
assumed to be varying slowly over time (t), such that:

Sa(t) = Rᵀ
WS(t) (W â(t)−Wg) + ba(t) + ηa(t) , (1)

SωWS(t) = Sω̂WS(t) + bg(t) + ηg(t) . (2)

The notation .̂ signifies the true values of the respective
variables, while Wg is the gravity vector in the inertial frame.
We differentiate the accelerometer-specific variables from the
gyroscopic ones via the subscripts a and g, respectively.

Due to the characteristics of the IMU measurements, the
state of the system Θ includes the poses {RWS , tWS} of
all the keyframes (KF) in the trajectory, the positions W l of
all of the landmarks ever experienced, as well as the linear
velocities Wv and bias terms b:

Θ := {Rk
WS , t

k
WS ,Wv

k, bk︸ ︷︷ ︸
KFk

, Sr
li} ∀k ∈ V ,∀i ∈ L , (3)

where V is the set of all keyframes and L is the set of all
landmarks. Instead of expressing the landmarks in the global
reference frame (W ), we express them in local coordinates of
a reference KF Sr as proposed in [2]. In combination with an
inverse-depth parametrization [5], this aims at improving the

conditioning of the problem during the optimization. How-
ever, for the sake of readability, we will treat the landmarks
as if they were expressed in Euclidean coordinates. In this
paper, we refer to individual state variables as θj .

III. METHOD

We consider the setup of two UAVs equipped with a
monocular camera and an inertial sensor each, experiencing
the world at the same time, while exhibiting an overlap in
their fields of view. Following this paradigm, this section
gives an overview of the proposed system to arrive to a joint,
globally consistent map of the UAVs’ surroundings and their
relative poses within it.

A. System Overview
The proposed system, illustrated in Figure 2, employs a

front-end Visual-Inertial Odometry (VIO) module onboard
each UAV and then processes all information gathered from
the UAVs to perform Landmark Matching and Mapping,
Loop-Closure Detection, and Local and Global Bundle Ad-
justment (BA) on all estimates. VIO ensures a stable pose
estimation of each UAV in six Degrees of Freedom (DoF)
and is expected to drift, but can be used to safely stabilize
the UAV. The decoupling of the VIO from the rest, the
map management threads that can run on a ground station;
VIO communicates keyframe (KF) messages to the back-
end. While the absence of feedback from the global map to
the VIO prohibits direct corrections of the VIO’s state upon
map changes, it enables the use of an off-the-shelf VIO with
only minimal modifications. Furthermore, as transformation
between the global map’s and the VIO’s coordinate can be
easily estimated, the UAV would still be able to make use
of corrections, as e.g. presented by [18].

During Landmark Matching and Mapping (in cyan in Fig-
ure 2), past observations get associated with the landmarks
in the resulting, joint map from both UAVs, while new
landmarks get initialized in this map. The map comprises
of a set of 3D landmarks and KFs, where each KF consists
of the corresponding UAV pose, a set of 2D observations
and the landmarks visible from it. Each landmark in the map
stores the KF-IDs that have observed it, an estimate of the
local surface normal based on the viewing angles of all cor-
responding observations, as well as the most representative
image descriptor for this landmark across all observations, as
proposed in [16] – this aims to increase the re-detectability
of the landmarks.

A Covisibility Graph is maintained throughout each ses-
sion, with nodes corresponding to individual KFs. Two nodes
share an edge if the corresponding KFs share a minimum
number of landmark observations (αmin = 12 in our
implementation), and each edge is associated with a weight
α reflecting the number shared landmark observations. An
Essential Graph is also maintained (this notion was first
introduced in [16]), which is of similar structure to the Covis-
ibility Graph, only preserving the most essential information,
by restricting edges even more (e.g. αmin = 100). In addition
to the purely spatial KF covisibility, we also keep track of



Fig. 2: A schematic of the proposed pipeline to fuse the experiences of multiple UAVs into a joint, globally consistent map, by reusing
information obtained by the Visual Inertial Odometry (VIO) running onboard each UAV (in purple). At first, correspondences between
keyframes and landmarks are established and new landmarks get initialized (boxes in cyan). The scene structure and UAVs’ poses are
then optimized frequently on a local scope and upon detection of loop closures, optimization is performed on a global scale.

the temporal predecessor of each KF, distinguishing the agent
(i.e. here the UAV), from which the KF originates, as this
necessary for the constraints used to obtain metric scale.

Since Loop-Closure Detection is mostly independent of
Mapping and Local BA they run in separate threads. How-
ever, in case of a loop-closure, the system waits until the
Local BA for the current KF has finished, and then triggers
the loop correction, blocking the processing of new KFs until
the map is updated with the result of the Global BA. At the
core of the proposed system is the optimization of both the
KF poses and scene structure (i.e. landmarks) simultaneously,
including any IMU readings obtained between consecutive
KF poses. This aims at recovering each UAV’s trajectory in
metric scale. Local BA is performed for more frequent small-
scale corrections, while Global BA is used to optimize all
poses and landmarks obtained from all participating agents.

B. Visual-Inertial-Odometry Input

The proposed system is generally independent of the
choice of the VIO pipeline used, with the only requirement of
providing metrically scaled current poses and corresponding
2D observations. For the experiments presented in this paper,
the publicly available VIO system OKVIS [15] is employed
with some adaptations to reuse the matching results. OKVIS
performs a joint, non-linear optimization over a constant
number of KFs, including inertial measurements.

Packing the relevant information for the current KF as
provided by VIO into KF-messages, these then serve as input
to the proposed back-end framework. Each KF-message en-
closes the current KF’s pose, the IMU readings since the last
KF, the locations of the current KF’s kyepoints in the image,
and their corresponding descriptors – thus, eliminating the
need for sending full images. Each KF-message also includes
a list of global identifiers of its associated keypoints, enabling
tracing of the KF’s keypoints back to older KFs that they
were matched from, within the local window (of retained
KFs) of VIO. This enables re-use of data associations as
discussed in the next section. Note that this latter part of
a KF-message is optional, as for example, filter based VIO

systems (e.g. [3]) may not have this information available.
As the KFs arrive at an unknown rate, we store arriving KF-
messages within a first-in-first-out buffer, before processing
them sequentially.

C. Landmark Matching and Mapping

Landmark matching consists of establishing correspon-
dences of the current frame to the existing landmarks (via
3D-2D matching) and the creation of new correspondences
(via 2D-2D matching) across different KFs. In order to
establish matches to existing landmarks, every observation
in the current KF is checked for correspondences with the
past KFs via the global landmark identifiers listed in the
KF-message. Before accepting a new correspondence, this is
checked for consistency in terms of the reprojection error
and the descriptor distance within the map. In order to
establish additional 3D-2D correspondences, or in case the
VIO system at hand does not provide matching information,
the system uses the relative transformation Tk−1,k between
the current keyframe (KFk) and the previous KF (KFk−1)
stemming from the same agent, as estimated by the VIO.
Given an estimate for the pose T k−1

WS of KFk−1, the system
predicts the current pose (T̂ kWS) as

T̂ kWS = T k−1
WS · Tk−1,k . (4)

As a result, all landmarks predicted to be visible in KFk
from KFk−1 and its first-order neighbors (Nk−1) in the
Covisiblity Graph, are projected in it. Similarly to [16],
the search for matching observations is restricted within
a radius around the predicted projection of a landmark,
while a correspondence is established to the observation
with the smallest descriptor distance. In case of multiple
landmarks matching to the same 2D observation, only the
correspondence to the landmark with the biggest number of
observations is established, or the landmark with the smallest
descriptor distance, if the first criterion is inconclusive. This
process is performed first using a large radius (i.e. for coarse
matching) followed by solving the P3P problem as in [13] for
a number of RANSAC iterations (40 iterations) for outlier



filtering on the initial correspondences. The projection based
matching is then repeated, using the pose obtained by the
previous RANSAC step, with a more restrictive radius to
find additional matches. Using all the established correspon-
dences, the current KF pose is refined by minimizing the
reprojection error of the matched landmarks in the current
KF, while keeping the landmark position fixed.

Initialization of new landmarks is only performed when
the UAV is in an exploratory state, which is determined by
a minimum number on the 3D-2D inlier correspondences
found (here 60). In order to initialize new landmarks, we
first attempt to triangulate the remaining correspondences
obtained by the VIO system (using their identifiers), for
which no 3D association was found. At a second stage,
new matches of unassociated observations are searched for.
The candidate frames used for match searching are extracted
again as the first-order neighbors of the previous keyframe
(KFk−1) in the Covisibility Graph. We only attempt to
match observations corresponding to the same visual word
as computed by the loop-closure detector, rendering the
matching more efficient than brute force. All matches found
are checked for consistency before inserting their correspon-
dence as landmarks into the map. For every newly inserted
landmark, we set its reference KF to the more recent one
used to perform the triangulation. Due to this two-stage
correspondence search, our system is capable of running
without the need for matches obtained by the VIO system.

In a cleanup step, duplicated landmarks get merged by
projecting all landmarks associated in KFk to the covisible
KFs and matches are searched for in the same fashion as
for the initial 3D-2D matching. In case different landmarks
are associated to one observation, they get merged into one
landmark, i.e. the one with most observations associated to
it. When there is no landmark associated with an observation,
a new correspondence with that landmark is established.

D. Factor Graph Formulation

Keyframe-based VI-SLAM can be formulated as a factor
graph [14], where the variable nodes θj represent the system
state, and factor nodes fi are given by the relation of
measurements and the variables (observations). The factor
graph defines the factorization of a function f(Θ) as

f(Θ) =
∏
i

fi(Ai) , (5)

where Ai represents the set of variable nodes affected
by the factor fi. The goal is to find the values of
the variables Θ∗, which maximize the factorization
function Equation (5). Under the usual assumption that
observations are corrupted by zero-mean gaussian noise
(gaussian measurement model), the problem can be stated as

Θ∗ = arg max
Θ

{f(Θ)} = arg min
Θ

{− log f(Θ)}

= arg min
Θ

{
− log

∏
i

exp

(
−1

2
‖zi − hi(Ai)‖2Σi

)}

= arg min
Θ

{∑
i

‖zi − hi(Ai)‖2Σi

}
(6)

= arg min
Θ

{∑
i

eᵀiΣ
−1
i ei

}
= arg min

Θ

{∑
i

eᵀiWiei

}
,

where ‖x‖2Σ = xᵀΣ−1x denotes the squared Mahalanobis
distance, ei represents the residual error, Σi the covariance
matrix, and Wi the information matrix of the measurement
i. In this paper, we use the residual notation to describe
the objective function we are looking to minimize. Within
VI-SLAM, we essentially use 3 different types of factors,
which are introduced below based on the corresponding
residual error terms for the factors.

Reprojection Factor. Given the position of a landmark
Sr
lj expressed in KFr and the corresponding keypoint ob-

servation zk,j in the image coordinates of KFk, we define
the reprojection error as

ek,jr := zk,j − h
(
KkTCST

k
SWT

r
WSSr

lj
)
, (7)

where h(·) converts homogeneous coordinates into image
measurements and K is the camera matrix. Since we use
undistorted keypoint coordinates the error function does not
contain a distortion model.

IMU pre-integration Factor. Given a set of IMU
(accelerometer and gyroscope) readings between two
subsequent KFs, we can perform integration of the
measurements with an initial estimate of the bias
terms as in [7], which later can be optimized without
the need to perform numerical re-integration of the
raw measurements. With a given estimate of the pre-
integration, the resulting residuals can be written as

ek−1,k
∆R = log

((
∆R̃k−1,k(b̄k−1

g ) exp

(
∂∆R̄k−1,k

∂bg
δbg

))ᵀ

Rk−1ᵀ

WS Rk−1,k

)
ek−1,k

∆v = ∆Rk−1ᵀ

WS

(
Wv

k −Wv
k−1 −Wg∆tk−1,k

)
(8)

−
(

∆ṽk−1,k(b̄) +
∂∆v̄k−1,k

∂ba
δba +

∂∆v̄k−1,k

∂bg

)
ek−1,k

∆t = Rk−1,kᵀ

WS

(
∆tk−1,k −Wv

k−1∆tk−1,k −
1

2
g∆t2k−1,k

)
−
(

∆t̃k−1,k(b̄k−1) +
∂∆t̄k−1,k

∂δba
δba +

∂∆t̄k−1,k

∂δbg
δbg

)
,

where ·̃ denotes values obtained by the current estimate of
the pre-integration and ·̄ denotes values obtained with the
bias b̄ used at the time that the integration was performed.
For more detailed explanation of pre-integration the reader
is kindly referred to [7]. The scalar ∆tk−1,k represents the
integration time between KFk−1 and KFk. As a result, the
residual terms of Equation (8) are as follows

ek−1,k
a =

[
ek−1,kᵀ

∆R , ek−1,kᵀ

∆v , ek−1,kᵀ

∆t

]ᵀ
. (9)



Fig. 3: Schematic for the local optimization. The state variables
participating in the optimization are shown in clear circles, whereas
static variables are shaded. The Factors in the optimization (resid-
uals) are shown as squares and a prior on a variable is drawn as a
small disc.

Prior Factor. Given prior knowledge of a variable θ at
time tk, the residual for a prior factor is the difference
between the prior knowledge θ̄k and the estimate θk:

ekθ = θ̄k − θk . (10)

Note that for non-Euclidean variables (i.e. rotations) the
minus operation has to be adapted to the commonly used
box-minus operator, as shown in [10].

E. Local Bundle Adjustment (BA)

Since a full BA quickly becomes computationally infea-
sible for real-time or close to real-time applications, local
optimization is performed frequently as in most KF-based
SLAM systems today [16], [20]. While for pure visual
SLAM, it is well-established as shown by [16] that selecting
the local optimization window based on covisibility is a
reasonable choice, the situation in the case of VI-SLAM
is different, as a temporal ordering of the keyframes is of
crucial importance in order to obtain well defined constraints
formed by the IMU cues.

In this work, we employ a strategy similarly to [17], where
the the local optimization window of KFs is defined as the
set of the N most recent KFs as illustrated in Figure 3. In
the multi-agent case, we consider the last N KFs stemming
from the same agent as KFk. In addition to the KFs in the
Local Window, KFs that share observations with the Local
Landmarks visible in the Local Window are placed as fixed
variables in the optimization (Static Window). For landmarks
with only two observations, we check the KF within the
Local Window whether it is the last one inside the window, in
which case the landmark is completely deleted from the map,
as it is unlikely to be re-detected. By doing so, landmark
culling is performed by design without the need for further
bookkeeping of the landmark observations.

Since the optimization of the bias terms is limited to the
Local Window, we impose a prior on the N th KF in order to
constraint the variation of the bias. Therefore, the objective
function for the local BA in terms of residuals can be written

as

J(Θ) := eN
ᵀ

b WN
b e

N
b +

∑
k∈V

∑
j∈L (j)

δ
(
ek,j

ᵀ

r W k,j
r ek,jr

)
+

∑
k−1,k∈V \Vs

ek−1,kᵀ

a W k−1,k
a ek−1,k

a (11)

+
∑

k−1,k∈V \Vs

ek−1,kᵀ

b W k−1,k
b ek−1,k

b ,

where δ(·) represents a robust cost function – here, the
Cauchy loss function. The set of static KFs is denoted as Vs.
Optimization is performed using the Levenberg-Marquardt
algorithm available in the optimization framework GTSAM1,
while we approximate the information matrix WN−1

b for the
bias prior in the next iteration by extracting the diagonal
block of the Hessian matrix corresponding to bN−1, com-
puted by linearizing Equation (11) at the updated state Θ.

F. IMU Bias Initialization

While we use the ability of the VIO system to accurately
initialize the gravity direction and initial scale, the estimation
of the IMU bias terms b is more sensitive, as all axes need
to be sufficiently excited and therefore, the initialization is
dependent on the movement. While the gyroscope bias usu-
ally can be estimated well after a few KFs, the accelerometer
bias is more sensitive. When performing Local BA, the bias
terms that are outside the Local Window are only re-adjusted
following global optimization and therefore, usually at the
beginning of a mission they are incorrect. We propose to
perform an initial correction using an bundle adjustment
triggered based on the uncertainty of the bias estimates. As
described in the previous section, we compute the marginal
an approximation information matrix of bN−1, which gives
us an estimate of the uncertainty. As it is safe to assume that
the accelerometer bias is problematic, we only look at the
part of WN−1

b corresponding to bN−1
a and extract

wmin :=
√

min
(
diag

{
WN−1

ba

})
, (12)

which approximates the minimal square root information on
the accelerometer bias under the assumption that WN−1

b is
predominant on the diagonal. The global optimization as in
Section III-I is triggered as soon as wmin is above a threshold
parameter winit. We do the same procedure for both agents,
however, if the second agent only has very few frames in
the map, the initialization is postponed until a sufficient
number of KFs form this agent are processed in order to
avoid unstable results.

G. Keyframe Management

While inserting keyframes is a necessity during explo-
ration, insertion of new KFs in a well mapped area is
problematic in the sense that the number of error terms in
Equation (11) grows unbounded causing the optimization to
slow down. For purely visual SLAM, it is well established
that this can be avoided by dropping KFs (culling) containing

1https://research.cc.gatech.edu/borg/gtsam



predominantely reduntant information [16]. Here we assume
a KF to be redundant if more than 90 percent of its
landmark are observed in at least 3 other KFs as well. When
using IMU information, this approach is problematic, as the
preintegrated IMU measurements form a weaker constraint
the larger the integration time between two consecutive KFs
gets. While [17] uses a fixed time-based threshold to limit
the integration time between KFs, we propose to utilize
the estimated uncertainty of the preintegrated measurement.
Since the translational part of the preintegrated measurement
is crucial to recover a trajectory of metric scale and is also
the most sensitive value due to the double integration of the
acceleration, we only use the sub-part of Σa corresponding
to the translation. We only allow a KF k to be culled, if it
is outside the Local Window of both agents and

σk−1,k+1
min :=

√
min

(
diag

{
Σk−1,k
a + Σk,k+1

a

})
< σcull

(13)
holds. This results in a more generic threshold as a maximal
integration time, since it accounts for the uncertainty of
the bias used for the preintegration which changes over the
trajectory and furthermore naturally considers the noise of
the IMU measurements allowing to use the same threshold
for different IMU measurement noise levels (i.e. for different
sensors).

H. Loop-closure Detection & Frame Localization

In order to be able to correct accumulated drift over larger
trajectories when going back to a previously mapped area,
the need to recognize visited place arises. As OKVIS is
a purely VIO system, it does not have an implementation
of loop-closure detection nor correction. As a result, in our
implementation we employ the bag of binary words approach
[9] together with the appearance and geometric checks used
in [16]. In brief, loop-closure candidates are accepted if the
similarity score of an older matching keyframe (KFm) is
larger than the minimal similarity of the KFs sharing con-
nections on the Covisibility graph with the current keyframe
(KFk). Once a suitable candidate (KFl) is found, the KFs are
matched via descriptor matching and a projective RANSAC
is performed to filter outliers and finally decide upon the
inlier observation whether the match is accepted as a loop-
closure. In case a match is found, we transform the loop-
closuring keyframe (KFk) and its neighbors into the coordi-
nate frame of the re-detected KFl and search for additional
matches before merging duplicated landmarks as described
in Section III-C. After the merging step, the newly generated
correspondences are inserted in the Covisibility Graph and a
pose graph optimization followed by Global BA is triggered.

A similar routine is performed to initialize our multi-
agent setup. Note that here, we assume that the first agent
has already initialized the map and we try to localize any
subsequent agent in this map. Since at this stage we do not
have any covisibility information from the additional agent,
we only start searching based on the descriptor similarity
score, which we threshold in order to avoid tedious search-
ing. To verify a candidate for initialization, we solve the P3P

problem using [13] together with RANSAC to filter outliers.
Once the initialization is performed, we directly associate the
observations matched with landmarks and proceed with the
normal mapping.

I. Global BA

During Global BA, a full optimization of both the struc-
ture and the KF states is performed. In our system, this
optimization is carried out in three cases; when we detect
a loop closure, when we trigger the initialization and also
at the end of a mission. In the case of loop-closure, we fist
perform an optimization of the Essential Graph as a 6DoF
pose graph optimization without optimization of the velocity
and bias terms. The second step of the global optimization,
the Global BA, is identical for all of the three possible cases.

In the Global BA, we perform a full BA including the
estimation of velocity and bias terms for all KFs. In contrast
to the Local BA, all states variables are included in the
optimization and we do not impose any prior on the bias
terms. Therefore, the objective function to be minimize is
expressed as

J(Θ) := e0ᵀ
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0
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where the first term of Equation (14) is a prior on the root KF,
in order to remove the ambiguity arising by the choice of the
reference coordinate system. Again, a Cauchy loss function
is used on the reprojection terms. Since Global BA is only
performed after a local optimization, we can expect only a
very limited number of outliers, therefore we carry out the
full optimization using the Levenberg-Marquardt algorithm
and only perform an outlier removal afterwards.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In order to evaluate the proposed system, we perform
experiments on the publicly available EuRoC dataset [4],
consisting of different sequences recorded from a UAV flying
different trajectories both in a smaller room (Vicon Room)
as well as in a larger industrial environment (Machine-Hall),
where we put our focus on the Machine-Hall sequences. This
dataset is specifically selected to enable a direct and fair
comparison of the proposed pipeline to the most relevant
state of the art system in VI SLAM, namely VI-ORB-
SLAM [17], as it was evaluated on this dataset and it is
closed source. In order to conduct experiments in a multi-
UAV setup, we run two different sequences from this dataset
simultaneously, while treating each sequence as coming from
a separate UAV.

Since the proposed system aims to achieve a globally
consistent map and we only optimize KFs, we choose the
Absolute Trajectory Error (ATE) as our evaluation metric for



comparison. Assuming an estimated trajectory of n KF poses
T 1:n
WS and the corresponding trajectory in the ground truth
T 1:n
GS , where G is the origin of the ground truth poses, we

can compute TGW to transform the estimated trajectory into
the origin of the ground truth, e.g. by using the method of
Horn [11]. The error is computed as the Root Mean Squared
Error (RMSE) of the translation (trans(·)) for all poses as

RMSE(T 1:n
WS) :=

√
1
n

n∑
i=1

‖trans
(
(T iGS)−1TGWT iWS

)
‖2 .

(15)
The evaluation of our system was performed on an Intel Core
i7-4710MQ running at 2.5 GHz with 16GB RAM.

B. Results
We first evaluate the system in a single UAV configuration

and compare against VI-ORB-SLAM as shown in Table I.
Note that the values for VI-ORB-SLAM are copied from [17]
for reference, as there is no open-source implementation of
this method. For our approach we report the mean value over
three runs. In the smaller Vicon-Room sequences, the pro-
posed system generally has a higher error level compared to
VI-ORB-SLAM, although for the sequence V1_02_medium
we perform slightly better. We attain this to the low-textured
scene of this sequence, in which a tight coupling between
front-end and back-end as employed by VI-ORB-SLAM is
advantageous, enabling reaction to a low number of matches,
e.g. triggering the detection of additional, weaker keypoints.

On the MH sequences, we are able to achieve over 50% re-
duction on the trajectory error compared to VI-ORB-SLAM
for the well-textured sequences MH_01- MH_03. On MH_04
and MH_05, which exhibit partially very bad illumination,
we perform comparably to VI-ORB-SLAM with marginally
bigger errors. Evidently, the proposed system achieves higher
accuracy in feature rich sequences (i.e. well-textured scenes
with sufficient illumination), which we attain to the following
points. Compared to [17], we generally create fewer land-
marks, allowing the inclusion of more KFs in our Local
Window, therefore increasing the scope of the Local BA.
Furthermore, the use of the inverse distance parametrization
together with the local reference keyframe formulation gen-
erally results in a better conditioned optimization problem for
larger trajectories. Additionally the inclusion of a soft prior in
the local optimization results allows to adjust the bias terms
more freely in the course of the local optimization, damping
the diffusion of initial errors over the whole trajectory.

The fluctuations of the error, however, across the different
sequences attest to the fact that the front-end is a crucial
component in handling difficult scenarios e.g. with bad
illumination and low-textured scenes. So while proposing
a powerful back-end is shown to improve significantly the
accuracy of the estimation processes, further investigation
in interfacing it with the front-end promises to result to
even further improvement. This is most evident for visually
challenging Vicon-Room sequences, for which reason our
evaluation was focused on the Machine Hall.

Evaluation of the complexity of the proposed system
and the resulting timings is not straightforward, as real-

Fig. 4: Breakdown of the computation time of the proposed pipeline
performed for every KF for the sequence MH_03_medium. To filter
fluctuations between KFs,the timings presented are computed using
a moving average filter over 10 KFs. The average incoming KF-rate
for this sequence is approximately 4Hz (250 ms).

time performance here depends on the rate at which KFs
are processed rather than a fixed frame rate, therefore, we
analyze complexity using the average KF-rate, as shown in
Table I. Note that the KF-rate is both scene- and motion-
dependent, and thus, it varies both across sequences and
throughout one sequence. As a result, we consider the system
to be real-time capable, if it is able to process the KFs faster
than the average KF-rate. The average KF processing rate for
each sequence is shown in Table I with the system achieving
real-time capability across all sequences. A detailed break-
down of the execution time for MH_03_medium is shown
in Figure 4. Since the execution time has relatively large
fluctuations between KFs, we process the timings using a
moving average filter. As it can be seen, the runtime is
slowly increasing with a growing number of KFs, which
is caused by the need for well defined IMU-constraints,
prohibiting arbitrary KF culling and therefore, although the
number of variables is approximately constant, the number of
error terms contributing to the cost function increases (Static
Window). The fluctuation within the sequence is attained to
the fact that exploration generally tends to be cheaper, as the
number of KFs in the Static Window decreases. Although
the Global BA is the most expensive part of the system
(included in the recorded average KF-processing rate), it is
only sporadically triggered and therefore, the bottleneck for
real-time operation is, on average, the Local BA including
the computation of the prior information for the bias.

Evaluation using two UAVs was performed by combining
different MH sequences. The trajectory error was computed
by aligning the joint map to the ground-truth in the same
fashion as for the single UAV setup. An overview of the
results is in Table II, whereas the trajectory and landmarks
for the combination MH_02 & MH_03 is shown in Figure 1.

Although there are no IMU measurements between KFs
from different UAVs to impose further constraints, it can
be seen that the overall accuracy is maintained or increases
compared to the single UAV case, indicating global consis-
tency of the two trajectories in the common map frame. The
advantages of collaborative sensing from two UAVs become
evident especially in the difficult sequences. However, at this



VI-ORB-SLAM Proposed
RMSE Scale Err. RMSE* RMSE Scale Err. RMSE* KF-rate

[m] [%] [m] [m] [%] [m] [Hz]
V1_01_easy 0.023 0.8 0.016 0.044 1.5 0.034 7.4
V1_02_medium 0.027 1.0 0.019 0.021 1.0 0.012 9.7
V1_03_difficult X X X 0.046 2.0 0.034 10.0
MH_01_easy 0.068 0.3 0.068 0.018 0.2 0.015 6.5
MH_02_easy 0.073 0.4 0.072 0.027 0.4 0.020 6.5
MH_03_medium 0.071 0.1 0.071 0.031 0.2 0.030 6.3
MH_04_difficult 0.087 0.9 0.066 0.089 0.1 0.089 8.4
MH_05_difficult 0.060 0.2 0.060 0.070 0.5 0.054 8.1

TABLE I: The scale and RMSE errors of VI-ORB-SLAM [17] and the proposed monocular-inertial pipeline evaluated on the EuRoC
dataset (averaged over 3 runs). The best RMSE performance in each sequence is indicated in bold. RMSE* records the error when
performing the alignment to the ground-truth trajectory using a 7DoF transformation, indicating the error that would be achieved with
perfect scale estimation.

UAV A: MH_01 MH_03 MH_04
UAV B: MH_02 MH_02 MH_05

RMSE [m] 0.021 0.026 0.059
Scale Err. [%] 0.3 0.05 0.1

RMSE* [m] 0.015 0.026 0.59

TABLE II: Average ATE for the proposed pipeline in the two-UAV
setup. Different combinations of sequences are used to conduct
experiments of different levels of difficulty. In Figure 1, the map
as obtained by MH_02 & MH_03 is shown

stage we are only able to process the data close to real-time
(factor of ~1.5), due to our sequential setup.

V. CONCLUSION

This work presents a back-end to monocular-inertial
odometry from one or multiple agents, contributing towards
achieving globally consistent SLAM, while resolving the
scale ambiguity. The system considers the state of the bias
estimate in both a local optimization and during the keyframe
culling and is real-time capable in the single agent case. An
evaluation on the EuRoC benchmarking dataset reveals over
50% improvement in accuracy at times over the state of the
art. Finally, this system is demonstrated to achieve globally
consistent collaborative VI mapping from two UAVs.

The significant reduction of the trajectory error in some of
the test cases reveals the room for improvement still existing
on the state of the art. However, the reported fluctuations
emphasize the need for a tight integration between front-
end and back-end in order to allow appropriate reactions to
difficult conditions, such as low-textured scenes or bad illu-
mination. Future work will aim at addressing this integration
into the proposed system. Furthermore, appropriate methods
to summarize IMU-constraints in order to expand the horizon
for keyframe culling are essential towards the goal of life-
long real-time SLAM.
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