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Abstract— Autonomous driving requires 3D perception of
vehicles and other objects in the in environment. Much of
the current methods support 2D vehicle detection. This paper
proposes a flexible pipeline to adopt any 2D detection network
and fuse it with a 3D point cloud to generate 3D information
with minimum changes of the 2D detection networks. To
identify the 3D box, an effective model fitting algorithm is
developed based on generalised car models and score maps.
A two-stage convolutional neural network (CNN) is proposed
to refine the detected 3D box. This pipeline is tested on the
KITTI dataset using two different 2D detection networks.
The 3D detection results based on these two networks are
similar, demonstrating the flexibility of the proposed pipeline.
The results rank second among the 3D detection algorithms,
indicating its competencies in 3D detection.

I. INTRODUCTION

Vision-based car detection has been well developed and
widely implemented using deep learning technologies. The
KITTI [1] benchmark site reports that the state of the art
algorithms are able to achieve ∼ 90% average precision (AP).

However, for autonomous vehicles, car detection in 2D
images is not sufficient to provide enough information for
the vehicle to perform planning and decision making due
to the lack of depth data. For a robust and comprehensive
perception system in autonomous vehicle, 3D car detection,
including car dimensions, locations and orientations in the
3D world, is essential. However the state of the art for 3D
car detection algorithms only achieve 62% AP. Gaps still
exist as compared to the 2D detection performance and the
problem remains as challenging.

According to the types of input sources, the current
algorithms for 3D vehicle detection can be categorised into
four major groups, including (1) mono image based, (2)
stereo image, (3) LiDAR (Light Detection and Ranging), and
(4) fusion between mono image and Lidar.

Mono images lack the depth information to recover the
3D location of detected obstacles, therefore assumptions
and approximations have to be made. Stereo image based
approaches normally involve the construction of depth maps
from stereo correspondence matching. The performance of
this type of approach depends heavily on the depth map
reconstruction and the accuracy drops as distance from the
vehicle increases.
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LiDAR, despite its high cost, is able to provide the most
direct measurement of object location. But it lacks color
information and it is always sparse which poses difficulties in
classification. In order to make use of the full capabilities of
LiDAR and camera, fusion approaches have been proposed
in the literature. To make use of the deep CNN architecture,
the point cloud needs to be transformed into other formats.
In the process of transformation, information is lost.

The prior approaches for 3D vehicle detection are not as
effective as those for 2D detection. Little attention has been
paid to how to transfer the advantages and lessons learnt
from 2D detection approaches to 3D detection approaches.
Moreover, the field is lacking effective 3D detection ap-
proaches that enable the existing 2D approaches to provide
3D information. The state of the art 2D approaches can
not be applied to autonomous vehicles which require 3D
information.

In this paper, we propose a flexible 3D vehicle detection
pipeline which can make use of any 2D detection network
and provide accurate 3D detection results by fusing the 2D
network with a 3D point cloud. The general framework
structure is illustrated in Fig. 1. The raw image is passed
to a 2D detection network which provides 2D boxes around
the vehicles in the image plane. Subsequently, a set of 3D
points which fall into the 2D bounding box after projection
is selected. With this set, a model fitting algorithm detects
the 3D location and 3D bounding box of the vehicle. And
then another CNN network, which takes the points that fit
into the 3D bounding box as input, carries out the final 3D
box regression and classification. It requires minimum efforts
to modify the existing 2D networks to fit into the pipeline,
adding just one additional regression term at the output layer
to estimate the vehicle dimensions. The main contributions
of the paper are:

1) A general pipeline that enables any 2D detection
network to provide accurate 3D detection information.

2) Three generalised car models with score maps, which
achieve a more efficient model fitting process.

3) A two-stage CNN that can further improve the detec-
tion accuracy.

This pipeline has been tested using two outstanding 2D
networks, PC-CNN [20] and MS-CNN [21]. The 3D detec-
tion performances based on both networks were evaluated
using the KITTI dataset [1]. We significantly lead the ma-
jority of the algorithms in both bird eye detection and 3D
detection tasks. We also achieved comparable results to the
current state of the art algorithm MV3D [19] in both tasks.
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Fig. 1: General fusion pipeline. All of the point clouds shown are in 3D, but viewed from the top (bird’s eye view). The
height is encoded by color, with red being the ground. A subset of points is selected based on the 2D detection. Then, a
model fitting algorithm based on the generalised car models and score maps is applied to find the car points in the subset
and a two-stage refinement CNN is designed to fine tune the detected 3D box and re-assign an objectiveness score to it.

II. RELATED WORKS

This section reviews the works that are related to the
proposed pipeline in details. It also highlights the differences
between our proposal and the prior works.

Mono Image Approaches: In [2], a new network was
designed to estimate the car dimensions, orientations and
probabilities given a detected 2D box from an existing
network. Using the criterion the perspective projection of
a 3D box should fit tightly with the 2D box in the image,
3D box was recovered by using the estimated information.
Similarly in DeepMANTA [3], the vehicle orientation and
size were estimated from a deep CNN. Additionally, the
network also estimated 36 locations of key points on the car
in the image coordinates. A 2D/3D shape matching algorithm
[4] was applied to estimate vehicle 3D poses based on these
36 2D part locations.

Another set of algorithms, e.g. [5], [6], [7] and [8], defined
3D car models with occlusion patterns, carried out detection
of the patterns in the 2D image and recovered the 3D
occluded structure by reasoning through a MAP (maximum
a posteriori) framework.

These approaches are sensitive to the assumptions made
and the parameter estimation accuracy. As shown in the result
section, our method outperforms them significantly.

Stereo Image Approaches: The depth map from stereo
correspondence is normally appended to the RGB image as
the fourth channel. The RGB-D image is passed to one or
more CNNs in order to carry out the detection. In [9], Pham
et al. proposed a two-stream CNN where the depth channel
and RGB channel went through two separate CNN branches
and were fused before the fully connected layers.

Lidar Approaches: The common framework involves
three steps: pre-processing (e.g. voxelization), segmentation
and classification. A detailed review of LiDAR approaches
can be found in [10]. Wang et al. [11] proposed a different
approach where the point cloud was converted into 3D
feature grids and a 3D detection window was slid through the
feature grids to identify vehicles. In [12], the point cloud was
converted into a 2D point map and a CNN was designed to
identify the vehicle bounding boxes in the 2D point map. In
[13], the authors extended the approach of [12] and applied

3D deep CNN directly on the point cloud. However, this
approach is very time consuming and memory intensive due
to the 3D convolutions involved. To improve, [14] proposed
a voting mechanism able to perform sparse 3D convolution.

Fusion Approaches: In [17], the sparse point cloud is
converted to a dense depth image, which is similar to a
stereo one. The RGB-D image was passed through a CNN
for detection. In [18], the point cloud was converted into a
three-channel map HHA which contains horizontal disparity,
height above ground and angle in each channel. The resulting
six-channel image RGB-HHA was processed by a CNN for
detection of vehicles. However these two methods will not be
able to output the 3D information directly from the network.

In oder to address this, MV3D (multi-view 3D) detection
network proposed by Chen et al. [19] included one more type
of input generated from the point cloud, the bird’s eye view
feature input. This input has no projective loss as compared
to the depth map, thus 3D proposal boxes can be generated
directly. This approach has achieved the current state of the
art in 3D vehicle detection. It generates 2D boxes from 3D
boxes while ours generate 3D boxes from 2D boxes. And
MV3D explores the entire point cloud while ours only focus
on a few subsets of the point cloud, which is more efficient
and saves computation power.

2D Detection: The proposed pipeline is flexible in regards
to the choice of 2D detection networks. Only a slight change
is required on the last fully connected layer of the network
so that it is able to estimate the dimensions of the cars. Both
[2] and [3] proposed ways to encode the car dimensions to
the network. For better accuracy, the 2D detection networks
proposed in [22], [3] and [23] can be incorporated since
they are the leading networks for 2D detection. For faster
computation, the approaches presented in [24] and [25] can
be implemented. In this paper, we implement PC-CNN [20]
and MS-CNN [21] to demonstrate the flexibility of the
pipeline.

Model Fitting: In [5], Xiang et al. proposed 3D voxel
patterns (3DVPs) as the 3D car model. 3DVPs encode
the occlusion, self-occlusion and truncation information. A
boosting detector was designed to identify the 3DVPs in
the image, while [6] implemented a sub-category awareness



CNN for 3DVP detection.
Deformable part-based models (DPM) can be found in

[26], [27], [28] and [29]. Different classifiers were trained to
detect DPM. Fidler et al. extended the DPM to a 3D cuboid
model in [30] in order to allow reasoning in 3D. In [8], [31],
[7] and [3], 3D wireframe models were used. Similarly, each
wire vertex is encoded with its visibility.

Due to the various vehicle types, sizes, and occlusion
patterns, these prior approaches require a substantial number
of models in order to cover all possible cases. In our
approach, only three models are used and the occlusion
pattern is assigned online when doing model fitting.

III. TECHNICAL APPROACH

The input is an image. The first step is to generate 2D
bounding boxes for the candidate vehicles. Secondly, these
bounding boxes are used to select subsets of the point
clouds, using the transformation between the camera and
LiDAR. Due to the perspective nature of the camera, the 3D
point subset may spread across a much larger area than the
vehicle itself as shown in Fig.1. This subset also contains
a substantial number of non-vehicle points and points on
neighbouring vehicles. All these artefacts add challenges to
the 3D box detection.

A. Car dimension estimation

One additional regression layer is needed at the end of
the given 2D detection network. This regression method was
inspired by [3] and [2]. First the average dimensions for all
the cars and vans in KITTI dataset is obtained. Let [h̄, l̄, w̄]
denote height, length and width of the vehicle. The ground
truth regression vector ∆∗

i = (δh, δl , δw) is defined as:

δh = log(h∗/h̄) δl = log(l∗/l̄) δw = log(w∗/w̄) (1)

The dimension regression loss is shown as:

Ld(i) = λdCiR(∆i −∆
∗
i ) (2)

where λd is the weighting factor to balance the losses defined
in the original network, e.g. classification loss, 2D box
regression loss; Ci is 1 if the 2D box is a car and 0 otherwise;
R is the smooth L1 loss function defined in [32] and ∆i is
the regression vector from the network.

To train the modified network, we can reuse the pre-trained
weights from the original network for initialisation. Only a
small part of the network needs to be re-trained while the
rest can be kept as fixed during training. For example, in
MS-CNN, we only re-trained the convolution layer and the
fully connected layers after ROI pooling in the detection sub-
network and in PC-CNN, we re-trained the GoogleNet layer,
convolution layer and the fully connected layers after the De-
convolution layer in the detection sub-network.

B. Vehicle model fitting

We first generate a set of 3D box proposals. For each
proposal, the points within the 3D box are compared to the
three generalised car models. The proposal with the highest
score is selected for the two-stage CNN refinement.

The 3D box proposals are generated following the princi-
ple of RANSAC algorithm (random sample consensus). In
each iteration, one point is selected randomly. A second point
is randomly selected from points within the cube centred at
the first point and with the side length of 1.5l, where l is the
car length from the 2D CNN dimension estimation and 1.5
compensates the estimation error. A vertical plane is derived
from these two points. Any points with a distance to the
plane less than a threshold are considered as inliers to the
plane. A maximum 20 points are then randomly selected
from the inliers. At each point, a second vertical plane,
passing through that point and perpendicular to the first
vertical plane, is derived.

Along the intersection line between these two vertical
planes, eight 3D boxes can be generated based on the
estimated car width and length. Since the first vertical plane
is visible, based on the view direction, four boxes are
eliminated. At each of the remaining box locations, a new
range is defined by expanding the box by 1.5 times along
both w and l directions. The lowest point within the new
range can be found and it determines the ground of the 3D
box while the roof of the 3D box is set based on the height
estimation. In summary, at each iteration, maximum 80 3D
box proposals can be generated.

(a) SUV (b) Sedan (c) Van

Fig. 2: Generalised car models

Only three generalised car models are used for model
fitting. They represent three categories of cars, SUVs, Sedans
and Vans. Hatchback cars are considered to be SUVs. We
observe that the relative distances/positions between different
parts of a car do not vary significantly for different cars
from the same category even with different sizes. This
invariance indicates that if the cars under the same category
are normalised to the same dimension [h, l, w], their shapes
and contours will be similar. We verified this and generalised
the car models by normalising the cars in the 3D CAD
dataset used in [3], [30] and [33]. Figure 2 illustrates the
side view of the point cloud plots for the three categories.
Each plot is an aggregation of the points that are generated
from the 3D CAD models, aligned to the same direction
and normalised to the same dimension. The SUV/hatchback
plot consists of points from 58 CAD models, the sedan plot
consists of 65 point sets, and the van plot consists of points
from 10 models.

Each aggregation is then voxelized to a 8×18×10 matrix
along the [h l w] direction. Each element in the matrix is
assigned different scores based on its position. The elements
representing the car shell/surface are assigned a score of 1,
indicating that 3D points in the model fitting process fall on
the car surface will be counted towards the overall score.
The elements inside or outside the car shell are assigned



negative scores, and the further away they get from the car
shell (either inwards or outwards), the smaller the assigned
values. This indicates that no points should be detected from
outside or inside the car by LiDAR and the overall score will
be penalised for such detections. The elements at the bottom
layer of the matrix are assigned a score of 0. Points detected
at the bottom layer could be the ground or car’s tires, which
are difficult to distinguish from each other. They will not be
penalised or counted.

Fig. 3: Score map (scores are indicated at bottom.)

Self-occlusion can be easily determined from the view di-
rection. This is encoded online when doing the model fitting
since view direction changes for different 3D box proposals.
Negative scores are assigned to the car surface elements if
they are self-occluded. Furthermore, for simplicity, only the
four vertical facets are considered for self-occlusion analysis
while car roof and bottom are not considered.

Two slices of the score assignment from the SUV category
are shown in Fig. 3, with the left image depicting the side
facet and the right image illustrating the center slice. The
car exterior and interior are indicated by orange and blue
while the bottom is indicated white. Yellow and green refer
to the shell/surface of the car, while green further indicates
that those areas might be self-occluded.

Points within the 3D box proposals will be voxelised
into 8× 18× 10 grids and compared to the three potential
vehicle models. Due to the orientation ambiguity, the grids
are rotated around their vertical center axis by 180 degree
and are then compared to the three models. Out of all the
bounding box proposals, the one with the highest score is
selected for the next step.

C. Two-stage refinement CNN

To further align the detected 3D box to the point cloud, we
designed a two-stage CNN. In the literature, 3D CNNs are
commonly used to process 3D point clouds, e.g. [12]. How-
ever, these CNNs are extremely slow and memory intensive.
In this paper, we found that 2D CNNs are sufficient.

With the points in a given 3D box, the first CNN outputs
a new 3D box. A new set of points can be found within the
new 3D box. The second CNN outputs a probability score
based on the new set of points to indicate how likely these
points represent an actual car.

However, point sets cannot be input to the CNN directly.
We apply normalization and voxelization strategies in order
to formalize the points in matrix form in order to fit to
the CNN. Furthermore, consistent with 2D image detection
cases [34], [21], a bounding box context is able to provide
additional information to improve the detection accuracy. We
also include the context of the 3D bounding box as input to
the CNN.

Given a 3D box from the model fitting process, our
pipeline expands it along its h, l, w directions by 1.5, 1.5,
and 1.6 times respectively to include its context. The points
inside this expanded box are normalised and voxelised into
a 24×54×32 matrix. The matrix is sparse with ∼ 0.6% oc-
cupied elements on average. As compared to the generalised
model, we doubled the resolution of the voxelisation in order
to reserve more spatial details and patterns of the distribution
of the points. Note that the normalisation is anisometric, it
has different scale ratios along different directions.

The backbones of the CNNs in both stages are based
on the VGG-net with configuration D as described in [35].
After each convolution, an ELU (exponential linear units)
layer [36], instead of Re(ctified)LU layer, is adopted for a
more stable training process. The first stage CNN has two
parallel outputs, one for 3D box regression and the other
for classification, while the second stage CNN only has one
output, classification.

δ
∗
xc = (X∗

c −Xc)/L δ
∗
yc = (Y ∗

c −Yc)/H δ
∗
zc = (Z∗

c −Zc)/W

δ
∗
xl
= (X∗

l −Xl)/L δ
∗
yl
= (Y ∗

l −Yl)/H δ
∗
zl
= (Z∗

l −Zl)/W

δ
∗
w = log(W ∗/W ) (3)

The classification loss for both CNNs is So f tMax loss
and the 3D box regression loss is SmoothL1 loss. The
ground truth regression vector ∆∗

3d defined in (3) has seven
elements, three for the center of the box, three for the
left bottom corner and one for the width. It is just suf-
ficient to recover the 3D bounding box from these seven
elements. Due to the anisometric normalisation, a quartic
polynomial needs to be solved. Note that across all the inputs,
Xc/l , Yc/l , Zc/l , L, H, W are all constant as all the 3D boxes
are aligned and normalised to the same size.

Classification has two classes, car and background. A 3D
box is classified as positive when the IOU (intersection of
union) between its bird’s eye view box and the ground truth
bird’s eye view box is greater than a specific threshold.
This threshold is 0.5 for the first stage CNN and 0.7 for
the second. 0.7 is consistent with the criteria set by KITTI
benchmark. The reason to set a lower threshold for the first
stage is to train the network so that it is able to refine the
boxes with IoU between 0.5 to 0.7 to a better position where
the IoU may be greater than 0.7; otherwise the network will
take those boxes as negative and will not be trained to refine
them.

The training of the two networks is carried out indepen-
dently as they do not share layers. The training batch size
is 128, with 50% being positive. Both CNNs are trained for
10K iterations with a constant learning rate of 0.0005.

IV. EXPERIMENT RESULTS AND DISCUSSION

To verify the flexibility of our approach, the pipeline is
tested using PC-CNN [20] and MS-CNN [21]. The per-
formance based on both networks is evaluated using the
challenging KITTI dataset [1], which contains 7481 images
for training/validation and 7518 images for testing. The
training/validation set has annotated ground truth for 2D



TABLE I: Average Precision benchmark for bird’s eye view and 3D box based on KITTI validation set.

Algorithm
Bird’s Eye View 3D Box

IoU = 0.5 IoU = 0.7 IoU = 0.5 IoU = 0.7
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

∗Mono3D [38] 30.50 22.39 19.16 5.22 5.19 4.13 25.19 18.20 15.52 2.53 2.31 2.31
∗3DOP [5] 55.04 41.25 34.55 12.63 9.49 7.59 46.04 34.63 30.09 6.55 5.07 4.10

∗∗Deep3DBox [2] 29.96 24.91 19.46 9.01 7.94 6.57 24.76 21.95 16.87 5.40 5.66 3.97
∗VeloFCN [12] 79.68 63.82 62.80 40.14 32.08 30.47 67.92 57.57 52.56 15.20 13.66 15.98
∗MV3D [19] 96.34 89.39 88.67 86.55 78.10 76.67 96.02 89.05 88.38 71.29 62.68 56.56

Ours (MS-CNN [21]) 90.36 88.46 84.75 82.17 77.15 74.42 87.16 87.38 79.40 55.82 55.26 51.89
Ours (PC-CNN [20]) 88.31 83.74 79.62 83.61 77.36 69.61 87.69 79.92 78.65 57.63 51.74 51.39
∗ sources from [19]
∗∗ sources from [2], which uses different validation set, so its APs are calculated from the 1848 common images with our validation set.

bounding box in the image plane and 3D bounding box in
real world. Following [37], we split the training/validation
set into training and validation sub-sets. The training sub-set
is purely used to train the car dimension regression and two-
stage CNN while the validation sub-set is for evaluation only.
KITTI divides the cars into easy, moderate and hard groups
based on their visibilities. We follow this same convention
for our evaluation. To further verify the performance of
the proposed pipeline, we also tested it using our own
autonomous vehicles.

Metrics: The primary focus of this paper is on 3D
detection, we do not evaluate the performance of the pipeline
for 2D detection tasks. Following the evaluation metrics
proposed in [19], we evaluate our proposal based on the
Average Precession (AP) for bird’s eye view boxes and
for 3D boxes. The bird’s eye view boxes are generated by
projecting the 3D boxes on the same ground plane. The AP
is calculated based on the IoU between the output boxes and
the ground truth boxes, while in [5] and [3], the distance
between two boxes are used. We feel that IoU is a more
comprehensive index than distance, as it implicitly accounts
for not only distance but also alignment and size.

Bird’s Eye View & 3D Box AP: We compare the out-
puts from our pipeline with other algorithms which can
output 3D box information, including Mono3D [38], 3DOP
[5] and Deep3DBox [2] which use image data only, VeloFCN
[12] which uses LiDAR data only and MV3D [19] which
uses fusion.

The IoU threshold for true positive detection is set at
0.5 and 0.7. The left part of TABLE I shows the results
from bird’s eye view. In general, the point cloud based
approaches all significantly lead the image-based approaches
for both IoUs. Within the point cloud based approaches, our
pipeline outperforms VeloFCN significantly but underper-
forms MV3D marginally. When IoU = 0.5, our performance
with PC-CNN is about 7% worse on average than MV3D and
5% worse for MS-CNN. When IoU = 0.7, the performances
with PC-CNN and MS-CNN are both very close to MV3D
except for the performance with PC-CNN for the hard group
(7% worse than MV3D).

The 3D box detection comparisons are listed in the right
part of TABLE I. Similarly for both IoU thresholds, our
method significantly outperforms all the approaches with
the single exception of MV3D. On average, the overall

performance is about 10% worse than MV3D for both IoU =
0.5 and 0.7 except that the performance with MS-CNN for
moderate group at IoU = 0.5 is only 1.6% less than MV3D.

We only use point clouds to generate the 3D box and
do not take any color information from the image into
account. Comparing it to VeloFCN, which also only takes
point clouds as inputs, shows the effectiveness of our ap-
proach, processing the point cloud as subsets instead of as
a whole. Comparing to MV3D, image color information is
necessary to further boost the performance of our pipeline.
One possible solution is to extract the feature layer which
is right before the ROI pooling layer in the 2D detection
CNN. Based on the 3D box from the model fitting process,
we could find its corresponding 2D box in the image plane
and carry out ROI pooling on the extracted feature layer
in order to extract the feature vector. Then fuse the feature
vector with the one from the refinement CNN to output the
final 3D box and its probability.

Flexibility Anlysis: The comparison between the two ap-
proaches using the proposed pipeline verifies the flexibility of
our pipeline. PC-CNN and MS-CNN have different network
structures. But both approaches achieve comparable AP for
the two tasks and IoU thresholds. Furthermore, the two-stage
refinement CNN was trained based on the pipeline with PC-
CNN and re-used in the pipeline with MS-CNN without
any further tuning on the network. This further confirms the
flexibility and adaptability of our proposed pipeline.

Car Dimension Regression Impact: We show the im-
pact from the car dimension regression on the original 2D
detection CNN in TABLE II. Similarly, AP is populated for
the 2D detection task in image plane. Following KITTI, the
IoU threshold is set at 0.7. The left part shows the perfor-
mance of the original 2D detection CNN while the right
part indicates the results after appending the car dimension
regression term. The impact is not very significant for both
networks, and it even improves the performance marginally
for some groups.

TABLE II: Impact on the original 2D detection CNN from
appending the car dimension regression term.

2D Detection Original With Dimension Regression
Easy Moderate Hard Easy Moderate Hard

MS-CNN 91.64 89.95 79.55 93.98 89.92 79.69
PC-CNN 94.62 89.60 79.97 90.22 89.03 81.64



Fig. 4: Qualitative result illustration on KITTI data (top row) and Boston data (bottom row). Blue boxes are the 3D detection
results.

Ablation Study: To analyse the effectiveness of the steps
involved in the 3D box generation, the AP is calculated after
each step (model fitting, first stage CNN and second stage
CNN) for both bird’s eye view and 3D box tasks. For this
study, the IoU threshold is set to 0.5. Since the results based
on MS-CNN and PC-CNN are quite comparable, only PC-
CNN results are presented in TABLE III.

The results from the model fitting are not as good as
the final oens, but they are better than all the image based
algorithms in TABLE I and comparable to VeloFCN. This
indicates that the model fitting algorithm can work properly.

TABLE III: Ablation study based on KITTI validation set.
Numbers indicate AP with IoU threshold at 0.5.

Step Bird’s Eye View 3D Box
Easy Moderate Hard Easy Moderate Hard

Model fitting 77.71 73.27 70.06 56.32 51.33 47.40
First CNN 88.16 83.60 79.65 87.51 79.76 78.81

Second CNN 88.31 83.74 79.62 87.69 79.92 78.65

With the first CNN, the detection performance is improved
significantly in both bird’s eye view and 3D box tasks. The
improvement is ∼ 10% and ∼ 30% respectively. This shows
that although only 2D convolution is used and the input 3D
matrix is very sparse, the network is still very powerful and
effective to locate the 3D box. The improvement from the
second CNN is insignificant since it is not designed to regress
the 3D box. It is designed to reshuffle the probability of the
3D box from the first CNN.

Qualitative Results: The first row in Fig. 4 shows some
of the 3D detection results by applying our pipeline with PC-
CNN on KITTI validation dataset. We also tested it using our
own dataset collected at Boston USA. The setup of the data
collection vehicle is similar to KITTI, with differences in the
relative positions between the LiDAR, camera and the car.
We applied the pipeline, which is trained based on KITTI
training dataset, directly on the Boston data without any

fine-tuning of the network weights. The system still works as
shown in the second row of Fig. 4. It shows the generalisation
capability of the proposed pipeline and indicates its potentials
in executing 3D vehicle detection in real situations beyond a
pre-designed dataset. Interested readers may refer to the link
for video illustrations (https://www.dropbox.com/
s/5hzjvw911xa5mye/kitti_3d.avi?dl=0).

V. CONCLUSIONS

In this paper we propose a flexible 3D vehicle detection
pipeline which is able to adopt the advantages of any 2D
detection networks in order to provide 3D information. The
effort to adapt the 2D networks to the pipeline is minimal.
One additional regression term is needed at the network
output to estimate vehicle dimensions. The pipeline also
takes advantage of point clouds in 3D measurements. An
effective model fitting algorithm based on generalised car
models and score maps is proposed to fit the 3D bounding
boxes from the point cloud. Finally a two-stage CNN is
developed to fine tune the 3D box. The outstanding results
based on two different 2D networks indicate the flexibility
of the pipeline and its capability in 3D vehicle detection.
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