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Abstract— One of the greatest challenges towards fully au-
tonomous cars is the understanding of complex and dynamic
scenes. Such understanding is needed for planning of maneu-
vers, especially those that are particularly frequent such as
lane changes. While in recent years advanced driver-assistance
systems have made driving safer and more comfortable, these
have mostly focused on car following scenarios, and less on
maneuvers involving lane changes. In this work we propose a
situation assessment algorithm for classifying driving situations
with respect to their suitability for lane changing. For this, we
propose a deep learning architecture based on a Bidirectional
Recurrent Neural Network, which uses Long Short-Term Mem-
ory units, and integrates a prediction component in the form
of the Intelligent Driver Model. We prove the feasibility of our
algorithm on the publicly available NGSIM datasets, where we
outperform existing methods.

I. INTRODUCTION

Nowadays, most modern cars come with at least some
advanced driver-assistance systems (ADAS). Systems like
an automatic cruise control or a lane keeping assistant are
already able to partially take over control of the car and
safely steer it along a defined lane. While these problems
have been addressed extensively in scientific literature [1],
research about lateral control involving lane changes has
not been studied as intensively up to now [2]. For the
challenge of driving fully autonomously, this naturally has
to be addressed as well. Additionally, there is great potential
and need for driver assistance systems supporting the driver
in executing lane changes. Over 90% of occurring accidents
are attributed to human errors [3], of all accidents around
18% happen during the execution of a lane change [4].

The term driving strategy describes planning for au-
tonomous vehicles on different hierarchical levels, from map-
based global mission planning to tactical planning, which
takes into account driving lanes, other vehicles and obstacles.
From a machine learning perspective one way to approach
this problem is the use of supervised learning. Possible is for
example behavioral cloning, in which a system learns from
the demonstration of an expert [5]. However, it is well known
that small inaccuracies and errors aggregate over time [6],
further this method tends to overfit specific expert behavior
and lacks the possibility of exploration. Another possibility
is the application of reinforcement learning, which lately
has led to great success in different topics [7]. This method
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Fig. 1. Visualization of our system assessing a situation. For a timestep
t the LSTM network already has a compressed understanding of the past
via its internal state, with the IDM several future positions are predicted for
enabling the use of a Bidirectional LSTM. The situations are converted to
the internal grid representation and fed to the network, the output represents
the suitability of a situation for a lane change to the target lane.

though often depends on the availability and realism of a
simulator, and discards the immense amounts of real data
collected by car manufacturers. We believe a combination
of both paradigms will be necessary for creating data-driven
algorithms for autonomous cars.

An autonomous system is commonly designed in a layered
architecture: A perception layer perceives the environment
through different sensors (1), the results are fused in a fusion
layer (2). Based on this a situation interpretation is done
(3). This is followed by a planning (4) and control layer
(5). This work is situated around layer 3, supporting the
planning algorithm, thus circumventing the issues mentioned
above arising by using machine learning for planning. Our
algorithm is able to answer the question whether a given
situation is safe and suited for executing a lane change. It is
trained in a supervised fashion on actual driving data, and is
easily extensible to other discrete driving decisions by simply
exchanging the training data. A possible application not only
is the integration into fully autonomous cars, but also some
ADAS to support the driver in lane change decisions. We
compare our proposed method to existing ones and show its
superiority. As finding useful data labels is a challenge, we
additionally give details about existing labeling methods and
propose a new automatic labeling scheme.

Recently more interest has sparked in lateral planning [8],
[9], [10], [11], possibly due to the announcement of several
car manufacturers to produce autonomous cars within the
next years [12], [13]. One big field is reinforcement learning,
in which deep networks have been applied to decision
making for lane changes [14]. This though somewhat differs
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from our task due to our focus on situation assessment
without planning using supervised learning. More related to
our field mostly either mathematical models [15], rule-based
systems [9] or “classical” machine learning methods like
Support Vector Machines (SVMs) or decision trees [8], [2]
are used. In this paper, we propose the first supervised deep
learning approach on non-visual data, namely a Recurrent
Neural Network (RNN) with Long Short-Term Memory
(LSTM) units. We further extend this to a Bidirectional
RNN. As Bidirectional RNNs either need to know the future
of an observed signal or introduce a significant time lag,
we integrate a prediction component, for which we use the
Intelligent Driver Model (IDM). Fig. 1 shows our system
evaluating a situation with respect to its suitability for a
lane change to the left. We believe that deep learning greatly
helps in the understanding of complex scenes and that the
recurrent structure is much better suited for understanding
the temporal component of this problem, compared to static
frame-by-frame approaches. The evaluation of our method
is done on the publicly available NGSIM datasets. The key
contributions of our work are:

• We propose a method for assessing situations with
respect to their suitability for lane changes, which is
easily extensible to other driving decisions.

• Our proposed method consists of a Bidirectional RNN
and is the first recurrent approach for this problem. It
uses the IDM for obtaining an explicit representation of
the beliefs over future states.

• We propose a novel labeling method for this kind of
problem and compare it to the one used in existing
works.

II. RELATED WORK

In recent years first partially feasible algorithms for fully
self-driving cars, capable of executing lane changes, have
been developed and tested on the road. Mostly these were
rule-based systems. A probabilistic framework for decision
making was developed by Ardelt et al. and tested during
autonomous drives on highways [16]. Ulbrich and Maurer
[10] used Dynamic Bayesian Networks (DBNs) to evaluate
situations to answer the question whether they are feasible
and beneficial with respect to lane changes. Menéndez-
Romero et al. introduced a multi-level planning framework
which makes use of semantic and numeric reasoning [17].
Mukadam et al. used deep reinforcement learning for making
lane change decisions [14].

In existing literature a lane change maneuver is often
categorized into one of three categories: Mandatory lane
changes are lane changes forced upon the driver, e.g. due
to traffic conditions like an ending lane. Discretionary lane
changes are performed to improve driving conditions and
anticipatory lane changes are done preemptively to avoid,
for example, future traffic congestions. Many lane change
decision making models partition the process of a lane
change in several phases, which start with the decision to
change lanes and end with the acceptance of a suitable gap

Fig. 2. Cars involved in a lane change decision.

[8], [9]. Assessing gaps thus is a crucial part, and usually a
binary classification problem.

Several approaches have been proposed for modeling
and predicting human behavior. Dou et al. [11] considered
mandatory lane change events at lane drops and predicted
driver merging behavior with SVMs and simple Feedforward
Neural Networks. Different algorithms were compared by
Motamedidehkordi et al. [2] for solving the same problem of
learning human driving behavior and predicting lane change
decisions. The tested algorithms included, amongst others,
SVMs and decision trees.

Another important and related problem is the prediction of
future driving situations. Recently LSTMs have been adopted
by the autonomous driving community for this, leading to
good results in predicting trajectories and future driving
maneuvers, outperforming non-recurrent architectures [18].

Most related and comparable to our work are binary
classification problems assessing the suitability of a situation
for a lane change, as the previously mentioned work from
Ulbrich [10]. Nie et al. [8] described a gap assessment model
for discretionary lane changes using SVMs. For evaluation
purposes a selected subset of the NGSIM US Highway 101
(US 101) dataset was used. Their approach outperformed
previous ones, correctly classifying 97.48% of occurring lane
changes. Balal et al. [9] addressed the problem using fuzzy
logic rules, with the aim of supporting the driver in lane
change decisions. The NGSIM Interstate 80 (I-80) and the
US 101 dataset were used while considering only certain
lanes and time periods. Correct recommendations were given
in 90.50% of the cases. Jeong et al. used Convolutional
Neural Networks (CNNs) to classify neighbored lanes as free
or blocked based on camera data [19].

III. PROBLEM FORMULATION
Our goal is to classify situations into the categories suited

and not suited for a lane change (one can also speak of safe
and unsafe). Once a target lane has been identified, for each
timestep such a classification has to be done.

We adopt the notation of Nie et al. [8] concerning involved
cars and input features, see Fig. 2. The ego car, for which
we want to conduct the situation assessment, is marked
by EGO. Its preceding and following car on the same
lane are denoted by PV (preceding vehicle) and RV (rear
vehicle), respectively. The preceding and following cars on
the target lane are called putative leading vehicle (PLV) and
putative following vehicle (PFV). Let xc be the longitudinal
coordinate of vehicle c, c ∈ {EGO,PV,RV, PFV, PLV },
on the rectified projection of its current driving lane and v′c
its velocity. Then the distance from the ego car to another



vehicle c is denoted by dc = |xEGO − xc|, the relative
velocity by vc = v′EGO − v′c and the temporal distance by
tc =

dc
vc

.
Let f t be a data frame at timestep t. Our algorithm assigns

a classification ot to the frame, where ot ∈ {1, 0} is a
label expressing that in timestep t a lane change is possible
(safe) or not. Denote the ground truth with lt ∈ {1, 0}.
As evaluation metric we use the average accuracy acc =
accp+accn

2 , where accp and accn are the fractions of correctly
classified frames with lt = 1 and lt = 0, respectively.

IV. A RECURRENT MODEL FOR ASSESSING
SITUATIONS

This section covers our main contribution, namely an
LSTM network for assessing driving situations and its
extension, a Bidirectional LSTM. Bidirectional RNNs use
information from future time steps. For training this is
feasible, but not for an online implementation. Thus we
include a prediction component in the network. This is
essentially a black-box algorithm and can be any valid
trajectory prediction algorithm. Here we use the IDM. We
train the models in a sequence-to-sequence fashion, meaning
for each timestep t we generate an output ot ∈ {0, 1},
indicating the suitability of the situation for a lane change. As
input features only dPV , dRV , dPFV are dPLV are passed
to the network, in contrast to previous models [8], [9], as we
expect the networks to learn an understanding of velocity
(and more) out of the positions.

A. Intelligent Driver Model

To obtain a practically feasible Bidirectional RNN we need
a component which is able to predict vehicle positions for
the near future. We use the Intelligent Driver Model (IDM)
[20]. It is a car-following model, which describes a rational
driver, who tries to keep a safe distance to the preceding
car in dense traffic, but accelerates up to a certain desired
velocity when this is feasible. Denote with X the vehicle in
question and with Y the vehicle directly in front of it. Let
xc be the position of vehicle c at time t, v′c its speed and
lc its length, c ∈ {X,Y }. Define sX = xY − xX − lY and
vX = v′X−v′Y Then the model is described by the following
system of differential equations:

˙xX =
dxX
dt

= v′X

v̇′X =
dv′X
dt

= a(1− (
v′X
v0

)δ − (
s∗(v′X , vX)

sX
)2)

s∗(v′X , vX) = s0 + v′XT +
v′XvX

2
√
ab

(1)

v0, s0, T , a, b and δ are freely choosable model parameters
with the following meaning: v0 is the desired velocity, s0 a
minimum spacing, T is the desired time headway. a describes
the maximal vehicle acceleration, b the comfortable braking
behavior. δ is some exponent. Best prediction results could
of course be obtained by considering all cars in a scene,
however this is not feasible, as for an online implementation
we can only examine cars seen by the sensors of the ego car.

Fig. 3. Visualization of the LSTM network. The observed inputs dx are
converted into the grid representation gx, embedded and fed to the LSTM
units. The output ot is obtained by applying a softmax function to the output
of the LSTM units. The standard LSTM network consists only of the red
colored LSTM cells, for the Bidirectional LSTM network also the orange
ones are used. This additional layer processes information in a reversed
temporal order.

With modern Radar sensors though it is definitely possible
to spot and detect the surrounding vehicles PV, RV, PFV,
PLV and even the cars preceding or trailing these (if these
cars are within a certain distance of the ego car, but if not
their influence in the IDM is negligible anyways). Thus for
each needed future timestep we use the IDM to predict the
new velocity and position of the vehicles PV, RV, PFV, PLV
and EGO. For EGO, RV and PFV our prediction will be
more accurate, as their preceding vehicles PV and PLV are
part of the prediction model and will be reevaluated in each
step. For the vehicles PV and PLV we simply observe their
preceding cars at the current moment, and from then on
assume a constant velocity over the whole prediction period.

B. Long Short-Term Memory Network

In this subsection we introduce the non-predictive LSTM
model, see [21] for a definition of LSTMs. Experiments
showed best performance when converting the inputs into
an occupancy grid and embedding this before feeding it to
the LSTM. The grid is partitioned into four parts - same lane
before EGO; same lane behind EGO; target lane before EGO;
target lane behind EGO. Each part describes 100 meters of
road and is discretized into boxes representing 10 meters
each. Only the vehicles PV, RV, PLV and PFV are considered
and represented by a 1 in the corresponding vector, the
remaining entries are filled with 0s. This way the embedding
process resembles the embedding of discrete words, amongst
others used in machine translation [22], which inspired our
decision. The output of the LSTM is transformed with a
softmax function into a probability distribution, from which
the maximum is taken as the final classification of the
network. The full network is described by the following
equations, see Fig. 3 for a visualization:

et = emb(Wemb, bemb, [g
t
pv; g

t
rv; g

t
pfv; g

t
plv])

(ht, ct) = LSTM(et, ht−1, ct−1)

ot = softmax(Woh
t + bo)

(2)



Here gtx describes the one-hot vector for vehicle x ob-
tained by the discretization of dtx described above, and
emb(W, b, [x1, x2, . . .]) = [Wx1 + b;Wx2 + b; . . .]. The
function LSTM denotes all calculations done in a single
LSTM unit, returned are the unit’s output representation ht

and its internal state ct.

C. Bidirectional Long Short-Term Memory Network

Bidirectional LSTMs represent an extension of standard
LSTM networks by adding another LSTM layer, which
processes information backwards. The network then does
not only have access to information from the past, but also
from the future. In each step, the output of these otherwise
separated layers is combined and further processed to obtain
the final output.

For training real future trajectories are used, for testing
predicted ones with the help of the IDM. This anticipation
helps the algorithm assess traffic situations, as situation as-
sessment is never a static problem. A prediction, which hap-
pened implicitly in, for example, the previously mentioned
LSTM or an SVM model, now is done explicitly. Consider a
situation in which a fast car approaches the ego vehicle in the
target lane from behind, but starts braking strongly. At first
a lane change might not seem safe, but it might well be after
the braking maneuver. A conventional situation assessment
algorithm might decide likewise, due to the detected braking,
implicitly calculating future vehicle positions and resulting
gaps. Our proposed bidirectional LSTM does this explicitly
by querying a prediction component about future states. We
concatenate the outputs of both LSTM units before feeding
them to the softmax layer. The full modified model looks
like this, compare Fig. 3:

et = emb(Wemb, bemb, [g
t
pv; g

t
rv; g

t
pfv; g

t
plv])

(htF , c
t
F ) = LSTM(et, ht−1, ct−1)

(htB , c
t
B) = LSTM(et, ht+1, ct+1)

ot = softmax(Wo[h
t
F ;h

t
B ] + bo)

(3)

Let C = {PV,RV, PLV, PFV }. For training in each
iteration we feed sequences of length TF to the network,
in which gtx is derived from real trajectories for each t ∈
{1, . . . , TF }, x ∈ C. While doing so we reset the internal
state of the backward LSTM, cB , after each TB steps. This
way at each timestep the network is limited to seeing at
most TB future steps, which is the prediction horizon of our
prediction component. During testing, in each iteration we
feed sequences of length TB to the network, repeating the
following for each time step t ∈ {1, . . . , TB}: gtx, x ∈ C is
derived from real vehicle positions, all gxt′ , t

′ ∈ {t, . . . , TB},
x ∈ C are derived from predicted trajectories. The output
ot is saved and appended to the list of final outputs. We use
TF = TB = 10 seconds, note though that arbitrary values are
possible, especially with TF > TB . Greater values for TF
and TB might increase the performance of the algorithm, it
is recommended to set TB as large as a reliable prediction
from the prediction component can be guaranteed.

Fig. 4. Area of study in US 101 dataset (size proportions not realistic).
The I-80 dataset looks similar, except it is missing the off-ramp.

V. DATA DESCRIPTION AND DATA LABELING

Since our solution relies on supervised learning, data
labeling is necessary. For each data frame f t we want to
annotate it with a label lt ∈ {0, 1}, indicating whether f t is
suited for a lane change or not. In this section we first briefly
introduce the used NGSIM datasets. Then we describe a
labeling approach used in previous works and briefly discuss
its drawbacks. Eventually we propose an improvement of this
principle and additionally introduce a new labeling method.

A. NGSIM Dataset

The Next Generation Simulation (NGSIM) project con-
tains several publicly available traffic data sets [23]. Here
we use the Interstate 80 Freeway Dataset (I-80) and the
US Highway 101 Dataset (US 101). In both cases, traffic
information of a specific road segment was recorded for a
period of time. The available information contains trajec-
tories of every recorded vehicle and additional information,
like lane boundaries. There are 6 highway lanes available, as
well as an off- and on-ramp. See Fig. 4 for a visualization.
Measurements were updated 10 times a second.

B. Action-Based Labeling

To the best of our knowledge, all previous works use a
principle which could be called “action-based labeling” to
generate meaningful labels for data frames [8], [9], [11]. The
idea is to look for actual occurring lane changes and this
way learn from the behavior of the human drivers. A lane
change maneuver begins once a vehicle moves towards the
lane boundary without oscillations and with a certain speed
(0.213 m/s), and terminates when the vehicle crosses the lane
boundary, in accordance with the definition in Nie et al. [8].
This period of time is called TP , and all included data frames
are labeled with lt = 1. Unfortunately, negative samples are
not as well defined or easily spottable, as the drivers’ interior
motives are not observable: existing works thus assume that
before the execution of a lane change the driver takes a
certain period of time TN to analyze the situation, assessing
it as not suited for the lane change until eventually a suited
situation occurs. All points in TN are labeled with lt = 0.

We extend this approach by filtering out examples which
present no information gain for any machine learning algo-
rithm. Intuitively, we only want to include situations in our
learning set, in which there was a significant change from
the negatively labeled data frame to the positively labeled
one, and the situation changed from probably less suited
for a lane change to probably more suited (see Fig. 5).
Additionally, we require a minimum time gap of 1 second
between samples with different labels (which translates to a
not weighted “maybe” class for the LSTM networks).



Fig. 5. In both scenarios the lane change of the target car (displayed
in green) happens in the second frame. In a) the situation several seconds
before the lane change, i.e. in TN , looks very similar, thus we deem this
example unsuited. In scenario b) the situation changed significantly, thus
this example has a higher chance of having a useful label.

This gives the following formal definition: Let tn ∈ TN
and tp ∈ TP . Then

ad = dPV + γ ∗ dPLV + dRV + γ ∗ dPFV
+ β ∗ (|vPV |+ γ ∗ |vPLV |+ |vRV |+ γ ∗ |vPFV |)

sd = vPV + γ ∗ vPLV − vRV − γ ∗ vPFV − ad
(4)

with γ = 2 and β = 1.8. These values were chosen to
represent the relative importance of the two lanes, as well
as average driving behavior on highways. The sample pair
(tn, tp) is only included in the learning set if

|adtn−adtp |
adtn

≥
0.35 (1) and sdtn ≥ sdtp (2). (1) ensures enough relative
change in situations, (2) the better suitability of the positive
example. That sdt is indeed an approximation of the degree
of suitability can easily be seen by inserting different variable
values. We call the NGSIM datasets annotated with this
method “action-based dataset”.

When using recurrent models one concern of this approach
is a possible overfitting of the networks to the certain
temporal structure exhibited by the created sequences, always
starting with negative labels and ending with positive ones.
To prevent this we augment our data to make the distri-
bution look more random and diverse by adding prolonged
sequences, starting and ending at random time points and
occasionally containing only positive or negative labels.

C. Automatic Labeling

As alternative to the method described in the previous
subsection we propose an automatic labeling scheme. For
this, we run twice over the entire data set, once setting the
left lane as hypothetical target lane, once the right lane. For
each data frame t we examine all data frames f i up to 3
seconds in the future and evaluate the observed time gaps
in the target lane (tPFV and tPLV ). If for each examined

TABLE I
RESULTS ON BOTH DATASETS. A DENOTES THE ACTION-BASED

DATASET, B THE AUTOMATIC.

IDM SVM SVM∗ LSTM Bi-LSTM∗ Bi-LSTM
A - 77.24% 78.62% 88.76% 92.59% 88.19%
B 61.10% 80.70% 57.90% 83.08% 88.49% 87.03%

data frame f i tPFV ≥ 1 and tPLV ≥ 1, lt = 1, otherwise
lt = 0. The idea behind this labeling method is that a
situation is deemed suitable for a lane change, if a lane
change can be executed while all participants can continue
driving close to their original speed, i.e. no hard acceleration
or braking is necessary. Note that this method cannot be
used as a simple and perfect (with respect to this labeling)
situation assessment algorithm, as it uses information about
future states, which are not available in an online application.
We call the NGSIM datasets annotated with this scheme
“automatic dataset”.

When comparing labeled data frames from the action-
based labeling to the labeling given by the automatic la-
beling, about 75% of the labels match. Advantages of the
automatic labeling method are the number of labeled sam-
ples, which now is the full data set, compared to the fraction
of data frames around lane change events in the action-based
labeling scheme. Further, we prevent the problem of wrong
negative labels due to the inobservability of the drivers’
intentions and are able to manually model more aggressive
or passive drivers by changing the minimum time gaps. On
the downside, the labels are created by a theoretical concept
rather than by actual human behavior. Further, in dense traffic
situations fixed time gaps are sometimes not applicable in
practice - in order to manage a lane change, a driver might
have to aggressively push into a gap and expect other drivers
to react.

VI. RESULTS

In this section we present our findings from evaluating
the different algorithms. First we briefly describe an SVM
implementation for a competitive evaluation of our novel
algorithm. We test all models on both the action-based and
the automatic dataset, and also extend the SVM approach
with future trajectory data to obtain a fair comparison. For
the predictive approaches we test with real future data as a
theoretical upper bound for performance, as well as use the
IDM for a realizable prediction to show that this bound can
(almost) be reached.

A. Support Vector Machine Model

A reimplementation of the SVM model presented by Nie
et al. [8] is used. The examples are chosen accordingly by
random, but balanced, sampling from all labeled data frames.
The approach is extended by equipping each sample with
future data frames (5 and 10 seconds later), in order to
examine the influence of the prediction component.

B. Evaluation

The algorithms under examination are the standard SVM
approach (SVM), the SVM approach making use of real
future trajectories (SVM∗), the presented LSTM network
(LSTM), the Bidirectional LSTM network with real future
trajectories (Bi-LSTM∗) and the Bidirectional LSTM with
trajectories predicted from the IDM (Bi-LSTM). For the
automatic dataset, also a baseline using only the IDM is
given: For this the prediction is the resulting automatic label



Fig. 6. Visualization of different scenarios from the automatic dataset.
The ego car is drawn in green, the important surrounding vehicles in white,
which indicates the target lane. The situation fed to the algorithms is the
one at t = 0. For each scenario the development after 2 seconds is shown.
Next to the scenarios the correct label and the predicted labels from the
SVM, the LSTM and the Bidirectional LSTM are shown in this order. A
“1” defines a situation which is suitable for a lane change, a “0” one that
is not.

Fig. 7. A closer analysis of situation c) from Fig. 6. The situation is drawn
2 and 4 seconds later, once as predicted by the IDM and once as actually
unfolded.

while using the IDM to estimate future vehicle positions in
the following 3 seconds. For evaluation both the datasets I-80
and US 101 were merged and used. 5-fold cross-validation
was used for the LSTM networks. For the SVM models the
average results of 5 runs with an 80:20 ratio of training
and test examples are shown, since the execution of the
SVM approaches involves random sampling from the dataset.
During the splitting into training and test set every track and
lane change maneuver was always fully assigned to either
the training or the test set, never partially to both sets. For
the SVM models, a Gaussian radial basis function worked
best. A grid search was performed to find the best values
for the relevant parameters. Different experiments led to the
used LSTM parameters. A single layer was used consisting
of 128 hidden units, the regularization parameter was set to
0.001.

The results are shown in Table I. As can be seen, already
the first LSTM approach outperforms the SVM methods
on both datasets significantly. For the SVM approach only
the real future trajectories were passed as inputs and the
method was not tried in combination with the IDM, since
already this theoretical perfect prediction model does not
produce better results than the LSTM approaches. We also
see, that the Bidirectional LSTM with real future trajectories

further improves the classification score on both datasets.
When substituting these with predictions from the IDM a
small deterioration in accuracy is observed, which is to
be expected. For the action-based dataset the results are
comparable to those of the non-predictive LSTM network,
indicating a relative accurate prediction. For the automatic
dataset using the Bidirectional LSTM with predicted trajec-
tories proves to be an improvement of the non-predictive
case. Possible explanations are the better suitability of the
long continuously labeled tracks of the automatic dataset,
and the lack of questionable labels compared to the action-
based dataset. The IDM baseline alone performs poorly,
proving that the combination of situation assessment with
deep learning and prediction is needed.

Fig. 6 shows three scenarios from the automatic dataset.
Scenario a) is recognized by the SVM, the LSTM and the
Bidirectional LSTM (using predicted trajectories) approach
correctly as suited for a lane change. In scenario b) the SVM
fails, as it does not weigh the velocity of the approaching
car in the target lane enough. In scenario c) also the LSTM
approach fails. While the situation looks safe at t = 0, the
ego vehicle will have approached the preceding car in the
target lane 2 seconds later. This is accurately predicted by
the IDM, as can be seen in Fig. 7. Note that at t = 4
EGO will have overtaken PFV, which is not considered in
our prediction model: indeed, including these dynamics in
our model represents an interesting future research direction.
Fig. 8 shows the temporal development of an exemplary
situation over 10 seconds. The scene starts in congested
traffic, the situation is unsuited for a lane change. As the
cars move, a suitable gap forms around the ego vehicle,
which is anticipated by the Bidirectional LSTM, although
a bit too early. Eventually the gap closes again due to a fast
approaching car from behind, which is assessed relatively
accurately by the Bidirectional LSTM. The SVM performs
worse, it is less accurate and does not handle the temporal
changes well. Note that a classification accuracy of 88% does
not mean that 12% of the sequences are completely mistaken,
but instead that of all frames 12% are misclassified (see Fig.
8: the prediction output of the Bi-LSTM closely matches
the ground truth, except the exact moments of label change
do not align perfectly). By using for example a delayed or
secure action planning, or an additional filter over multiple
frames on top, one can expect very safe driving behavior.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we considered the problem of assessing
situations with respect to their suitability for a lane change
maneuver. We proposed a novel deep learning architecture
based on LSTM networks. We also introduced a novel label-
ing technique and discussed drawbacks and limitations of the
approach used by previous works. We tested our method on
the publicly available NGSIM dataset and achieved an av-
erage accuracy of 83.08% - 88.76%, outperforming existing
algorithms. By extending our model to a Bidirectional LSTM
with an integrated prediction component, for which we used
the IDM, our accuracy improved to 87.03% - 88.19%.



Fig. 8. Temporal development of a situation. The images are each taken 1 second apart. In the diagram below the correct label of each frame is displayed
as well as the prediction from the SVM and the Bidirectional LSTM. Note that for this the probability pt for ot = 1 is shown (the output of the softmax
layer) - compared to the discrete outputs 0 and 1 for SVM and ground truth - meaning the predicted output is 1 if pt > 0.5.

Possible applications are the integration of our system into
ADAS or fully self-driving cars, supporting these in making
decisions when to safely execute a lane change. We believe
our architecture is applicable to a wide range of problems
by simply switching the underlying dataset, giving a method
to use supervised learning with recorded driving behavior
to assess the feasibility of many different maneuvers. In the
future we would like to extend and apply our method to these
different situations, e.g. include rural and urban scenarios
for lane changes and test different maneuvers like yielding
and merging at crossroads and roundabouts. Additionally, we
would like to create a dataset labeled by humans according
to their situation assessment and compare this to the two
labeling methods used here. Another interesting point of
work is the improvement of the prediction component, here
instead of the IDM many different methods, amongst others
LSTMs, are thinkable of, possibly improving accuracy and
narrowing the gap between realizable prediction and the
upper bound of a perfect prediction. Further, integrating
additional sensor readings could improve performance of
the LSTM model, which could easily be done by filling the
occupancy grid with all detected objects.
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