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Abstract— This paper describes a framework called Mae-
stROB. It is designed to make the robots perform complex tasks
with high precision by simple high-level instructions given by
natural language or demonstration. To realize this, it handles
a hierarchical structure by using the knowledge stored in the
forms of ontology and rules for bridging among different levels
of instructions. Accordingly, the framework has multiple layers
of processing components; perception and actuation control at
the low level, symbolic planner and Watson APIs for cognitive
capabilities and semantic understanding, and orchestration of
these components by a new open source robot middleware called
Project Intu at its core. We show how this framework can be
used in a complex scenario where multiple actors (human, a
communication robot, and an industrial robot) collaborate to
perform a common industrial task. Human teaches an assembly
task to Pepper (a humanoid robot from SoftBank Robotics)
using natural language conversation and demonstration. Our
framework helps Pepper perceive the human demonstration
and generate a sequence of actions for URS (collaborative robot
arm from Universal Robots), which ultimately performs the
assembly (e.g. insertion) task.

I. INTRODUCTION

Making robot programming feasible for beginners and
easy for experts is the key to use the robots beyond their
conventional applications in industrial manufacturing and
assembly. Industrial and communication robots of the future
will understand natural interfaces like speech and human
demonstrations to learn complex skills. Instead of a single
brain-like component, these robots will be powered by many
smaller cognitive services that will work in harmony to
exhibit a higher level of cognition. Each service in the system
will demonstrate basic intelligence to efficiently perform a
single well-defined task. A framework for connection and
orchestration of these services will be the key to a truly
intelligent system. Although often used interchangeably, we
use the term “cognitive” instead of “machine learning” or
“artificial intelligence” to give a notion of human like intel-
ligence across multiple domains. Mostly, the term artificial
intelligence is used very broadly, while machine learning
usually refers to systems that solve a distinct problem in
a single domain.

To achieve this higher level of cognitive capabili-
ties, in this paper we present a robotics framework
— MaestROB. Different components of MaestROB com-
municate through a novel robotics middleware named
Project Intu. Intu is provided as an open source project
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at https://github.com/watson—-intu/self. Intu
uses IBM Watson APIs [1] to provide a seamless access to
many services including conversation, image recognition etc.
With Intu at its core, MaestROB introduces a hierarchical
structure to planning by defining several levels of instruc-
tions. By using the knowledge and ontology of physical
constraints and relationships, these abstractions allow the
grounding of human instructions to actionable commands.
The framework performs symbolic reasoning at higher level,
which is important for long term autonomy and to make
the whole system accountable for its actions. Individual
skills are allowed to use machine learning or rule based
systems. We provide a mechanism to extend the framework
by developing new services or connecting it with other robot
middlewares and scripting languages. This allows the higher
level reasoning to be done using PDDL (Planning Domain
Definition Language) planner with the proposed extension
for handling semantics, while the lower level skills can be
executed as ROS (Robotics Operating System) nodes. In
MaestROB the primitive intelligence of each component is
orchestrated to demonstrate complex behaviors. Important
features of MaestROB include but are not limited to a cloud
based skill acquisition and sharing service, task planning
with physical reasoning, perception service, ability to learn
from demonstration, multi-robot collaboration, and teaching
by natural language.

We show the capabilities of the framework by a sce-
nario where a human teaches a task to a communication
robot (Pepper [2]) by demonstration. The robot understands
the tasks and collaborates with an industrial manipulator
(URS5 [3]) to execute the task, using the action primitives that
URS has previously acquired by learning or programming.
The industrial robot has the ability to perform physical
manipulation, but it lacks the key sensors that can help in
a particular situation (e.g. error recovery etc.). Using the
planning and collaboration services provided by MaestROB,
the communication robot having these sensors can analyze
and convert the plan to a command sequence for the robotic
arm. The learning capabilities of the framework and the
hierarchical control capabilities of the middleware help to
enable these tasks easily without the need of any explicit
programming.

II. RELATED WORK

Middleware serves the purpose of gluing together various
components of the robot and communication between them.
Robotics Operating System (ROS) [17] is arguably the
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most used robotics middleware especially in the research
community. Although ROS provides a backbone structure for
many nodes to collaborate, it does not intrinsically provide
any components that can help in planning or training the
robots to perform a task.

Some other papers discuss smaller frameworks to solve
more complex problems. ROSPlan [6] is a task planning
system that can generate a sequence of actions to achieve
the goal when the initial model of the environment is
known. ROSPlan being a planning system depend on other
components for learning and communication. ROSPIan is
not a full robot framework, also it does not provide any
mechanism to train the robots.

The problem of providing the robot with reasoning ca-
pabilities in order to allow them to generate new motion
types autonomously has been tackled throughout the recent
years. The RoboHow project aimed at enabling robots to
perform everyday manipulation activities from web nav-
igation, and human observation. The project introduced
KnowRob, a knowledge base on actions, objects, properties
and relations [19]. This knowledge base was combined
with object recognition algorithms to recognize and reason
on visual observations through the RoboSherlock software
framework [4]. In the RoboBrain knowledge engine, the
nodes of the graph structure can represent any type of robotic
concept (e.g., grasping features, trajectory parameters and
visual data) [18]. The RoboBrain knowledge engine was
used to execute manipulation tasks from instructions given
in natural language [14]. As RoboBrain uses the knowledge
acquired from semi-reliable sources, the outcome actions of
an instruction are not predictable. We on the other hand wants
to communicate using natural language but at the same time
we would like the end actions to match our expectations.

An increasing number of research papers use machine
learning and cognitive technologies for collaboration, han-
dling uncertainties, and taking optimal actions. We discuss
some of the interesting research in the area of cognitive
robots with capabilities beyond that of the current generation
of robots.

S. Levine et al. [12] defined a hand-eye coordination for
robotic grasping using monocular images. It shows how deep
convolutional neural networks can be used with big data to
learn a complex task in an uncertain environment without
explicit need of camera calibration and the robot pose
estimation. Delft team won the Amazon picking challenge
2016 [9] by using machine learning for pose estimation,
grasp planning, and motion planning. T. Inoue et al. [10]
showed how the data from conventional sensors can be
combined with the deep reinforcement learning to solve
precision insertion task. A. Munawar et al. [15] presented
an anomaly detection system using vision. Such systems can
be used to enable the systems to keep a check on themselves
with little intervention from the humans. J. Connell et al. [7]
presented a system for physical manipulation with a robot
arm. The system can be used to teach the robot to learn
new actions using a a fixed grammar. The grammar is basic
and can be difficult to extend to make it more general.
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Fig. 1: Different level of instructions in MaestROB.

R. Paul [16] presents a probabilistic model that enables
incremental grounding of natural language utterances using
learned knowledge from accrued visual observations and
language utterances. The model infers over the constraints
for future actions in the context of a rich space of perceptual
concepts.

While interesting, most of the existing research use cus-
tomized learning and control solutions that cannot be gen-
eralized. The proposed framework is an effort to present a
common framework that can handle all these scenarios and
beyond without any redundant effort.

ITIT. MOTIVATION AND CONCEPTS

The motivation behind MaestROB is to create a framework
that performs accurate physical manipulations in the real
world by watching demonstrations or taking natural language
instructions. Humans communicate at higher level of ab-
straction and assume the underlying knowledge. Machines
on the other hand cannot accurately comprehend such vague
instructions. In order to make the robots understand natural
language commands in a predictable manner, we propose a
hierarchical structure of instructions. Fig. [1| shows different
levels of instructions in MaestROB, namely gestures, skills,
and plans. Gestures are platform dependent but abstraction is
provided as we move to higher level instructions. Examples
of different level of instructions are given in Table [I}

A. Gestures

Gestures are used to directly control the robot. They are
equivalent to the motor skills in a human body. Gestures are

TABLE I: Example of instructions at different levels.

Gestures Skills Plans
chit_chat ()
emotion_answer ()
plan_for_ ur5()

Platforms

Pepper | sound (sound_file)
display (image|URL)
volume (up|down)
leds (anger |happy|..)
move_to (x,y)

text_to_speech (text)
move_to (location)
show_anger ()

UR5 | force_control (Fx, Fy)
grasp (state)
move_to(x,y,z,Rx,Ry,Rz)

pick (pose)

place (pose)

insert (shape, size)
release()

pick_and_place ()
peg_assembly ()
stack ()




executed by the underlying platform or the robot controller.
Depending on the platform, some of the gestures might not
be available.

B. Skills

The next level of abstraction is the skills. We define a
skill as a piece of logic that can consume sensor input and
generate a list of gestures. A skill is an atomic operation that
performs a part of the overall task. Skills however cannot be
executed on their own. MaestROB provides three methods
of teaching new skills to the robot:

1) List of gestures or skills: In its simplest form, a skill
consists of sequential or parallel list of gestures or
other skills. For example, a pick skill can take the pick
position and perform the sequence of gestures by going
on top of the position, then going down, and finally
closing the gripper.

2) Rule based: In this method, a set of rules can be defined
to consume the sensor’s input and to issue appropri-
ate gestures. Rule based skills are simply defined as
“if{A}then{B}” rules. One example can be to stop the
robot if the end-effector position is outside a predefined
safety zone.

3) Machine learning: Some skills are too difficult to be
defined by a program. MaestROB provides a cloud
based learning API that can be used to learn complex
skills like different shape insertion task or visual ser-
voing. The learning service supports supervised and
reinforcement learning paradigms. The inference is
done locally to satisfy real-time constraints of the
robots, while the models are stored and learned in the
cloud. In this manner, robots with minimal processing
capabilities can also learn new skills by making REST
calls to the MaestROB learning API. The API also
supports transfer learning of models from a simulator
to the real environment.

MaestROB provides an interface to extend the framework
by implementing additional methods to define or learn new
skills. A skill can take one or more arguments as its input,
e.g. place (pose), moveTo (pose, pose). All skill
return success or failure, based on the results of actual
execution of the action in the prescribed amount of time.

C. Plans

A plan is conceptually a high-level abstraction for going
from a given initial state to a goal state. It consists of a
sequence of skills that are defined, learned, or computed by a
symbolic planner. A plan corresponds to a single instruction
in a user manual or a single command issued by human.
The role of the planner in the framework is to act as a bridge
between the cognitive semantics and the skill. The framework
currently provides three methods for defining new plans.

1) List of skills or plans: A plan can be defined as a
parallel or sequential list of skills or other plans defined
either programmatically or by using natural language
communication using fixed grammar. This method is
inspired by previous work by J. Connell et al.[7], etc.
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Fig. 2: MaestROB framework.

For example, we can tell the robot that he can learn
to wave hands by raising the right hand and moving it
right and left a few times.

2) Learning from demonstration or conversation: Plans
can also be described by defining the final or goal state
verbally or programmatically. MaestROB provides a
mechanism for grounding the natural language com-
mands to the intended goal states by using natural
language classification and mapping. Another method
supported by the framework is to show the key states
of the system, instead of giving the initial and the goal
states explicitly. Humans can understand the sequence
of actions they need to perform just by looking at
the initial and the final state of a task. By using the
perception and relationship extraction, the planner can
help the robot do the same by using the available
skills. Before computing and executing the plan, the
framework checks the current condition of the world
to know the initial state.

Similar to skills, we define an interface to implement other
methods of planning. A plan is a logic that can generate a
sequence of one or more skills. All plans return success
or failure.

Unlike skills, a plan can be executed independently. It
can consist of a single skill, a list of skills or dynamically
computed skills based on a planner or a similar system. Plans
can be launched by human instructions, in response to some
condition, or in a continuous loop. In case of a skill failure a
new plan can be generated to accomplish the target by using
current state as the initial state. However, human intervention
may be required, if the planner fails to find a suitable plan.

IV. MAESTROB FRAMEWORK

MaestROB is a scalable and extendable framework that
can be used to control robots or smart environments. It
is built using a hybrid architecture, encompassing explicit
symbolic computation at the center and neural networks
at the edge. At the core of the framework is the robot
middleware Intu. The library around the middleware consists
of numerous algorithms and components, each of which



performs a well defined task. In this section, we discuss the
middleware and the key services of MaestROB.

We provide numerous services to enable a large number
of commonly occurring use case scenarios. A service is
defined as a set of components that performs a well defined
complex task, for example conversation. Components can be
shared among multiple services. We use the term components
loosely to represent data storage, program, learned models
or any part of the framework. Fig. [2| shows an abstract level
configuration of the middleware, cloud APIs, and the main
services of the framework.

A. Project Intu

Project Intu is provided as an open source platform for
embodied cognitimﬂ It is based on a cognitive architecture
called Self. Self is an agent-based architecture that com-
bines connectionist and symbolic models of computation,
using blackboards for opportunistic collaboration. Project
Intu provides a mechanism for connecting and orchestrating
cognitive services in a manner that brings higher level
cognition to an embodied system.

Self is inspired by Minsky’s Society of Mind [13], there-
fore, behavior takes place in the context of multiple concur-
rent agents who communicate opportunistically via black-
boards. Inspired by Brooks subsumption architecture [5],
behavior takes place in a hierarchy of cognition, from in-
voluntary reflexes to voluntary skills to goals and planning.

Self imposes a clear separation of concerns among percep-
tion, actuation, models, and behavior, and as much as possi-
ble, behavior is either taught or is learned, not programmed.
For perception the extractors are used to process the raw
sensor streams into a meaningful data (e.g. speech to text).
The data then goes to the respective classifiers or agents
for further processing. Actions are performed by learning
or programming different skills. Based on a goal that needs
to be achieved, the plan manager finds the most suitable
execution plan before invoking that plan (sequence of skills).
Most of the components communicate opportunistically by
using the publish and subscribe (pub/sub) model of Intu. The
communication with the outside world or other instances of
Self happens through topics. Plugins can be developed to
connect Intu with other middlewares and scripting languages.

Open source version of Intu comes with many components
that allow a seamless access to IBM Watson services [1]. Intu
is devised to be applicable to a multitude of use cases, from
avatar to concierge to retail to elder care to industrial robots.
It is available for a number of platforms, including Linux,
Windows, macOS, Nao, Pepper, and Raspberry Pi.

B. Perception Service

Sensing and perception is required for both physical
manipulation and learning. MaestROB supports different sen-
sors including microphone, camera, and touch. Raw stream
from the sensors is converted into meaningful format by the
help of extractors and classifiers.

https://github.com/watson—-intu/self

While different sensors are used by MaestROB, in this
section we will focus on the vision sensor (camera). Camera
is used for recognizing a human in front of the robot,
estimating the age and gender, recognizing objects and
their poses etc. For accurate visual perception in industrial
settings, we assume that an object database provides the
properties (shape, size etc.) of all the objects of interest.
Visual perception computes the pose for each instance of the
object in the visible world. For the demonstration, we have
used a barcode based pose estimation technique proposed by
H. Kato [I1].

In addition to perception, spatial relationships are also ex-
tracted geometrically to understand the state of the physical
world. Relationships currently supported by the framework
are in, on, right, left, front, and back. With the supported
interface of object detection and relationship extraction,
the framework can be extended by including better pose
estimation algorithms.

C. Converstaion Service

MaestROB conversation service uses IBM Watson cloud
based Conversation API [1]. The Conversation API com-
bines machine learning, natural language understanding, and
integrated dialog tools to graphically create conversation
flows. MaestROB conversation service helps the machine
understand human intentions and act accordingly. Depending
on the conversation model, the robot can clarify missing in-
formation or even start a dialog proactively. This is especially
important for robots working as salesman or concierge.

Raw stream from microphone is extracted by text extractor
that calls IBM Watson Speech-To-Text (STT) APIL The text
then goes to a natural language classifier which internally
calls IBM Conversation API and classifies the text according
to its intention. For example, in case of a question intent, the
question agent finds the appropriate response and generates
an answer goal. The goal agent then executes the appropriate
plan with the help of plan manager. The plan manager may
decide to invoke say action, which is ultimately invoked by
skills manager by calling the appropriate skill.

D. Planning Service

Planner is responsible to observe the current state of the
system, understand the goal and generate a sequence of skills
to achieve the goal. Configuration of the proposed planner
is shown in Fig. [3|

Initial state of the world is extracted by the “initial state
extractor”. The initial state is the truth about the world and
is always detected before computing a plan. This is usually
done by using vision sensors. Other input devices like mic
or depth sensors can also be used to define the initial state.
The first step in defining the initial state is to get the poses
(positions and orientations) of all the available objects. We
assume that all the objects (classes) are defined in an object
database. Computing poses of all the class instances is not
enough, we also need to define the states of the objects, e.g.
if a hole is filled or not. This is done by relationship extractor
of the perception service.
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Fig. 3: MaestROB Planner.

Understanding the goal state is also a crucial part of the
planner. The goal can be defined either by a key frame based
demonstration or by using natural language. In MaestROB
we use symbolic mapping for grounding natural commands
to the respective goal state. Instead of simple matching,
Watson Natural Language Classification API [1] is used to
match a command to the intended goal state. Although this
may limit the variation of natural language that can be used,
it produces consistent and predictable results.

For the planning part, we extended PDDL [8] (Planning
Domain Definition Language) for describing and indexing
skills by allowing semantic annotations. We call the extended
version of the language as PDDLS (Planning Domain Def-
inition Language with Semantics). The primary role of the
semantics is to give the compatibility among skills and the
recognized states. Symbols are bound to be globally identi-

Common Sense Ontology PDDLS Domain DB

fiable references as URIs (Uniform Resource Identifier), for
which equals-to, is-a, and other equality relationships and
compatibilities are defined in standard ontologies. Another
important role of the semantic resolution provided by the
framework is to use ontology to compensate for the con-
straints, or common sense in the domain, which is difficult to
be captured through cognition. For example, while an image
analysis can recognize the shape and size of objects, it would
not directly give the constraints for combining those objects
- e.g. if a peg can be inserted into a hole or not.

The skills in the skill database can be defined as actions in
PDDLS for a particular domain, in which the preconditions
and effects of the skills are described. A planning query is
given as a PDDLS problem, in which the goal and initial
states are described as PDDL with semantic labels. Extended
semantic annotations enable global linking between actions
and problems with semantic resolution. The mechanism for
the semantic resolution is beyond the scope of this paper. The
semantics, actions, and required relationships are defined in
PDDLS domain files, therefore, a suitable domain file must
be defined explicitly by the user to generate an optimal plan
for the problem. The output of the planner is a sequence of
skills that is executed by the runtime, which might request
the planner to generate an alternative plan in case of a failure.

Fig.[dshows a simple example to illustrate how the planner
works. We have two pegs and a hole and only the cylindrical
peg can be inserted in the hole. The common sense ontology
is provided to the system, including the knowledge for
obtaining constraints among objects, such as whether an
object can be inserted (insertable) to another object or not.
We search for the appropriate domain descriptions in the
PDDLS domain database. The domain file defines, all the
available actions, which in this case include only one action

PDDL Domain

cril_shapes:CylindricalPeg

cril_shapes:sectionShape cril_shapes:Circle ; (:context
rdfsTsubClassOf cril_shapes:Beg . insertable - u
cril_shapes:CylindricalHole available - ur

cril_shapes:sectionShape cril_shapes:Circle ;
rdfsTsubClassOf cril_shapes:Hole .]

pick-n-insert

cril_action:available
a pddl:Action .

cril_action:insertable
a pddl:Action .

:precondition
(and
(available ?p)
cril_action:insertable (available ?h)
pddls:establisheddith cril_shapes:InsertableConstraint ;
pddls:establishediith
"MWPREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX cril_shapes: <uri:cril/shapes#>
SELECT DISTINCT 2peg ?hole
WHERE { )
?peg a ?peg_type . )
?peg_type rdfs:subClassOf cril_shapes:Peg .

reffect
(and

(define (domain planners-demo2)

icril/action/insertable
il/action/avail

; Pick obj, and insert it to hole
(:action pick-n-insert
:parameters (?p ?h)

(insertable ?p ?h))

(not (available 2?p))
(not (available ?h)))

(define (domain planners-demo-probleml)
N ; Pick obj, and insert it to hole
(:action pick-n-insert
:parameters (2?p 2h)
:precondition
(and
(available ?p)
(available ?h)
(insertable ?p ?h))
reffect
(and
(not
(not

le
k.

cril/action/p n-insert )

(available ?p))
(available ?h)))))

PDDL Problem

(define (problem planners-demo-probleml)

(:init

2peg cril_shapes:size ?peg_size . T

?peg_type cril_shapes:sectionShape ?section shape .
2hole a ?hole_type .

?hole_type rdfs:subClassOf cril_shapes:Hole .
?hole cril_shapes:size ?hole_size .

PDDLS (available CylindricalPeg_1)
. (available TriangularPeg 2)
Resolver (available Cylindric

PDDLS Problem (Initial and Goal state)

(insertable C

)

?hole_type cril_shapes:sectionshape ?section_shape .
FILTER (?hole_size >= ?peg_size)

}rvespargl . (:contex

av.

Object Database

)
<uri:cril/demo/CylindricalPeg_1> (:init
cril shapes:size 2.0 ; # xsd:decimal
a cril shapes:CylindricalPeg .
<uri:cril/demo/TriangularPeg_2>
cril_shapes:size 2.0 ; # xsd:decimal )
a cril_shapes:TriangularPeg .
<uri:cril/demo/CylindricalHole_4>
cril_shapes:size 3.0 ; # xsd:decimal
a cril_shapes:CylindricalHole . )
)
!

(:goal

(define (problem planners-demo-probleml)

CylindricalHole 4 - uri:cril/

(available CylindricalPeg_l)
(available TriangularPeg 2)
(available Cylindricallole 4)

(not (available CylindricalHole 4))

(:goal
(not (available CylindricalHole 4))
))

PDDL Solver

Output action (skill primitive) sequence

pick-n-insert CylindricalPeg 1
CylindricalHole 4

Fig. 4: An example to show how proposed PDDL with semantics can leverage the ontology and reasoning to solve a problem.



(pick-n-insert). Note that in the context section symbols are
semantically annotated by URIs (shown in red color), which
are defined in the ontology or runtime object properties. The
initial and goal states of the PDDLS problem file, as well as
runtime object properties ontology (e.g. object shapes and
sizes), are defined by perception and grounding of natural
language commands as defined above. The PDDLS resolver
then generates a runnable PDDL problem and domain file,
using the semantic annotations to resolve necessary con-
straints. These constraints are shown in blue color in the
figure and they are required by the PDDL solver (PDDL
planner) to find a valid solution. The problem and the domain
files are used by the PDDL solver to output the correct
sequence of actions, which in this case is to perform the
“pick-n-insert” to put the cylindrical peg in the cylindrical
hole.

E. Skill Acquisition

The process for acquiring skills is different from that
of plans. Plans can be acquired using natural language
communication or demonstration, provided that all the skills
are available in the skill database. The skills are to be
acquired individually by programming, defining rules, or
machine learning. MaestROB provides cloud based machine
learning API to allow the robot to acquire or fine tune
machine learning based skills.

F. Bridges

MaestROB can be connected to other scripting languages,
robot middlewares, or rule engines by creating bridges.
Bridges are currently available for ROS, and Python. A
bridge converts the blackboard based communication that is
native to Intu into a protocol that is understandable by other
middlewares or languages. ROS bridge, therefore, is an Intu
agent and a ROS node at the same time.

G. Runtime

Runtime is the part of MaestROB that is responsible to
execute a plan. The runtime essentially takes the output of
a planner which is a list of skills and execute them in the
given sequential or parallel order. In case of a failure in a
skill, the runtime returns the feedback to the planner. Then
depending on the planner, a new plan can be generated as
an alternate sequence of actions. While the goal does not
change, the current state of the world has to be recomputed.
If the system finds a situation where no suitable plan can be
found, it may request help from the user.

V. DEMONSTRATION

In the demo scenario, two robots (URS and Pepper)
collaborate with a human to perform a task. MaestROB is
general enough to handle both the communication robot and
the industrial manipulator arm, we show how very different
robots can achieve a common goal by using their strengths.

Pepper is a humanoid robot from Softbank Robotics that
possesses several sensors including vision. It is mobile, but it
lacks a powerful gripper and cannot perform accurate phys-
ical manipulations. On the other hand, URS (collaborative

robot arm from Universal Robots) is a fixed industrial grade
manipulator robot. UR5 can do physical manipulations with
high precision and repeatability (£0.1 mm) but it moves
blindly due to the lack of any vision sensor.

In the demo scenario, the human is responsible for teach-
ing the task by performing demonstration, controlling the
robot, and taking final decisions. The setup of the two robots
for the demonstration is shown in Fig. 5] The demo can also
run on other robot platforms, given the required gestures are
available.

Table M shows the detailed scenario and the actions
performed by different actors. One of the strengths of
MaestROB is the connection with IBM Watson APIs. This
allows to easily implement complex conversation systems.
Grounding of instructions given in a smooth natural language
conversion to complex but predictable sequences of actions
demonstrate the strength of MaestROB.

The demo starts with a human performing the task and
having conversation with Pepper robot at the same time.
Understanding the intent of a command by using conver-
sation service, the robot can understand when to capture key
frames and when the demonstration is over. In the example,
the robot records the initial state and the final state of
the demonstration. From the conversation, it remembers the
name of the task it is learning to perform (peg assembly
task). It also understands that the final state is the last frame
of demonstration. The initial and final frame are sent to
perception service that uses barcode pose detection to detect
the location of all the barcodes. The barcode number of each
part and the transformation between the barcodes and the
objects are defined separately in the object database. The
state of the final frame is determined by the relationship
extractor. As the domain for the task is predefined to be
insertion, the appropriate ontologies and the relationship
database are loaded.

In this scenario, the goal is not used by Pepper to compute
a plan for itself, rather Pepper implements the scenario on

B orce-torque - Came
2 sensor (

Palibration ¥

Barcode -

Perforated metal
table to fix the holes

Fig. 5: Demo setup: Pepper uses its camera to analyze the
location of the objects, creates a plan and send it to URS.



TABLE II: Step-by-step demo scenario. Actors are human,
Pepper, and URS.

T T T

S: Pepper, | will teach you

the peg assembly task.

Observe the initial state
A: Observe the initial state
S: | have observed the initial
state

A: Performs the demo of

inserting pegs in the holes

S: Pepper this is the final

state

S: Speech
A: Action

S: Ok, | understand the peg
assembly task. Please confirm
the plan on my screen and
validate.
A: Show plan on the screen
A: View the plan on the
screen
S: Itis ok
S: Go implement this
scenario on the UR5
S: Ok
A: Pepper goes to the URS
A: Pepper checks the initial
state and converts it into A: URS is in the initial state,
positions for URS. holes are fixed and the pegs are
A: Pepper creates an execution placed at the right location
sequence for the URS.
A: URS executes instructions
A: URS does insertion by using
pre-learned models
A: URS succeeds in the task
A: Pepper checks the task is
successful and leaves
A: URS executes the task again
A: The plan fails, URS generates
awarning.
A: Pepper goes to UR5
A: Pepper finds that one peg is

missing
S: | found the problem, a peg is
missing

A: Human puts the pegin

the place

S: Ok itis done

A: Pepper sends URS request

to restart the task
A: URS executes the task
A: URS5 succeeds

URS. Pepper uses predefined locations of the demo table
and URS to move from one place to the other. When Pepper
arrives at URS, it captures an image of the initial state.
This image is used to calibrate Pepper’s camera w.r.t URS
robot, the barcode pose location for all the objects are also
computed. Pepper uses the initial state observed from the
image and the goal state learned from the human demon-
stration to generate an executable plan for the manipulator
robot. However, before this can be done, the skill database
of URS is shared with Pepper. The common sense ontology
is used by the planner to check if an operation is permitted
or not. For example, it is not permitted to insert a big peg
into a smaller hole. After the plan is transmitted to URS, it
starts doing the task based on position control. Once the task
succeeds Pepper can return while URS continues to perform
the task. In this demo we have human helper to put the
pegs back to the initial state before every URS iteration. In
a factory environment this is usually done by conveyer belts
or other machines.

URS keeps executing the task unless something goes
wrong, in this case URS warns about the failed plan. In this
case, Pepper goes back to the manipulator to observe the
state of the world. Pepper compares the current state with the
initial state it had seen before. It finds that a peg is missing
and raises a request for human assistance. The human then
comes to put the missing peg. URS can resume to do the
repetitive task of putting pegs in the respective holes.

Contrary to several simple skills that URS can perform,
the insertion skill uses machine learning to find the direction
of hole by using force-torque sensor. It was trained by
reinforcement learning using the MaestROB cloud based
learning API. The training method for the insertion skill is
similar to T. Inoue et al. [10].

Fig. [6] shows the MaestROB services that are running on
each robot to accomplish the tasks defined in the demo
scenario. Most of the services use cloud based APIs to
solve the problem. It is important to note that in order to
make a plan for URS, Pepper robot must be aware of the
skills available for URS robot. This is done by sharing URS
skill database with Pepper. In the demo scenario, Pepper
is running an instance of the Project Intu middleware. Intu
makes the implementation of Speech-To-Text (STT), Text-
To-Speech (TTS), conversation, perception, planning etc.
easy and streamlined. URS is running the plan generated
by Pepper using MaestROB services on ROS.

Snapshots of some of the key moments in the demo video
can be seen in Fig. [/} The demo video is available athttps:
//www.youtube.com/watch?v=19JsdZi0TWU.
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< Robot Controller >
| Runtime Gripper Controller —
A
Result Plan [ 77s |f sTT | Conversation |
: > Planner |Natura\ Language Classification |

Invoke Conversation

Objects T Text
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Mic —» Text Extractor
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= Local TTS |«
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Fig. 6: Important services to run the demonstration. The
services communicate via pub/sub model of Intu. Robot
controller of URS is a ROS node and is connected with Intu
via ROS bridge.
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Human replaces pegs URS5 continues Grasping fails

Pepper finds problem

il

Human fixes problem

Execution succeed

Fig. 7: Screenshots of the demo video (video is available at https://www.youtube.com/watch?v=19JsdZi0TWU).

Barcode pose estimation results are shown as overlays.

VI. CONCLUSIONS

We present a framework to support the next generation of
robots to help solve the problems that are not solvable by
conventional programming methods. The robot middleware
(Project Intu) presented in this paper is now available as
an open source project. We also presented several key
services that enable us to demonstrate sophisticated scenarios
involving collaboration between multiple robots and human.
MaestROB is especially useful for small and medium-sized
enterprises (SMEs), which need relatively quick time to
market, frequent changes in manufacturing lines and have
low production volumes. The workers can communicate with
the robot in natural language and teach it new skills or
execute existing skills.

As a future direction, we would like to make the machine
learning based skills sharable among multiple robots. As
mentioned in the paper and the demo, a failed plan usually
requires human assistance. One of the future directions can
be to make the robot resolve common problems on its
own. We also plan to demonstrate a system that understands
written and spoken instructions to create a complex object
like IKEA furniture.
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