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Abstract— We propose a novel approach for generating high-
quality, synthetic data for domain-specific learning tasks, for
which training data may not be readily available. We leverage
recent progress in image-to-image translation to bridge the gap
between simulated and real images, allowing us to generate
realistic training data for real-world tasks using only unlabeled
real-world images and a simulation. GeneSIS-RT ameliorates
the burden of having to collect labeled real-world images and
is a promising candidate for generating high-quality, domain-
specific, synthetic data.

To show the effectiveness of using GeneSIS-RT to create
training data, we study two tasks: semantic segmentation and
reactive obstacle avoidance. We demonstrate that learning
algorithms trained using data generated by GeneSIS-RT make
high-accuracy predictions and outperform systems trained on
raw simulated data alone, and as well or better than those
trained on real data. Finally, we use our data to train a
quadcopter to fly 60 meters at speeds up to 3.4 m/s through
a cluttered environment, demonstrating that our GeneSIS-RT
images can be used to learn to perform mission-critical tasks.

I. INTRODUCTION

As monocular cameras have become increasingly cheap
and lightweight, they have become standard sensors for
robotic systems and promise to enable capabilities necessary
for high-level autonomy. Image data is rich with information
and can be used for tasks ranging from object detection and
semantic segmentation to reactive obstacle avoidance. Yet as
the demand for domain-specific learning systems grows, so
too does the demand for large volumes of labeled training
image data, which such systems require if they are to learn to
perform well. Publicly available datasets are limited in scope,
so domain-specific applications typically require custom data
that can be expensive to obtain.

For example, tasks like semantic segmentation and reactive
obstacle avoidance are inference problems of the form

l∗ = argmax
l∈L

p(l|i;D), (1)

in which we choose the maximum likelihood label l∗ ∈ L
given an m×n×d image i ∈ Rm×n×d. A training dataset D,
which consists of N labeled images: D = {ik, lk}Nk=1, can
be used used to learn the hyperparameters of the distribution
(e.g., the weights of the neural network). The image label
l may be per-pixel, as in semantic segmentation, or per-
image, as in choosing safe trajectories for reactive obstacle
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Fig. 1. This schematic shows the procedure for GeneSIS-RT. Upon
generating labeled simulated images, we use a learned mapping function
Gs to make the images more realistic. Our converted images are suitable for
training secondary real-world tasks, like semantic segmentation and reactive
obstacle avoidance.

avoidance. At test time, the images i are drawn from the
set of real-world images: ir ∼ Ir, where the r subscript
denotes real-world. Ideally, we would train with labeled
real-world image data as well, Dr = {ikr, lkr}Nk=1, so as to
match the test data. But labeling images to train a model
for semantic segmentation or obstacle avoidance can be
expensive, especially if the image labeling must be done by
hand—hand-annotating a single image for training semantic
segmentation can take up to 20 minutes, and thousands of
labeled images may be required to learn the target concept.
Simulation tools like the Unity [1] or Unreal [2] game
engines can alleviate the burden of data collection. Such tools
can generate large volumes of simulated images is ∼ Is,
where the s subscript denotes simulated, from an underlying
3D model. Simulations use geometry and semantic concepts
like objects when generating images, which makes it easy to
simultaneously label individual pixels or the overall image
for different tasks. But using simulated data for training
assumes p(l|i;Ds) ≈ p(l|i;Dr), implying that the label we
choose at test time would still have a high likelihood if we
had trained with real data instead.

Training on simulated data and testing in the real world
does not work in general, owing to the difficulties associated
with producing photorealistic simulated images of arbitrary
environments. Real and simulated images frequently differ
in texture, lighting and color, features upon which mod-
ern learning algorithms, like convolutional neural networks,
frequently rely. Suppose there existed a mapping function
Gs : Is → Ir, which could convert a simulated im-
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age is into its real-world counterpart: a converted image
ic = Gs(is). Assuming we had access to such a mapping,
we could generate realistic training data from simulation
Dc = {ikc, lks}

N
k=1, with which we can much more closely

approximate p(l|i;Dr).
In this work, we make use of recent progress in image-to-

image translation to learn a mapping function Gs and use it
to generate more realistic synthetic training images. We show
that the CycleGAN unpaired image-to-image translation pro-
cedure is a good candidate for learning Gs and that can Gs

learned using unlabeled real images—an advantage since
collecting unlabeled images is easy compared to the pro-
cess of labeling them. We can generate labeled “converted”
images that are indistinguishable from labeled real images
by generating labeled synthetic images from our simulation
environment and then applying the mapping function Gs.
We establish the effectiveness of using our converted images
on two tasks: semantic segmentation and reactive obstacle
avoidance. For both tasks, we show that networks trained
on our converted data outperform those trained on simulated
data alone.

II. LEARNING THE MAPPING FUNCTION

The recent CycleGAN algorithm [3] can learn the mapping
function Gs using unpaired batches of images and can
discover the relationship between two distributions of image
types even when presented with novel images not in its
training data. This mapping ability allows us to use Cycle-
GAN to learn an effective mapping function Gs provided
only unpaired, unlabeled images from the simulator and
real world—thus allowing us to produce realistic synthetic
images with minimal overhead.

A. The CycleGAN Procedure

At the core of the CycleGAN procedure are two generative
neural networks that can map simulated images to the set
of real images and vice versa. Each generative network
is trained as part of a Generative Adversarial Network
(GAN) [4], which involves creating a pair of networks and
training them against one another as part of an adversarial
game. The first network in each GAN , the generator Gs,
learns a mapping from m × n × d images from set IA ∈
Rm×n×d and m× n× d images from set IB ∈ Rm×n×d so
that Gs : IA → IB . The other network, the discriminator
Ds, is structured as a classifier, which aims to tell the
difference between images actually drawn from IB and the
images produced by GA: i.e., DB : IB → [0, 1]. As such,
the GAN loss is given by:

LGAN(GA, DB ;IA, IB) = EiB∼IB [log (DB(iB))] +
EiA∼IA [log (1−DB(GA(iA)))] .

(2)
During each training iteration, the generator network is given
a set of images from IA and produces a corresponding set
of converted images. These converted images and a set of
images from IB are given to the discriminator network for
it to classify. The parameters of the two networks are tuned
using backpropagation—the weights of GA are updated so

as to produce more convincing converted images to fool DB

(minimizing Eq. (2)) while the weights of DB are tuned to
better differentiate between the two (maximizing Eq. (2)).
As the system is trained, the converted images produced by
GA increasingly resemble images from IB .

For our purposes, we would like to learn a generator Gs

capable of converting simulated images into realistic images.
We also want this mapping function to preserve high-level
structure: we do not want a large object, like a building, to
vanish after conversion, since such objects are often impor-
tant for determining the label l we aim to predict. However,
the loss function in Eq. (2) does not explicitly encourage
this behavior. The CycleGAN procedure [3] addresses this
problem. First, it introduces a second pair of networks, GB :
IB → IA and DA : IA → [0, 1], and a corresponding loss
function, LGAN(GB , DA; IB , IA), such that the networks are
trained in parallel to the first, but for the reverse mapping.
This second set of networks makes CycleGAN reversible.
A third loss term, the cycle-consistency loss, is added as
well: a per-pixel loss encouraging that the composition of
the generator networks be the identity1:

Lcyc(GA, GB) =EiA∼IA [‖iA −GB(GA(iA))‖1] +
EiB∼IB [‖iB −GA(GB(iB))‖1] .

(3)

Our total loss is a sum of these three terms:
L(GA, GB , DA, DB) =λLcyc(GA, GB)+

LGAN(GA, DB ; IA, IB)+
LGAN(GB , DA; IB , IA)

(4)

where λ determines the relative importance of the GAN loss
and the cycle-consistency loss. The loss is optimized such
that

G∗A, G
∗
B = argmin

GA,GB

max
DA,DB

L(GA, GB , DA, DB) (5)

This procedure allows us to generate a mapping between
unpaired, unlabeled sets of simulated and real images, so
that we may then generate large batches of labeled realistic
data from labeled synthetic data for training secondary real-
world tasks. We empirically show that the resulting mapping
function Gs transfers more local features, like texture, while
preserving macroscopic features of the scene, like objects,
in Sec. III-C.

B. Training Gs

We use the open-source implementation of the Cycle-
GAN algorithm [3] for our experiments. The cycle loss
weighting, which determines the magnitude of the cycle
consistency loss, was reduced from 10 to 4, so as to increase
the relative importance of the discriminator network—this
slightly reduced convergence time but made little difference
in overall conversion quality. We also used the 6-resent-block
configuration for the structure for the generative networks.
We refer the reader to the work of Zhu et al [3] for further
details on the network architecture and parameters.

1By contrast, previous efforts [5] used a heuristic per-pixel loss after
applying only one of the generator functions. Their forward-only loss term
tries to enforce high-level structure but at the expense of the quality of the
converted images, an issue the CycleGAN procedure avoids.



Fig. 2. Here we show a few real-world images from each of the two
environments we use for testing. More details about these environments
can be found in Sec. III-A and Sec. III-B.

III. GENERATING GENESIS-RT DATA

We should be able to learn a mapping function Gs for a
wide variety of environments. In this work we focus on two
different spaces, a warehouse environment and an outdoor
environment, so that we may demonstrate the effectiveness
of our technique. We emphasize that these spaces and the
tasks for which they are used are merely a sample of the
possible application domains of GeneSIS-RT.

We rely on the Unity game engine to generate our sim-
ulated data Ds—while many of our simulated objects are
unrealistic in both color and texture, the mapping function
Gs should learn the relationship between them and their real-
world counterparts, thus eliminating the need for a user to
spend days (or even weeks) modeling the appearance each
object to appear photorealistic.

To learn the mapping function, we require unlabeled
images from both the real and simulated environments. Col-
lecting the real image data required hand-carrying an ASUS
Xtion camera2 around the different spaces, and roughly
40,000 images were collected for each. Simulated images
were generated at random with a uniform distribution over
our different environments. The parameters of the simulated
camera were set to match those of the Xtion sensor—we
generated on the order of 30,000 simulated images for each
environment, all of which were used for training the mapping
function Gs.

A. The Warehouse Environment

The first environment is a warehouse—images from the
real warehouse can be found on the top in Fig. 3. Besides a
narrow tarp-constructed hallway, the space consists mostly of
a lattice of large pillars. The warehouse also includes some
relatively sparse clutter, like divider panels, cardboard and
plastic boxes, and additional tarps. In the simulation, regions
of the environment outside the center area of interest, which
are perceptible by the camera yet otherwise unimportant, are
replaced with textured walls, thereby eliminating the need
for the user to have to model a larger and more-complicated

2The Xtion also comes with depth information, which we use in Sec. V
for collecting the “ground truth” collision labels. For training Gs, however,
only the RGB images are used.

Fig. 3. Here we show simulated images alongside their GeneSIS-RT image
counterparts, obtained by applying our learned mapping function Gs, for
each of the two environments we use for testing. Our GeneSIS-RT process
yields images that look much more realistic and that are better suited for
training learning algorithms for real-world tasks. In the converted images we
observe diffuse reflections on the warehouse floor and dramatically improved
shadows outdoors, realistic features not present in the simulated images. We
later evaluate the quality of our GeneSIS-RT data in the context of specific
tasks, focusing on semantic segmentation in Sec. IV and reactive obstacle
avoidance in Sec. V.

space. It is expected that the mapping function will learn
the relationship between these synthetic boundaries and their
corresponding regions in the real world.

B. The Outdoor Environment

Our other test environment is the “North Court” court-
yard on the MIT campus—images from the real outdoor
environment can be found on the bottom in Fig. 3. The
courtyard consists of a grassy area bordered by trees and
surrounded by a few architecturally diverse buildings. Our
simulated environment contains CAD models of the campus
buildings from the MIT facilities department placed on
overhead satellite imagery of MIT [6]. All other objects
were modeled by the authors using simple textures and 3D
primitives.

C. Image Conversion Results

Converted images from both the warehouse and outdoor
environments can be found alongside their simulated image
counterparts in Fig. 3. Though it is difficult to quantitatively
evaluate the realism of an image, a qualitative inspection
of the converted images shows that they have real-world
features not present in the simulated images. The conversion
process correctly matches textures, like those of pillars and
buildings, and also picks up on more subtle features, like the
diffuse reflection of sunlight on the smooth warehouse floor.



In the warehouse environment, the network also correctly
associates the simulated green obstacles with the tall, gray
dividers and the pink objects with black and cardboard boxes.
The results for the outdoor environment are similar—beyond
simply improving color, the algorithm makes the structure
of the converted trees more closely match that of their real-
world counterparts and enhances the realism of shadows.

While the images look more realistic, minor oddities
can be observed for both environments. First, less common
objects, like the ladders in the warehouse, sometimes convert
poorly. Though they resemble their physical counterparts,
they can occasionally blend in with the scene behind them.
Second, the conversion process can fail whenever any one
object takes up a large portion of the image, since the map-
ping algorithm aims to understand a more complex scene.
When simulated images containing only a single tarp or
obstacle are passed to Gs, the resulting images often contain
artifacts, like small bursts of color. However, neither effect
is sufficiently common so as to hurt overall performance of
our secondary learning algorithms in practice.

Ultimately, the best metric for how realistic our images
look, i.e., how closely they resemble real images drawn from
Ir, is how useful they are as training data for secondary
tasks. As such, the next two sections are devoted to the
evaluation of networks trained on our converted data for
semantic segmentation and reactive obstacle avoidance.

IV. APPLICATION TO SEMANTIC SEGMENTATION

Once we have generated the converted images ic, they
can be used to train separate neural networks to perform
specific tasks. First, we focus on semantic segmentation,
in which each pixel of an m × n input image is assigned
a classification label (e.g., floor, wall, tree), so that l ∈
Cm×n where C = {c0, c1, · · · , cn} are the possible classes.
Semantic segmentation is well suited for using GeneSIS-RT
data, since hand-annotating real-world images is expensive
and time consuming and the simulator can provide the class
ID for each pixel in the converted images. Semantic seg-
mentation also relies heavily on accurate color, lighting, and
texture, features that are a challenge to produce directly from
simulation but which Gs provides. Furthermore, though there
are public training datasets for this task, existing datasets of
real images typically provide only a fixed set of label classes,
which restricts their use for tasks requiring a higher degree
of specificity.

A. Data Generation & Network Training

We create two datasets for testing: one with images
directly from the simulated environment is and one with the
GeneSIS-RT converted images ic = Gs(is). The datasets
each consist of roughly 20,000 image/label pairs at a resolu-
tion of 160×120 pixels. The segmentation data was derived
from our Unity simulation environments, which makes it
easy to generate pixel-accurate labels associated with each
observation.

For each environment, we used a set of class labels that
are unique to our environments, which means that no off-the-

Fig. 4. Here we see the results of training the semantic segmentation
network on our datasets for each of the warehouse and outdoor environ-
ments. Each column of four images makes up a set comprised of the input
image, the ground truth segmentation (hand-annotated by the authors), the
prediction from a network trained on simulated data, and the prediction from
a network trained on our GeneSIS-RT data. It is clear to see in all cases that
the converted images are far more useful for training in these environments
than the simulated images. The GeneSIS-RT network predictions are far
more accurate at correctly labeling the buildings in the outdoor environment,
which each have a unique class. Details about the segmentation task can be
found in Sec. IV.

shelf dataset exists for our use case. Obtaining the necessary
data without the assistance of a simulation tool would require
a substantial effort in hand-annotating data. For the ware-
house environment, we used 6 label classes, including tarps
(magenta) and pillars (blue). For the outdoor environment,
we assigned a unique class label to each building, in addition
to standard classes like trees and clutter.

For our neural networks, we used DeepLabv2, a variant of
ResNet-101 usable for semantic segmentation [7], [8], [9].
The network was pre-trained on the MS-COCO dataset [10],
and we used these weights as a starting point for our
training. We trained using the provided script, with a batch
size of 10, 20,000 iterations, and an initial learning rate of
2.5 × 10−4. For more details, we refer the reader to the
implementation [8].



TABLE I. OUTDOOR SEGMENTATION RESULTS [MIOU]
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TABLE II. WAREHOUSE SEGMENTATION RESULTS [MIOU]
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SIMULATED 73 62 4 51 42 23 43 53

B. Segmentation Results

The results of evaluating these two networks on real-
world data can be found in Fig. 4, which shows the network
predictions alongside the ground truth labels, which were
hand-annotated by the authors. The network trained on our
GeneSIS-RT data vastly outperforms the network trained
on the data obtained directly from the Unity simulator:
for the outdoor environment, the global mean Intersection
over Union (mIoU) on real-world test data was 66.9 for
our GeneSIS-RT data and only 32.6 when the network was
trained on raw simulated data (a perfect image segmentation
has a mIoU of 100). In the warehouse, the GeneSIS-RT-
trained network outperformed the simulated network 77.4
to 52.7. The per-class mIoU values on the real-world test
data for the segmentation task can be found in Table I and
Table II.

Since it lacks the color and texture of the real world,
the raw simulated data was ineffective, and the network
trained with it partitioned the space in odd places and
frequently labeled these regions incorrectly. While it was
sometimes able to correctly identify the ground plane or
larger objects such as tarps or tree canopies, a large portion
of the predictions did not agree with the true label.

By contrast, the network trained on GeneSIS-RT data
was much more accurate. In the outdoor environment, this
network was able to correctly identify the class labels of the
different buildings with high accuracy, a task which baffled
the network trained on raw simulated data. Furthermore, this
network was also capable of finding small regions of clutter
in the warehouse environment, including distant boxes and
mats on the ground. These results show both the effectiveness
and usefulness of our technique—without providing any real
labeled images, we have trained a system that can perform
well in the real world.

V. APPLICATION TO REACTIVE OBSTACLE AVOIDANCE

We also focused on the task of reactive obstacle avoidance,
in which an aerial vehicle must use an image to predict

Fig. 5. For the task of reactive obstacle avoidance, our set of actions
corresponds to an 11 × 11 grid of target accelerations; the vehicle can
perform some combination of speeding up, slowing down or banking
left/right. Our neural network predicts a collision label for each potential
action. We show the relationship between the motion primitives—which are
used in combination with the 3D structure to compute the collision labels—
and the camera image in the rightmost illustration above. For more details,
see Sec. V.

which of a set finite-time actions might cause the vehicle to
collide with the environment. In addition to the environment
structure, which can be inferred from the image, the collision
labels also depend on the vehicle’s instantaneous velocity
and acceleration. Incorporating the vehicle state requires only
trivial modifications to Eq. (1) and our learning problem
therefore becomes:

l∗ = argmax
l

p(l|i, v0, a0;D), (6)

where v0 ∈ R3 is the vehicle’s instantaneous velocity and
a0 ∈ R3 is its instantaneous acceleration, estimates of which
are provided via an onboard state estimator [11]. The label
for the obstacle avoidance task is that of a multilabel binary
classification problem with Nc elements, so that l ∈ {0, 1}Nc

and the nth element of the label vector corresponds to the
collision state of the nth action.

For our experiments, each action is a motion primitive
specified by an acceleration target and defined by the dy-
namics model from [12]. Our set of motion primitives
corresponds to an 11 × 11 grid of accelerations, allowing
the vehicle to speed up, slow down or bank left/right to
varying degrees, with a maximum acceleration of 2 m/s2

along each axis. We show how the collision labels for these
motion primitives and the geometry are related to one another
in Fig. 5.

The collision labels are computed from instantaneous
depth data3 using the procedure found in [12], which simu-
lates the trajectory of each 1.5 second motion primitive and
checks for collision in 3D space. The label calculation also
takes state estimator uncertainty into account, and we assign
a collision label to “near-misses” as well. A label of 1 for any
primitive indicates that the vehicle would pass too close to an
obstacle or enter space that is out of view, either because it
is occluded by an obstacle or because the action would take
the vehicle outside the camera frustrum, and might therefore

3We use the ASUS Xtion [13] to get depth data in the Warehouse
environment and the Intel RealSense r200 [14] to get depth data in the
Outdoor environment.



TABLE III. RESULTS FROM THE OBSTACLE AVOIDANCE TASK

DATASET Network AUROC Log Loss

WAREHOUSE TEST 1 GeneSIS-RT (ours) 0.945 0.300
Test data collected on the Simulated 0.892 0.537
same day as training data Real 0.954 0.279

WAREHOUSE TEST 2
GeneSIS-RT (ours) 0.942 0.348

Simulated 0.864 0.580
Real 0.908 0.520

WAREHOUSE FLIGHTS

GeneSIS-RT (ours) 0.970 0.222
Simulated 0.932 0.534

Real 0.958 0.342

OUTDOOR TEST

GeneSIS-RT (ours) 0.917 0.407
Simulated 0.892 0.743

Real 0.915 0.422

Here we show the results from the reactive obstacle avoidance task,
which includes the area under the ROC curve (AUROC) and the log loss
for networks trained with three sets of data: our GeneSIS-RT data, raw
simulation data, and real-world data. Except for Warehouse Test 1, for which
the evaluation data was collected on the same day as the real-world training
data, the network trained with our GeneSIS-RT data outperforms the other
two networks. These results are discussed in detail in Sec. V.

collide with an unseen obstacle. For further implementation
details, we refer the reader to [12].

The neural networks we use begin with two
convolution/max-pool layers, which operate on color
images scaled to 64 × 48 pixels. We then add a few fully-
connected hidden layers—three for the outdoor environment
and four for the warehouse—each using a ReLU activation.
Finally, we include one final fully-connected layer with
a sigmoid activation, and use a logarithmic loss function
for training the system. All weight terms have an L2 loss,
without which all three networks perform less well. The
network architecture and regularization terms could likely
be tuned further for improved performance, but exhaustively
tuning these parameters is not the focus of this work.

A. Obstacle Avoidance Performance

To evaluate the effectiveness of our technique, we train
three different networks N for each environment:

1) N [GeneSIS-RT]: Trained with converted images ic =
Gs(is) paired with simulated labels;

2) N [Simulation]: Trained with simulated data;
3) N [Real]: Trained with labeled real images ir, collected

with RGB-D sensors.
All three data sets undergo a data augmentation procedure, in
which we randomly vary the instantaneous vehicle velocity
during the label calculation. This is to ensure that the network
properly learns the relationship between the velocity and the
collision probabilities.

1) Warehouse Obstacle Avoidance: In the warehouse, we
study the performance of these networks on three sets of
evaluation data: two of these sets were collected by hand,
emulating quadcopter flight, and the third, to be discussed in
more detail in Sec. V-B was collected during autonomous
vehicle flight. The performance of the three networks on
these datasets can be found in Table III. Relatedly, we show a

Fig. 6. Here we show labeled image data for the task of reactive obstacle
avoidance alongside predictions from neural networks trained using our
converted image data, raw simulated images, and real images. The networks
predict the probability of collision for each action: white denotes safe,
charcoal denotes unsafe, and the intermediate colors represent degrees of
confidence in the prediction (we also include a black contour at 50%
confidence). Our converted images much more closely resemble real-world
images—not only are they clearly more useful for training than the simulated
images, but the network trained using the GeneSIS-RT data rivals, and even
exceeds, the performance of its counterpart trained using real data. These
results are discussed further in Sec. V-A.

few individual network predictions alongside labeled images
from the evaluation data in Fig. 6.

The GeneSIS-RT network outperforms the N [Simulated]
network. Though the raw simulated data matches the
GeneSIS-RT data in number of images and coverage of the
warehouse space, the raw simulated images are not similar
enough to real images to reliably make accurate predictions
at test time. The N [Simulated] network frequently makes er-
rors that would result in collision. By contrast, the GeneSIS-
RT data more closely resembles the real world and therefore
enables more accurate predictions. The data in Table III
supports this conclusion: the network trained with GeneSIS-
RT data has reliably better cross entropy loss and area under
the ROC curve than its counterpart trained on raw simulated
data.

Furthermore, the network trained on GeneSIS-RT data
performs as well as and even exceeds the performance of the
network trained on real data. The N [Real] network slightly
outperforms the N [GeneSIS-RT] network on the Warehouse
Test 1 dataset, which was collected on the same day and
under the same conditions as the warehouse training data.
The N [GeneSIS-RT] network demonstrates better general-
ization performance across the remaining two warehouse
datasets, each collected on different days and under slightly
different lighting conditions. The N [GeneSIS-RT] network
outperforms the N [Real] network on the Warehouse Test 2



dataset and on the Warehouse Flight Test dataset, which will
discussed in more detail in Sec. V-B.

We should note that none of the networks perform partic-
ularly well in the “tarp hallway” region of the warehouse. In
this region, it is more difficult to determine precise distance
to nearby obstacles, which are large and mostly uniform in
color. We can see this effect in Fig. 6D—while both the
N [GeneSIS-RT] and N [Real] networks direct the vehicle
away from the observed obstacles, the confidence in the
predictions is low, observed as the gray-blue color in the
plots. This is a difficulty associated with the task of obstacle
avoidance and should not be seen as a limiting factor in our
overall approach.

2) Outdoor Obstacle Avoidance: For the outdoor environ-
ment, we collected a single evaluation dataset by hand for
testing, the results of which can be found at the bottom of
Table III. We can see that the performance of the GeneSIS-
RT trained network outperforms that of the network trained
with raw simulated data, for both the AUROC and the
log loss, and matches the quality achieved by real data as
well. However, performance in this environment is not as
good as it was in the warehouse for either network trained
on our GeneSIS-RT or real-world data, suggesting that we
require higher-precision data to exceed this performance.
However, our approach to generating data gives us access
to a differentiable cost function over the space of images,
something which is not possible with real-world data. Such
a cost function may enable better performance, and is a
subject for future research. Regardless, the results using our
GeneSIS-RT data are encouraging, despite the difficulty of
the task.

B. Real-World Quadcopter Flights

To further test how well our converted data can be used
to inform real-world decisions, we put our GeneSIS-RT
network on an autonomous robotic platform. We flew a
physical quadcopter across our warehouse environment with
the network in-the-loop, requiring that it dodge obstacles
along the way. Success in this experiment relied on two
things: (1) recognizing obstacles, so that it would not crash,
and (2) reliably detecting free space, so that the vehicle could
still make progress towards the goal.

We threshold the output predictions such that we only
choose an action when the sigmoid output for a particular
motion primitive is less than 0.05: i.e., we err on the side of
slowing and stopping unnecessarily rather than risk collision.
Thus the vehicle is expected to behave conservatively—
taking wider trajectories around potential obstacles and slow-
ing down or stopping as it becomes less certain about its
safety. Furthermore, for safety reasons, the quadcopter is
limited to speeds of no more than 3.5 m/s, yet is otherwise
guided entirely by the decisions of the learned model.

We conducted 15 flights, covering over 250 meters. The
vehicle successfully dodged dozens of obstacles, including
pillars, tarps and clutter, and never crashed, all while cor-
rectly identifying free space with high enough accuracy to
make forward progress. A comparison between the different

Fig. 7. Here we show network predictions on data from an autonomous
quadcopter flight, during which our GeneSIS-RT data was used for guidance
and reactive obstacle avoidance. During the flight, the vehicle dodges five
distinct obstacle, two of which can be seen in columns A and C, and reaches
a top speed of 3.4 meters-per-second. The performance of the network
trained with the GeneSIS-RT data clearly outperforms those trained on
simulated data and on real data. Only once, shown in column D, does
the vehicle dramatically slow down due to misclassified free space, and
otherwise quickly and safely reaches the goal.

networks on the flight data, shown in Table III under Ware-
house Flight Tests, further demonstrates the effectiveness of
using our technique—the network trained on our converted
data outperforms the networks trained on raw simulated data
and on real data.

The longest flight consisted of a single 60 meter path
across the warehouse, during which the vehicle clearly
avoided 4 obstacles and reached a top speed of 3.4 m/s. The
data from this flight, consisting of network predictions from
the N [GeneSIS-RT] network, which was guiding the vehicle,
the N [Real] network, and N [Simulated] networks, is shown
in Fig. 7. The N [GeneSIS-RT] network provides a more
accurate prediction during nearly the entire flight. Aside
from a brief point at which the vehicle incorrectly predicts
an obstacle, shown in Fig. 7D, the network confidently
predicts free space and avoids obstacles, yet trusting the
N [Simulated] network would cause the vehicle to collide.



VI. RELATED WORK

There have been some recent efforts to train deep learning
systems for real-world tasks using only simulated data. In
Driving in the Matrix [15], the high-budget game Grand
Theft Auto V was used to generate data for training an object
detection system, since the simulated images are already
rather realistic. Though using video games for image genera-
tion is an attractive approach, games are limited in versatility,
making it difficult to generate images of environments or
objects not present in the game world.

Some recent papers [16], [17] have attempted to directly
encourage p(l|i;Ds) ≈ p(l|i;Dr), despite large differences
in appearance between simulated and real images. By in-
troducing large random variations in the lighting, color
and texture of the simulated environments, they encourage
the networks to learn color-invariant features like large-
scale shapes or structure. However, the use cases of this
approach are limited to tasks which do not rely upon texture
and lighting, making it ineffective for tasks like semantic
segmentation and is not applicable in general.

Finally, our work relies on recent progress in the domain
of image translation [18] and style transfer [19]. There have
been some promising results in this space, yet most such
approaches use pairs of similar or corresponding images,
e.g. two images taken from the same vantage point in both
the real and simulated world. There are methods capable
of relating unpaired sets of images. One such result is [5],
in which the authors use a modified generative adversarial
network to learn, among other things, a mapping from
synthetic eyes to real eyes, and then use the resulting
data for training simple tasks. Yet the construction of their
refinement network assumes low image variety and a close
correspondence between the simulated and real-world im-
ages, making it difficult to use their approach to refine
complex scenes containing simulated objects whose shape,
color or texture do not closely reflect the real world. The
CycleGAN approach [3] to unpaired image translation is
designed with such scenarios in mind and is therefore an
appropriate candidate for our work.

VII. CONCLUSIONS & FUTURE WORK

We have introduced GeneSIS-RT, a procedure for gener-
ating realistic labeled synthetic images that can be used to
train machine learning systems to perform real-world tasks.
Using our mapping function Gs, trained using only unlabeled
simulated and real-world images, can save the user days
or weeks of time required to hand-label image data. We
evaluated the quality of our GeneSIS-RT data by using it
to train neural networks for two different tasks: semantic
segmentation and reactive obstacle avoidance. For both tasks
we use for testing, we show that networks trained using our
converted data are capable of outperforming those trained
on raw simulated data alone. In the case of reactive obstacle
avoidance, we additionally compare to networks trained on
real-world data and show that our approach allows us to
match and even exceed their performance. This is particularly
true in our warehouse environment, in which we trust the

network trained on our converted data to autonomously guide
a quadcopter, thereby demonstrating that our data is of high
enough quality to train neural algorithms to perform mission-
critical tasks.

Evaluating performance on labeled real-world image data
remains the best way to tune network parameters to max-
imize performance at test time, and doing so allowed us
to improve performance for obstacle avoidance. Labeling
a small amount of real-world data is a minor concession
compared to the performance gains over using raw simulated
data alone. Improving performance on real-world tasks in the
absence of any labeled real-world images during parameter
tuning remains a future research goal. Finally, we have shown
the effectiveness of our technique when we have a simulated
model of the environment of interest, yet it remains a topic
for future study to evaluate how well our approach to data
generation will generalize to more generic environments.
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