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Abstract— In this paper, we present a new approach to
Transfer Learning (TL) in Reinforcement Learning (RL) for
cross-domain tasks. Many of the available techniques approach
the transfer architecture as a method of speeding up the
learning target task. We propose to adapt and reuse the mapped
source task optimal-policy directly in related domains. We show
the optimal policy from a related source task can be near
optimal in target domain provided an adaptive policy accounts
for the model error between target and source. The main
benefit of this policy augmentation is generalizing policies across
multiple related domains without having to re-learn in the new
tasks. Our results show that this architecture leads to better
sample efficiency in the transfer, reducing sample complexity
of target task learning to target apprentice learning.

I. INTRODUCTION

Reinforcement Learning is a machine learning paradigm,
where a robotic agent learns the optimal policy for per-
forming a sequential decision making without complete
knowledge of the environment. Recent successes in deep
reinforcement learning have enabled RL agents to solve
complex problems from balancing inverted pendulums [1] to
playing Atari games [2]. Despite these recent successes, we
do not yet understand how to efficiently transfer the learned
policies from one task to another [3]. In particular, while
some level of success has been achieved, in transferring RL
policies in the same state-space domains, the problem of
efficient cross-domain skill transfer is still quite open.

We consider the term “similar” source and target tasks,
in the sense that they exploit the same underlying physical
principles, but their state spaces can be entirely different.
For example in our primary results, we consider the problem
of knowledge transfer from balancing Cart-Pole to Bicycle
balancing. While both the system share common dimension-
ality of state and action spaces but span across a different
coordinate frame. The Cart-pole is defined over states of cart
and pendulum, (x, ẋ, θ, θ̇) and the action space is lateral force
on cart (−F, 0, F ). Whereas bicycle dynamics is modelled
over handlebar rotation and bicycle roll angle (θ, θ̇, ω, ω̇)
with action space is torque applied by rider on the handlebar
(−τ, 0, τ). While the dynamics and domain of state space
of two processes might be completely different, they share a
commonality in the underlying physical principles. Both the
systems exhibit non-minimum phase dynamics and also the
nature of the control policy is same, such that the control
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action is applied, in the direction of the fall of pendulum
or bicycle. This similarity in dynamical behavior of two
systems makes learning in a cart-pole domain relevant in
bike balancing problem.

Another cross-domain transfer results we present, is the
problem of transferring the skills learned from the Mountain
Car (Figure 1a) [1] to the Inverted pendulum (Figure 1b).
In the Mountain Car, the agent learns the optimal policy to
make an underpowered car climb a mountain. On the other
hand, in the pendulum domain, the agent learns to balance
a pendulum upright from its initial down position. In both
cases, the common physical principle the agent must learn,
is to exploit the principle of energy exchange. The pendulum
must be swung up to the upright position by creating
enough angular momentum through smaller oscillations, and
similarly, the car must be made to climb a steeper slope by
using energy exchanged by moving up and down the slope
of the mountain. In principle, a good RL agent would find
it easier to balance a pendulum after it has learned a related
task, to make an underpowered car climb a mountain.

Humans are capable of efficiently and quickly generalizing
the learned skills between such related tasks. However,
RL algorithms capable of performing efficient transfer of
policies without learning in the new domain have not yet
been reported. To address this gap, our main contribution is

(a)
(b)

Fig. 1: Cross Domain Transfer: (a) Source Task: Cart-Pole
and (b) Target Task:Bicycle, VRML in MATLAB R©is used
as simulation environment [4] to demonstrate cross domain
transfer.

an algorithm that enables cross-domain transfer in the RL
setting. Leveraging notions from apprenticeship learning [5]
and adaptive control [6], [7], we propose an algorithm that
can directly transfer the learned policy from a source to target
task.

Given a source task and it’s optimal policy, a target
apprentice model and an inter-task mapping, we show that it
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suffices only to execute greedy policies augmented with an
adaptive policy to ensure ε−optimal behavior in target space.

A. State of the Art: Transfer Learning in RL

A significant body of literature in transfer learning in the
RL, are focused on using the learned source policy as an
initial policy in the target task [8]–[10]. Examples include
a transfer in scenarios where the source and target task are
similar, and no mapping of state space is needed [11], or
transfer from human demonstrations [12]. However, when
the source and target task have different state-action spaces,
the policy from source cannot be directly used in the target
task. In this case, a mapping is required between the state-
action space of the corresponding source and target tasks to
enable knowledge transfer [3]. The inter-task mapping can
be supervised; provided by an agent [13], hand coded using
semantics of state features [11], [14], [15] ,unsupervised
using Manifold Alignment [10], [16] or Sparse Coding
Algorithm [9]. Aforementioned TL methods accelerate the
learning and minimize regret as compared to stand alone
RL on target. However, with inter-task mapping and simple
initializing of the target task learning with the transferred
source policy may not lead to sample efficiency in the
transfer. In particular, these approaches do not leverage the
fact that both tasks exploit the same physical principle and
the possibility of reusing source policy in the target domain.

B. Main Contributions

In this paper, we take a different approach from using the
source policy to initialize RL in the target. Inspired by the
literature in model reference adaptive control (MRAC) [7]
we propose an algorithm that adapts the source policy to
the target task. Also, unlike MRAC literature we can extend
the method to probabilistic MDPs with discrete state-action
spaces. We argue that optimal policies retain its optimality
across domains that leverage the same physical principle
but different state-spaces. We augment the transferred policy
by a policy adjustment term that adapts to the difference
between the dynamics of two tasks in target space. If adaptive
policy could be design to match the target model to projected
source model, we demonstrate the adapted projected policy
to be ε-optimal in target task. The adaptive policy termed as
π
(T )
ad (s) is designed to accommodate the difference between

the transition dynamics of the projected source and the target
task. The key benefit of this method is that it obviates the
need to learn a new policy in the target space, leading to
high sample efficient transfer.

II. TRANSFER LEARNING WITH TARGET APPRENTICE
(TA-TL)

This section proposes a novel transfer learning algorithm
capable of cross-domain transfer between two related but
dissimilar tasks. The presented architecture applies to both
continuous, discrete state and action space systems. Unlike
the available state of art TL algorithms, which mainly
concentrates on policy initialization in target task RL; we
propose to use source policy directly as the optimal policy

in the related target model. We achieve this one step transfer
through online correction of transferred policy with adaptive
policy, derived based on model transition error. The presented
approach has three distinct phases: Phase I involves finding
an optimal policy for source task. For this purpose, we
use Fitted Q-Iteration (FQI) RL to solve the source MDP.
Since the source task is much simpler and smaller problem
compared to the target tasks, we assume we can always
discover an optimal policy for source task. Phase II; involves
discovering a mutual mapping between state, action space of
source and target using Unsupervised Manifold Alignment
(UMA). Phase III of transfer, is the adaptation of the mapped
source optimal policy through policy augmentation in a new
target domain.

A possible drawback of the proposed method could be
suboptimal transfer, if the adaptive policy fails to account
for the total model error between the projected source and
target model. For given any small “δ(ε)” residual model
error by adaptive policy, results in the suboptimal behavior in
target task. With the advantage of high sample efficiency of
the proposed technique, near-optimal behavior in the target
can be acceptable. It is to be noted; we do not engage
in exploration in target space for transfer, we only exploit
the projected source policy in target space, to achieve near-
optimal behavior. Nevertheless, with further exploration, we
can improve upon the adapted transferred policy and achieve
an optimal solution, but this is left for follow-on work.

Details of three phases of proposed transfer learning
technique using target apprentice model are as follows:

A. Phase I: Learning in the Source task

Fitted Q-Iteration is used to learn optimal policy in the
source task. The policy search is not limited to Q-learning
and can be extended to any other optimal policy genera-
tion methods. A single layer shallow network is used to
approximate Q function. For the tasks considered in this
paper, shallow networks were found sufficient, but for more
complex tasks a deep architecture with multiple layers can
be used. This exercise is underway and left for follow-on
work.

B. Phase II: Inter task Mapping

Transfer in RL setting, the source and target task have a
different representation of state and action spaces. The cross-
domain transfer requires an inter-task mapping to facilitate
a meaningful transfer. State space s(S) and s(T ) belonging
to two different manifold, cannot be directly compared.
Unsupervised Manifold Alignment (UMA) technique helps
to discover alignment between two data sets and provide a
one to one and onto inter-task mapping. Using this inter-task
mapping, allows us to build one step optimal policy for target
task. It is important to note we consider same cardinality
and analogous action spaces in analysis and experiments
for ease of exposition of the proposed transfer architecture.
Problems with distinct, nonuniform action spaces will have
to use classification methods to find correspondence between
action spaces [17], [18]. The transfer is achieved through



augmenting transferred policy by the adaptive policy learned
over the target model. The proposed policy transfer and
adaptation method reuse the source policy in target space
resulting in near-optimal behavior. Details of the inter-state
mapping are provided in [10], [16] and reference therein.

Algorithm 1 Transfer Learning using target Apprentice
model

1: Input: Source Policy π∗(S)(s), Inter-task mapping χS
and Apprentice Model P̂(T )

2: repeat
3: Initialize (s0, a0)T ∈ (S ×A)T .
4: Project the target task state to source model using

inter-task mapping χs+

ŝSi = χs
+(sTi )

5: Evaluate the action using greedy policy on learned
action-value function Q(S)(s, a) in source task,

π
∗(S)
i = argmax

π
(Q(S)(ŝSi , a))

6:
aSi = π∗(S)(ŝSi )

7: Query the source task model at state ŝSi and action aSi

sSi+1 = P(S)(ŝSi , a
S
i )

8: Project the source task propagated state to target task
model,

ŝTi+1 = χs(s
S
i+1)

9: Evaluate the adaptive policy as

π
(T )
ad = P̂(T )(sTi , a

T
i )− ŝTi+1

10: Project the source policy into target space
χs(π

∗(S)(s, a))
11: TL policy for target task

π∗T = π∗(S)(χs(s
S))− π(T )

ad

12: Draw action from policy π∗T at step i and propagate
the target model

13: until s(T )
i = terminal

C. Phase III: Transfer Learning through policy adaptation

This section presents a transfer algorithm for a pair of
tasks in continuous/discrete state and action spaces. Algo-
rithm 1 details TL through policy adaptation using apprentice
model. Empirically we show presented method is sample
efficient compared to other methods of transfer; since the

sample complexity of learning an optimal policy for initial-
ized target task is reduced to sample complexity of local
apprentice model learning. Algorithm-1 leverages the inter-
task mapping detailed in subsection II-B, to move back
and forth between source and target space for knowledge
transfer and adaptive policy learning. The performance of the
policy transfer depends on the quality of manifold alignment
between source and target tasks. We assume UMA provides
a one to one and onto correspondence between source
and target state spaces for efficient transfer. Algorithm-1,
provides pseudo-code for TL using target apprentice. Steps
1−8 provide an architecture for cross-domain policy transfer
and step 9 − 12 details policy adaptation through target
apprentice learning.

III. MARKOV DECISION PROCESS

We assume the underlying problem is defined as Markov
Decision Process (MDP). An MDP is defined as a tuple
M = (S,A,P,H, ρ0,R), where S is a finite set of states;
A set of actions. P = P (s, a, s′) is a Markovian state
transition model, the probability of making transition to s′

upon taking action a in state s. H is solution horizon of
MDP, so that MDP terminates afterH steps. ρ0 is distribution
over which initial states are chosen and R : S × A → IR
is reward function measuring the performance of agent and
is assumed to be bounded by Rmax. Total return for all
states si ∈ ρ0 is defined as sum of discounted reward
J =

∑H
i=t γ

i−tR(si, ai), γ ∈ [0, 1) being the discount
factor. A policy π : S → A is a mapping from states S
to a probability distribution over set of actions in A. The
agent’s goal is to find a policy π? which maximize the total
return.

We formalize the underlying transfer problem by consid-
ering a source and target MDPMS = (S,A,P,H, ρ0,R)S ,
MT = (S,A,P,H, ρ0,R)T , with its own state space, action
space and transition model respectively. In general the state
space can be completely different in two domains. Regarding
the action space of two domains we assume,
Assumption 1: The cardinality of the discrete action space
is same in source and target task

|A(T )| = |A(S)| (1)

but the limits on action amplitude can be different

||A(S)||2 ≤ τ (S), ||A(T )||2 ≤ τ (T ) (2)

We assume an invertible mapping χs provides correspon-
dence between the two state space of source and target
model. We will use ŝSi , ŝTi to denote the corresponding
projected states at time “i” from target and source spaces
respectively.

The transition probabilities PS ,PT also differ. However,
we assume the physics of the problem share some similarities
in the underlying principles.

Assumption 2: The transition model for the source task
is available or that we can sample from a source model
simulator. This assumption is not very restrictive since the



designer can always select/create related source task for
given target task.

sSi+1 = P(S)(ŝSi , a
S
i ) (3)

The target transition probabilities P(T ) is modeled online
using state-action-state (st, at, st+1) triplets collected along
the trajectories generated by some random exploration policy.
We call the approximate model as the apprentice to target
P̂(T ).

A. Algorithm: TA-TL

For every initial condition in target task sT0 ∈ S(T ); sT0
are mapped to source space to find the corresponding initial
condition of source task.

ŝSi = χs
+(sTi ) (4)

where χs+ is the inverse mapping from target to source and
ŝSi represents the image of sTi in source state space. For the
mapped state in source task, a greedy action is selected using
learned Q(S)(ŝSi , a

S
i ) state-action value function.

aSi ← argmax
aS
i

(Q(S)(ŝSi , a
S
i )) (5)

Using selected action aSi the source model at state ŝ(S)i

is propagated to sSi+1. The propagated state in source task
is mapped back to the target space using inter-task mapping
function,

ŝTi+1 = χs(s
S
i+1) (6)

where ŝTi+1 is the image of sSi+1 in target space. From
Assumption-1, every selected action in source task has
greedy correspondence in target task. Using this equivalence
of actions, for every selected action in source task an
equivalent action in target task is selected as aTi ∈ A(T ). The
selected action for target task is augmented with a(T )

ad ∈ A
(T )
ad

derived from adaptive policy,

π
(T )
ad = P(T )

(S) (sSi , a
S
i )− P̂(T )(sTi , a

T
i ) (7)

a
(T )
ad = π

(T )
ad (sT ) (8)

where P̂(T )(sTi , a
T
i ) is apprentice model and

P(T )
(S) (sSi , a

S
i ) = χs(P(S)(sSi , a

S
i )) (9)

is the projected source model on to target space. The set
A(T )
ad is adaptive action space such that |A(T )

ad | ≥ |A(T )| and
||A(T )

ad || ≤ ||π
(T )
ad ||∞

The total transferred policy for solving a related target task
is proposed to be a linear combination of mapped optimal
policy and an adaptive policy as follows,

π∗(T )(.) = π∗(S)(χs(.)) +Kπ(T )
ad (.) (10)

B. Analysis

Theorem 1: For any given small ε ≥ 0, there exists a δ(ε)
such that the difference between true target model and target
apprentice model over the entire state-action space be

‖P(T )(s, a)− P̂(T )(s, a)‖ ≤ δ(ε), ∀(s, a) ∈ S ×A

Then using aS = π∗(S)(.), the optimal policy for source task,
the modified policy (10) can be shown to be ε-optimal in the
target task

Proof: We analyze the admissibility of the augmented
policy for the target space. Target model is assumed to be
any nonlinear, control affine system and source model be
any nonlinear system. The discrete transition model for both
source and target model can be considered as follows,

P(S)(s, a) : sSi+1 = F∗(S)(sSi , aSi ) (11)

P(T )(s, a) : sTi+1 = F∗(T )(sTi ) + BaTi (12)

where sS ∈ S(S), sT ∈ S(T ) and aS ∈ A(S), aT ∈ A(T ).
The target apprentice is an approximation to the target

model. We retain the control affine property of the target
model by using appropriate basis of the single layer neural
network, to model the target dynamics. The approximate or
the apprentice model of the target can be written as function
of network weights and basis as,

P̂(T )(s, a) : sTi+1 = F̂ (T )(si) + B̂a(T )
i (13)

= Ŵφ(s
(T )
i ) + B̂a(T )

i (14)

=
[
Ŵ B̂

]
×
[
φ(s

(T )
i ) a

(T )
i

]T
(15)

where F̂ (T )(st) = Ŵ (T )φ(s
(T )
i ) and

[
Ŵ B̂

]
, ψ(sTi , a

T
i ) =[

φ(s
(T )
i ) a

(T )
i

]
be target apprentice network weights and

basis function.
Sampling the action from modified target optimal policy

(10) a(T )
i = π∗(T )((sTi )) and applying it to target model

following holds,

s
(T )
i+1 = F∗(T )(sTi ) + Ba(T )

S,i + BKa(T )
ad,i (16)

where a(T )
S,i = π∗(S)(χs(s

T
i )) is the mapped optimal action

to target space corresponding to source optimal policy and
a
(T )
ad,i = π

(T )
ad (sTi ) is modification term to mapped optimal

action to cancel the effects of model error.
From definition of model adaptive policy (8) and appren-

tice model (15), above expression can be simplified as

s
(T )
i+1 = F∗(T )(sTi ) + Ba(T )

(S),i

+BK
(
P(T )
(S) (sSi , a

S
i )− P̂(T )(sTi , a

T
i )
)

(17)

s
(T )
i+1 = F∗(T )(sTi ) + Ba(T )

(S),i

+BK
(
P(T )
(S) (sSi , a

S
i )− F̂ (T )(si)− B̂a(T )

i

)
For choice of policy mixture coefficient K = 1/B̂. The above
expression Simplifies to,

sTi+1 = αP(T )
(S) (sSi , a

S
i ) +

(
P(T )(s, a)− αP̂(T )(s, a)

)
(18)



Where α = B/B̂, and for persistently exciting data collected
for apprentice model learning D = [si, ai, si+1]Ni=1 conver-
gence of the parameters to true value can be shown [19],
ensuring α ≈ 1

Using (9) and (12) the above expression (18), can be
rewritten in terms of source transition model using the inter-
task mapping function χS as

sTi+1 = χs

(
F∗(S)(sSi , aSi )

)
+ ε (19)

where ε = χs‖P(T )(s, a)− αP̂(T )(s, a)‖
Expression (19) demonstrates that implementation of the

modified optimal policy (10) in target task is equivalent to
projecting the source optimal trajectories on to the target
space. Assuming existence of unique correspondence be-
tween source to target task space, we prove the policy (10)
leads to ε-optimal solution in target model.

IV. TARGET TASK APPRENTICE LEARNING

Target apprentice is an approximate model for target task.
In this paper we consider the target model apprenticeship
learning using any random policy which explores randomly
the target domain [5]. We re-use the dataset, state-action-
state triplets generated through random policy for manifold
alignment, for target apprentice learning. This data reuse
leads to further saving of time and processing for sample
generation for apprentice learning.

A. Apprentice Learning: Algorithm

Using any random policy, π we explore the target model to
collect state-action-state triplets to learn the target apprentice
to enable transfer learning using apprentice model.

1) Run k trials in target task under the random π policy
for NT steps. Save the state trajectories experienced.

2) Using accumulated data of state-action-state triplets,
estimate the system dynamics using least square linear
regression for linearly parametrized model and store
the system parameters θ = [Ŵ , B̂].

3) Evaluate the utility of the projected policy π̂(T ) =
π∗(S)(χs(s

T )) in target model on both true and ap-
proximate system, M(T ) and M̂(T ). Utility function
UM (π) is defined as average reward accumulated for
k trials.

4) If UM (π̂(T )) − UM̂ (π̂(T )) ≤ ζ, return θ, where ζ is
some chosen small threshold.

V. EXPERIMENTS & RESULTS

We present results from five experiments to evaluate
the proposed transfer learning framework. The first two
experiments consider transfer learning in same domains
but with different transition models and action spaces. The
first problem is in discrete state and action space, while
the second problem is of continuous state space and non-
stationary transition model in the target task. The third and
fourth experiment focuses on cross-domain transfer where
the policy from the cart-pole, mountain car is transferred
to the bicycle problem, inverted pendulum domains respec-
tively. We also demonstrate the presented approach being

robust to negative transfer through our final experiment.
We compare the presented Target Apprentice TL (TA-TL)
against existing state of the art Transfer in RL, Unsupervised
Manifold Alignment (UMA-TL) [10] and no transfer RL
(Fitted Q-Learning).

Algorithm 2 Apprentice Learning

1: Input: A Random policy π, trials NT , convergence
criterion ζ

2: repeat
3: Initialize (s0, a0) ∈ S ×A.
4: for i = 1 to NT do
5: Execute the random policy π in target model
6:

ai = π(Si)

7: Propagate the target model at state si under action
ai

si+1 = P(T )(si, ai)

8: Save state trajectories DNT
(i, :) = (si, ai, si+1)

9: end for
10: Solve the least square linear regression problem on

training data set DNT

min
θ

NT∑
i=1

(si+1 − θ′ψ(si, ai))

11: Evaluate the utility of policy π(S)(χs(s)) in true
model M(T ) and in approximated model M̂(T )

12: until UM (πS)− UM̂ (πS) ≤ ζ return θ

A. Same-Domain Transfer

We learn the optimal policy in the source task using
FQI. In each problem, distinction in the environment/system
parameters makes the source and target tasks different. The
target and source domains have the same state-space but
different transition models and action spaces. We also do
not need target reward model be similar to source task, as
the proposed algorithm directly adapts the policy from the
source task and does not engage in RL in the target domain.

1) Grid World to Windy Grid World: The source task in
this experiment is Non-Windy (NW) grid world. The state
variables describing the system are grid positions. The RL
objective is to navigate an agent through obstacles from start
to goal position optimally. The admissible actions are up
(+1), down (−1), right (+1) and left (−1). The reward
function is +10 for reaching goal position, −1 for hitting
obstacles and 0 everywhere else. The target domain is same
as the source but with the added wind which affects the
transition model in parts of the state-space (see Figure 2b).

The optimal policy in source task (non-windy grid world)
π∗(S) is learned using Q-Iteration. We do not need any
inter-task mapping as the source, and target state spaces



are identical. We start with 100 randomly sampled starting
position and execute policy π∗(S) in the target domain and
collect samples for apprentice model learning. Empirically,
we show the proposed method (TA-TL) provides a sample
efficient TL algorithm compared to other transfer techniques.
Figure 2a and 2b shows the results of same domain transfer
in the grid world, demonstrating TA-TL achieving successful
transfer in navigating through the grid with obstacles and
wind bias. Figure 2c and 2d shows the quality of transfer
through faster convergence to average maximum reward
with lesser training samples compared to UMA-TL and
RL methods. The presented algorithm can attain maximum
average reward in reaching goal position in ∼ 2×104 steps.
UMA-TL and RL algorithm achieve similar performance in
∼ 1.2× 105 and ∼ 1.7× 105 steps respectively, nearly one
order higher compared to proposed TA-TL.

2) Inverted Pendulum (IP) to time-varying IP: We demon-
strate our approach for a continuous state domain, Inverted
Pendulum (IP) swing-up and balance. The source task is
the conventional IP domain [1]. The target task is a non-
stationary inverted pendulum, where the length and mass of
the pendulum are continuously time varying with function
Li = L0 + 0.5cos(πi50 ) and Mi = M0 + 0.5cos(πi50 ), where
L0 = 1, M0 = 1 and i = 1 . . . N . The state variables
describing the system are angle and angular velocity {θ, θ̇}
where θ, θ̇ ∈ [−π, π]. The RL objective is to swing-up and
balance the pendulum upright such that θ = 0, θ̇ = 0. The
reward function is selected as r(θ, θ̇) = −10|θ|2 − 5|θ̇|2,
which yields maximum value at upright position and min-
imum at the down-most position. The action space is: full
throttle right (+τ), full throttle left (−τ) and zero throttle.
Note that the domain is tricky, since full throttle action is
assumed to not generate enough torque to be able to lift the
pendulum to the upright position, hence, the agent must learn
to swing the pendulum so that it generates oscillations and
leverages angular momentum to go to the upright position.
The target task differs from the source task in the transition
model.

The source task use FQI learning with single layer Radial
Basis Functions (RBF) network. The Q function is modeled
as linear combination of weights and basis as Q = w′ξ(s).
We use RBF bases “ξ(s)” for value function approximation
with bandwidth σ = 1.2I and 20 centers spanning space
x, ẋ ∈ [−π, π] with network learning rate of Γ = 5 × 10−3

for FQI iterations.
Figure 3a and 3b shows the quality of transfer through

faster convergence to average maximum reward with lesser
training samples for proposed TA-TL method compared to
UMA-TL and RL methods.

B. Cross-Domain Transfer

Next, we consider an even more challenging transfer
setting: cross-domain transfer. The problem setup is similar
to same domain transfer with the notable distinction being
the state spaces are different for the source and target tasks.

1) Cart-Pole to Bicycle: Our main result is the task
where an agent learns to ride the bicycle. We consider the

problem of learning to balance; we do not concentrate on
the navigation problem to some goal position. Since RL for
navigation is more of trajectory optimization problem, i.e.,
the agent learn to focus on maneuvering towards the target
once it has learned to balance the bicycle upright. Balancing
is a more interesting problem when the bicycle is below
critical velocity. Usually critically velocity Vc, above which
bicycle is self stabilizing is approximately Vc = 4m/s to
5m/s. We are trying to learn to balance a unstable bicycle
with forward velocity V < Vc i.e. V = 2.778m/s. We also
simulate the imperfect balance by inducing random noise
in the CG displacement of rider, by up to 2cm from zero
position.

At every time step agent receives information about the
state of the bicycle, the angle and angular velocity of the
handlebar and the bike from vertical (θ, θ̇, ω, ω̇) respectively.
For the given state the agent is in, it chooses an action of
applying torque to handlebar, T ∈ [−2Nm, 0, 2Nm] trying
to keep bike upright. The details of bicycle dynamics are
beyond the scope of this paper, interested readers are referred
to [20], [21] and references therein.

We use the Cart-Pole as source task for learning to balance
bicycle. The bicycle balance problem is not so different
from the cart pole: in both the cases, the objective is to
keep the unstable system upright. The objective of balance
is achieved in both the systems by moving in the direction
of fall. However, the control in the cart pole affects more
directly the angle of the pole, i.e., move the cart such that it is
always under the pole. In the bicycle, the control is to move
the handlebar in the direction of fall. However, balancing
the bike is not so simple, to turn the bike under itself, one
must first steer in the other direction, this is called counter
steering [21]. We observe that both cart pole and bicycle has
this commonality in dynamical behavior, as both the system
have a non-minimum phase that is the presence of unstable
zero. They tend to move initially in the direction opposite
to the applied control. This similarity qualifies the cart-pole
system as an appropriate choice of source model for bicycle
balance task.

Cart pole is characterized by state vector [x, ẋ, θ, θ̇], i.e.,
position, the velocity of cart and angle, angular velocity
of the pendulum. The action space is the force applied to
cart F ∈ [−20N, 0, 20N ]. Cross-domain transfer requires
a correspondence between inter-task space manifold for
mapping the learned policy and source transition model from
source to target space and back. We use UMA to discover
the correspondence between state space of bicycle and cart
pole model. We use FQI to solve for optimal policy in
the source, cart pole model. A linear network with cart
pole states ξ(s) = [x, ẋ, θ, θ̇] is used as basis vector to
approximate the action value function, with network learning
rate Γ = 1× 10−4.

Figure 4a shows the average reward accumulated by TA-
TL, UMA-TL and RL (no transfer) in learning to balance the
bicycle. In the typical learning process, TA-TL out performs
other transfer method and converges to maximum average
reward in 1700 episodes. Each episode is a simulation run



(a) (b) (c) (d)

Fig. 2: Non windy to Windy grid World Transfer:(a) & (b) Agent navigating through grid world in source and target domain
(c) Average Rewards & (d) Training length, Comparing quality of transfer for TA-TL and UMA-TL through convergence
rate of Average Reward and Training Length

(a) (b) (c)
(d)

Fig. 3: IP to Non-stationary IP Transfer: (a) Average Rewards and (b) Training length, MC to IP Transfer: (c) Average
Rewards and (d) Training length

(a) (b)
(c) (d)

Fig. 4: Transfer Cart-Pole to Bike Balancing task: (a) Average Rewards and (b) Total simulation time (seconds) the agent
can balance the bike, Negative Transfer Inverted Pendulum: (c) Average Reward and (d) Training length

until the policy can balance bicycle without toppling; the
episode ends if the bicycle falls or max time of 1000s is
reached. Figure 4b shows total time the bicycle was balanced
upright by each method. The bike balancing time for TA-TL
methods is highest and is ≈ 40 times more compared to
UMA-TL method.

2) Mountain Car (MC) to Inverted Pendulum (IP): We
have tested the cross-domain transfer between mountain car
to an inverted pendulum. The source and target task are
characterized by different state and action space. The source
task MC is a benchmark RL problem of driving an under-
powered car up a hill. The dynamics of MC are described
by two continues state variables (x, ẋ) where x ∈ [−1.2, 0.6]
and ẋ ∈ [−0.07, 0.07]. The input action takes three distinct
values (+1) full throttle right, (−1) full throttle left and (0)
no throttle. The reward function is proportional to negative

of the square distance of the car from goal position. The
target task is conventional IP as described in the previous
experiment.

We utilize UMA to obtain this mapping as described
in Section II-B. We do not report the training time to
learn the intertask mapping since it is common to both
TA-TL and UMA-TL methods. We used a random policy
to generate samples for manifold alignment and for target
apprentice learning. The source task uses FQI learning with
single layer RBF network for optimal policy generation. The
source Q-function is modeled using function approximation
as Q = w′ξ(s) using RBF as bases “ξ(s)” with bandwidth
σ = diag[0.3, 0.1] and 20 centers spanning space x ∈
[−1.2, 0.6] and ẋ ∈ [−0.07, 0.07] with network learning rate
of Γ = 0.15×10−3. For all above results the training length
involved with TA-TL method in Figure 3d, 3b, and 2d is



sample lengths for target apprentice learning. We compare
TA-TL with UMA-TL and generic-RL on target task. We
examine the efficiency and effectiveness of transfer methods
based on sample efficiency in learning the target task and
speed of convergence to maximum average reward. Similar
to same domain transfer Figure 3c and 3d shows the quality
of transfer for TA-TL through faster convergence to average
maximum reward with lesser training samples compared to
UMA-TL and RL methods.

C. Negative transfer

In our last result, we demonstrate that the proposed
transfer is robust to negative transfers. Given a target model,
the effectiveness of transfer depends on the relevance of the
source task to the target task. If the relationship is strong,
the transfer method can take advantage of it, significantly
improving the performance of the target task through transfer.
However, if the source and target are not sufficiently related
or the features of source task do not correspond to the
target, the transfer may not improve or even decrease the
performance in target task leading to negative transfer.

We show that the UMA-TL suffers from a negative transfer
in this results, where as the performance of presented TA-
TL is much superior compared to UMA-TL and RL(no
transfer). We demonstrate this through an inverted pendulum
upright balance task. We use inverted pendulum model as
both source and target systems. The target is different from
source model in the sign of the control action. With exactly
same dynamics in both source and the target model, but with
the sign flipped of the control effective term in the target,
we observed that an initialized target task learning (UMA-
TL) suffers with negative transfer. RL is indifferent to sign
change as it learns policy from scratch. Whereas for the TA-
TL method, since we learn the apprentice model to the target,
we learn the sign associated with action as well. Thereby
the policy modification term sign is flipped accordingly, and
same policy transfer performance is achieved irrespective of
the control sign change.

Figure 4c and 4d shows the quality of transfer through
faster convergence to average maximum reward with lesser
training samples for proposed TA-TL method compared to
UMA-TL and RL methods. It is to be observed that UMA-
TL method converges to much lower average reward and
gets stuck in a local minima and never achieves the upright
balance of pendulum. Also, the samples observed by UMA-
TL in learning the task is much higher compared to no
transfer (RL) and proposed TA-TL methods.

VI. CONCLUSIONS

We introduced a new Transfer Learning technique in RL,
which leads to sample efficient transfer between source and
target tasks. The presented approach demonstrates the near-
optimality of the transferred policy in target domain by
augmenting it with an adaptive policy; which accounts for the
model error between target and projected source. The sample
complexity of the transfer is reduced to target apprentice
learning, which we demonstrated empirically, leads to more

than one order improvement in training lengths over existing
approaches.
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