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Abstract— Dense 3D visual mapping estimates as many as
possible pixel depths, for each image. This results in very
dense point clouds that often contain redundant and noisy
information, especially for surfaces that are roughly planar,
for instance, the ground or the walls in the scene. In this paper
we leverage on semantic image segmentation to discriminate
which regions of the scene require simplification and which
should be kept at high level of details. We propose four
different point cloud simplification methods which decimate
the perceived point cloud by relying on class-specific local and
global statistics still maintaining more points in the proximity
of class boundaries to preserve the infra-class edges and
discontinuities. 3D dense model is obtained by fusing the point
clouds in a 3D Delaunay Triangulation to deal with variable
point cloud density. In the experimental evaluation we have
shown that, by leveraging on semantics, it is possible to simplify
the model and diminish the noise affecting the point clouds.

I. INTRODUCTION

Dense 3D visual mapping from images aims at building
a 3D model which recovers as much part of the scene
as possible. In this field, two main trends emerged: high
accuracy dense mapping [1], [2], [3], [4], [5] and dense
mapping from sparse data [6], [7], [8], [9]. The former
most widespread, methods estimate a model as accurately as
possible, computing per-pixel dense correspondences among
images and fusing them into the 3D space by means of patch-
based or volumetric representation such as voxels or 3D
Delaunay triangulations [2], [3], [4], [5]; in some cases a
further refinement step is added to improve accuracy and
resolution [1], [10]. They are able to produce impressive
results, but they are computationally expensive, especially
when dealing with large scale environments; they strongly
leverage the architecture optimizations, either on GPU or
CPU side, to efficiently compute, move and store data [11],
[12]. On the other hand, methods that are more efficient
in terms of space and memory can better estimate a dense
map by relying just on sparse data coming from structure
from motion methods [6], [7], [8], [9]. They are able to
run in real-time on a single core of a CPU [9], without a
relevant resources consumption. Nevertheless, they output a
low resolution 3D model.

In the former case the resulting model is usually rich
of redundancies, especially where the scene presents planar
or piecewise-planar regions, while in the latter case 3D
points computed by Structure from Motion are too sparse to
provide sufficient and satisfying information to reconstruct
the scene fine grain details. Only few works address the
problem of trading-off between these two approaches. Li
et al. [13] adapt the resolution of the reconstructed mesh

such that regions with less details contain fewer vertices.
The method effectively limits the dimension of the mesh,
but it is only applied to the mesh refinement stage. Lafarge
et al. [14] proposed an interesting method which combines
the mesh recovered via Multi-view Stereo with high level
geometric primitives. This approach simplifies regions of the
mesh which fit geometric primitives by means of a complex
jump diffusion scheme acting together with mesh refinement
after the initial dense mesh is estimated. Wu et al. [15] use
generalized cylinders and swept surfaces to recover a dense
simplified structure from Structure from Motion point clouds,
while Gallup et al. [16] fit a n-layer map into the depth map
to produce a compact and robust representation.

Schindler et al. [17] fit piece-wise planar surfaces to
point clouds to obtain a schematic reconstruction of man-
made environments, while Bourki et al. [18] propose an
ad-hoc method for man-made structures: they simplify the
depth maps, used to build a patch-based representation, by
estimating the vanishing points and by fitting planes on the
Structure from Motion output. Finally, some methods apply
planar priors to limit the model noise, but they keep the
model resolution fixed [19], [20].

None of these methods leverages on the semantic informa-
tion carried by the images which can be effectively estimated
by means of semantic image segmentation methods [21],
[22], [23]. Semantics provides very useful priors to reason
about which parts of the scene can be simplified and which
parts need a more detailed model. Some semantic categories,
as the ground or the walls, when reconstructed, contain
redundant information which can be simplified, whilst others,
as vegetation, require more points to describe their shape
with high fidelity.

To the best of our knowledge only the method in Schneider
et al. [24] proposes a simplified reconstruction that leverage
on semantics; the authors jointly optimize the 3D position,
the size and the semantic coherence of 3D stixels. However,
differently from 3D meshes, stixels are a partial representa-
tion of the environment made up by sets of piece-wise planar
3D regions.

In this paper we propose a novel method showing how
semantics can be effectively be integrated in a 3D mapping
pipeline to simplify the dense point clouds (Section III)
before fusing them into a volumetric representation based
on 3D Delaunay triangulation (Section II). Fig. 1 shows
the entire pipeline, we highlighted in red our contribution.
We leverage on semantic image segmentation to understand
which part of the scene requires less details, i.e., less
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Fig. 1. Dense 3D Mapping pipeline.

points, and which shall be maintained as it is. We propose
different heuristic to simplify such subsets of the dense
point cloud while still accurately representing the scene.
In Section IV we evaluated our method both quantitatively
and qualitatively against two publicly available datasets,
proving semantic-based simplification approaches are more
effective than non-semantic one. Furthermore, our method
is able to significantly reduce the number of points in the
reconstruction while keeping its accuracy close, and in some
case even better, with respect to the mesh estimated using
the point cloud. We also tested the simplification method in
an incremental setting suitable for classicals vehicle survey
scenarios.

II. DELAUNAY BASED MAPPING

The baseline algorithm we use to build the 3D model of the
scene is a batch version of the method in [9], takes as input
a set of cameras, a 3D point cloud, and the camera-to-points
visibility to estimate a manifold mesh which is consistent
with its visibility constrains. Here we briefly describes how
the map is estimated, for more information we refer the
reader to [8] and [9]. Usually this class of methods have
been applied to Structure from Motion data [7], [8], [9]. In
our setting, to obtain a denser and accurate model suitable
for optional mesh refinement [1], we densify the input point
cloud, combining plane sweeping [25] and stereo matching
[26] to produce a dense map DMi for each camera Ci and
to estimate the corresponding dense point cloud.

The mesh reconstruction algorithm creates a 3D Delaunay
triangulation of the 3D point cloud, and for each tetrahedron
Δi it defines μfree

i and μmatter
i representing respectively the

free-space and matter weights. Each visibility ray Cp from
camera C to point p is traced into the triangulation; for each
tetrahedron traversed, the value of μfree

i is incremented by

1 − e
d2

2σfree , where d is the distance from p to the closest
facet of Δi, σfree = 0.05m. Then, Cp is extended behind the
point p by 10σmatterm and, for each tetrahedron traversed by
this extension, the weights μmatter

i of are incremented by

1− e
d2

2σmatter , where σmatter = 0.01m
The mesh reconstruction procedure bootstraps from the

tetrahedron with the highest free-space vote and it collects
iteratively all the nearby free-space tetrahedron such that
the manifold property is always fulfilled. One tetrahedron
is considered free-space if its votes for free-space are higher
than the matter. The boundary between collected and not
collected tetrahedra is the reconstructed 3D manifold model.

III. POINT CLOUD SEMANTIC SIMPLIFICATION

The output of the dense mapping method from Section
II is often redundant especially for some specific areas of

Fig. 2. Point Cloud colored accordingly to the semantics.

the scene; indeed, the ground, which is usually piece-wise
planar, ends up to be represented by a relevant number of
mesh facets that do not add significant details to the model.

To limit such redundancies and, at the same time, to
diminish the number of outliers in the model, we propose
to simplify the estimated dense point cloud on which the
baseline algorithm builds the 3D Delaunay triangulation
instead of post processing the mesh afterward as done in
the literature. To this aim we leverage on semantic image
segmentation to discriminate which part of the scene is worth
simplifying, in our experiments the ground and the walls, and
which part requires a detailed point cloud, and therefore is
not affected by the simplification procedure.

To estimate the semantic class of each 3D point pi,
we project each point of the dense point cloud, into the
segmented image corresponding to the first camera which
observed it and we label pi according to the class of the
pixel where the point is projected (see Fig. 2). Although
more complex approaches could be employed, e.g., taking the
most frequent class among the projection on more images,
or weighting the class contribution of each camera depend-
ing on the camera-to-point distance, our simple approach
resulted effective in all the experiments and we did not find
any improvement with complex ones.

The basic idea behind point cloud semantic simplification
is to reduce the number of points belonging to a class
composed by piece-wise planar surfaces which likely contain
redundant information. This decimation procedure can either
consider all the points with same semantics at the same
time, i.e., globally, or it can be applied region-wise, i.e.,
locally. In the former and simpler case, it is only possible
to discard points uniformly per class. Instead, if we adopt a
more flexible region-wise method we are able to adapt the
simplification rate depending on the local point density.

We decided for a local approach and we tested our method
with both a fixed radius spherical region and an adaptive
region defined by means of the K-Nearest Neighbors (KNN)
technique. The former is more suitable when the size of the
scene is approximately known, while the latter in case differ-
ent regions show widely different densities. Our approaches
are independent on how such areas and neighborhood are
defined, therefore, we present here a general region selection
algorithm, while in Section IV we explicitly compare the
performance of the two approaches, i.e., spherical search and
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Fig. 3. The conservation factor trend for Linear simplification (with c̄ =
0.5 and τ(D̄, r̄)) = 1.0), Adaptive Simplification (w = 1) and (with
p̃ = 0.5 and τ(D̄, r̄)) = 1.0)

KNN.
For each point pi we define a region ρi either by K-

Neighest Neighbors or radius search. Then we define:

c(D, D̄, p̃) ∈ [0; 1], (1)

as the conservation factor; intuitively it represents the per-
centage of points in ρi maintained after the decimation. We
then define the region density D as the number of points
inside ρi divided by its area. Since we are considering flat
surfaces, when ρi is computed by radius search, the area is
defined as the circle having radius equal to the search radius.
When ρi is computed with a KNN approach the area is equal
to the largest rectangle among the faces of the parallelepiped
containing its points. Average density D̄ is defined as the
average among the density of all the regions belonging to the
class of pi, and p̃ is the percentage of points in the selected
area having a different semantics with respect to pi.

We assume that classes requiring simplification, in our
case the ground and the walls, represent surfaces which are
mostly flat. For each target class label l, we identify a plane
over points labeled as l by means of RANSAC and we define
its normal as nl. Intuitively, we use nl as the target normal
for the flat surface we want to reconstruct. Similarly, we
estimate the normal ni of each point pi by means of tangent
plane approximation [27] to formulate the following ranking
function:

r(pi) = (ni − nl)
T (ni − nl). (2)

The closer ni is to nl, the smaller r(pi).
We use ranking score r(pi) to choose which subset of

points is kept, i.e., for each region ρi we rank all the points
p according to the ranking score r(pi) and we discard the
last n = (1 − c) · |ρi|, where |ρi| represents the number of
points in ρi. The outcome of the point simplification depends
on how we define the conservation factor c. We here propose
four different approaches that we discuss and evaluate in the
experimental section (Section IV).

Linear Simplification (LS): The simplest simplification
method is based on a linear conservation factor; it is based
on the region and average densities as follows:

c(D, D̄) = −D̄
c̄
∗ (D − D̄) + c̄, (3)

where c̄ is the target conservation factor for an area with
average density (e.g., red line in Fig. 3). Lets consider for
instance c̄ = 0.4; the idea of LS is to keep around 40% of
the points in the areas where the density is similar to the
average density and to retain more than 40% of points for
less dense areas.

(a) (b) (c)
b b

dpb

b

dpb

(d) (e) (f)
Fig. 4. Step by step procedure to derive PB for a point P. We project the
points on the plane (a-b), we assign a binary label that indicates if a point
belongs to the class of the point that generated the region (c) we estimate
the separating line (d) we project them to the axis d (e) to compute the
point probability of being maintained or discarded (e).

Adaptive Simplification (AS): To have a higher simplifi-
cation where the point density diverges with respect to the
average of the point cloud density, in Adaptive Simplification
we use a function f similar to the sigmoid function (green
curve in Fig. 3):

f(x) = 0.5 +
wx

2(1 + w|x|) , (4)

where w is a stretching factor: a small w corresponds to
larger difference between two similar densities. We formalize
the conservation factor with:

c(D, D̄) = f(D − τ(D̄, r̄)). (5)

where τ(D̄, r̄) is defined such that f(D̄) = c̄.
Adaptive Class Simplification (ACS): When the region

ρi contains points belonging to different classes, we might
prefer to limit the simplification since it is more likely
that the region is close to the boundary of two or more
semantic regions. The points near to the class boundaries
may correspond to changes in surface orientation; therefore,
they are useful to define the right shape of the reconstructed
model. To do so, with Adaptive Class Simplification, we
remove the points depending on the semantically different
points contained in ρi. In this case we define c by means of
D, D̄ and p̃, i.e., the percentage of the points belonging to
other classes with respect to the one pi belongs to. Equation
(5) becomes:

c(D, D̄, p̃) = (1 + p̃)f(D − τ(D̄, r̄)), (6)

when f is close to 1 and p̃ is not zero, c might ex-
ceed 1, to avoid this issue we saturate it imposing c =
min(1, c(D, D̄, p̃)). Intuitively, when p̃ is small the area con-
tains few points of other classes, hence it slightly increases c
and the behaviour is similar to the adaptive simplification. On
the other hand, when p̃ is close or above 0.5, i.e., the center
of the region is close to the boundary, c is largely increased,
and consequently we remove significantly less points. For
instance in Fig. 3 we plot the trend of Equation (6) when
p̃ = 0.5.

Probabilistic simplification (PS): Differently from previ-
ous approaches we define the probability Pc that a point
pi is conserved. Moreover, while in previous methods we
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(a) Original (b) Baseline Simplification (BPS) (c) Linear Simplification

(d) Adaptive Simplification (e) Adaptive Class Simplification (f) Probabilistic Simplification
Fig. 5. Street perspective of the KITTI point clouds.

extracted a region for each point, in this case, to limit the
computational burden, we compute a predefined number of
regions Nr experimentally fixed to |ρ|

8 , where |ρ| is the
size of the cloud. The regions are defined around Nr points
randomly chosen among those belonging to the class l we are
going to simplify. Even if in principle this choice may leave
some area uncovered by the simplification method, experi-
ments showed that in practice this issue is not statistically
relevant.

We define Pc as the composition of two probabilities:

Pc(p|p̃,D, D̄, ρi) =

i(p̃) · PI(p|D, D̄) + (1− i(p̃)) · PB(p|D, D̄, ρi), (7)

where i(p̃) is an indicator function defined as follows:

i(p̃) =

{
0 p̃ ≥ 0.1

1 otherwise
. (8)

Intuitively, when the percentage of points with a different
semantics is less then 10%, i.e., when the region ρi is far
from the inter-class boundary, only the probability PI is
active, otherwise, i.e., when ρi is close to the boundary,
Pc(p|p̃,D, D̄, ρi) = PB .

The probability PI represents the idea that the closer a
point is to the center of a flat surface, the lesser it is useful.
To formalize PI we project every point p ∈ ρi to the plane πl,
having normal nl. For every point we then used a gaussian
distribution, N , to estimate the importance of the point in
terms of probability. Specifically, we define:

PI(p|D, D̄) = 1−N (μ,Σ), (9)

where N is the normal probability distribution depending
on μ, i.e., the projection of pi on πl and Σ, i.e., a diagonal
matrix formalized as:

Σ =

[
d̃ · σ2 0

0 d̃ · σ2

]
, (10)

where d̃ is the ratio of D and D̄, and σ is an a-priori defined
standard deviation.

When a region is close to the class boundaries it may
happen that a point in the center of the region is near to the
boundary. In this case we want to keep such points. For this
reason we need to explicitly detect the boundary and then
remove points far from it. To this extent we formulate PB .
We consider all the points inside the region ρi and we project
them on the plane πl fitted to the points (Fig. 4(a-b)). Let
l be the class considered; locally the points belonging and
not belonging to l are usually separated by a line b which is
roughly the class boundary (Fig. 4(c)). We find b as a linear
classification problem through a Support Vector Machine
(SVM) with linear kernel (Fig. 4(d)). For each point p we
compute the distance dpb from the estimated boundary b
and we compute the probability of point conservation PB(p)
(Fig. 4(f)) as:

PB(p) = PB(dpb) ∼ N (0, σ2), (11)

the closer a point to the boundary the more important it is.
Therefore, to assign the maximum importance to points close
to the boundary we center the Gaussian distribution on the
line, i.e., with distance 0. The point importance decreases as
the probability. Once Pc is known, we remove a point from
the cloud if, extracting a random number, it is greater than
Pc(p|p̃,D, D̄, ρi).

IV. EXPERIMENTS

To prove the effectiveness of the proposed semantic-
based simplification methods, and demonstrate semantic ap-
proaches are superior to non-semantic one, we test them
against several baselines which do not rely on semantics.
In the first group of baselines we consider the whole point
cloud as if of single class and we simplify with the methods
proposed in Section III, i.e., without semantics. The Linear
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Fig. 6. Mesh statistics for each method: in blue the original model (O),
in purple the baselines and in green the proposed methods.

and Adaptive Simplifications act on the point cloud purely
based on the region density, while in the Probabilistic method
the PB term is neglected since there are no more boundaries.
A second baseline is the purely geometric approach proposed
in [28], which, by relying on surface curvature, focuses the
simplification on flat surfaces.

A. Simplification Results

We evaluated our simplification methods against the se-
quence 95 of the KITTI dataset [29] and the fountain-P11
of EPFL dataset [30]. In the former case, stereo pairs are
provided, therefore we generate a dense point cloud by
means of semi-global block matching [26]; in the latter case,
we adopt the plane sweeping algorithm [25] to the 11 high-
resolution images provided. Then, for each image we choose
to predict the semantic segmentation by means of ReSeg [21]
for the KITTI dataset and MultiBoost [31] for the fountain
dataset (since a very limited set of images is available). In
principle whatever image segmentation method is applicable.
In the experiments we simplify these two semantic point
clouds and we evaluate how this impacts the accuracy of the
recovered surfaces. In particular, for the KITTI dataset, we
evaluate the accuracy of the reconstructed model, for each
camera, by comparing the points of the Velodyne projected
into the image plane with the corresponding depth map
generated by the 3D model. For the fountain-P11 dataset
we follow the evaluation procedure presented in the paper
[30] and we compare the depth map generated by the dense
ground truth point cloud and by the 3D model. The accuracy
measure we use is the Root Mean Squared Error (RMSE) of

(a) Original (b) Simplified
Fig. 7. Reconstruction of the KITTI dataset. (a) shows the original
reconstruction, while (b) the simplified version using the Probabilistic
simplification. Let notice, how more smooth the simplified version is.

the depth values (where depths are valid).
Fig. 6(a) shows the statistics about the reconstructed

meshes in the KITTI dataset in terms of disk occupancy
(the mesh is stored as an OFF file without compression)
with respect to the reconstruction accuracy. The blue mark
represents the original mesh (O) the green marks represent
the proposed methods, i.e., LS, AS, ACS, PS, where the
final letter K or R, denotes the search method used, i.e.,
KNN or Radius. Finally, the purple points are the baselines:
Baseline LS, AS, PS and the baseline based on geometry
curvature (BG). Both baselines and proposed approaches
significantly reduce the size of the reconstruction with re-
spect to the original. In particular, the number of points
belonging to ground and walls, i.e., the two classes involved
in the simplification procedure, decreases up to two orders
of magnitude. However, while the accuracy of the baselines
is in general slightly worse than the original, the proposed
linear and probabilistic methods consistently improve the
accuracy of the reconstruction. Indeed, they provide a good
trade-off between mesh over-simplification and the removal
of redundant and noisy data (see Fig. 7).

In Fig. 6(a) the green vertical line represents the size
achievable by removing all the ground and wall points.
Therefore, a class-aware method too close to the line is over-
simplifying, whilst a method too distant from it is under-
simplifying. Since the baselines simplifies the whole mesh
and therefore are not limited to ground and wall, they can
cross this line.

As a qualitative comparison, we refer the reader to the
supplementary video and we illustrate in Fig. 5 the original
point cloud colored according to semantics, compared with
the Baseline Probabilistic Simplification (BPS) and the other
proposed simplification approaches. As expected, BPS deci-
mates the point cloud evenly over the entire scene while PS,
Fig. 5(f), is able to keep the details of the trees and the cars
and it significantly simplifies the walls and the ground. For
this reason the 3D mapping from Probabilistic Simplification
point cloud is sensibly better than the one obtained via BPS
which suffers from over-smoothing.

We tested our approaches also with the fountain-P11
dataset and Fig. 6(b) shows the reconstruction statistics: the
Linear simplification method achieves the best result, while
the other proposed approaches achieve similar performances
among each other and they are close to the Baseline Geomet-
ric simplification. Other baseline methods are overcome. In
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(a) Original (b) Baseline Simplification (BPS) (c) Probabilistic Simplification
Fig. 8. Frontal perspective of the fountain-P11 point clouds.

this case the dataset is significantly different with respect to
KITTI, especially because the fountain contains many details
and its density is much higher than the ground and the wall.
Then, even if a simplification procedure is applied to that
region, the mapping accuracy does not drop significantly.

Therefore, baselines can simplify the highly redundant
surface of the fountain, without virtually loss in accuracy,
while the proposed method simplifies only walls and ground.
To have a fairer comparison, we tested PS combined with
a random simplification over the fountain. We randomly
retained 40% of the points composing the fountain. The
proportion has been chosen accordingly to the percentage
of points retained by the BG. As final model we obtained a
smaller 3D model, 13MB while both PS and BG originally
achieved around 16MB, furthermore modified PS accuracy
reaches 0.0655m RMSE error, which is similar to BG and
PS.

Regarding the region selection method, radius search,
proved to be easier to tune and to use in both scenarios
with respect to KNN, indeed a good initial radius search can
be estimated knowing the size of the cloud to be simplified.
KNN strictly depends on the density of the cloud: a very
dense cloud, as fountain-P11, requires a very high K.

B. Incremental Point Cloud Simplification

The main goal of point simplification is to improve the
trade-off between accuracy and speed, therefore a typical
target application is to improve the performance of an
incremental mapping algorithm as [9], which runs in real
time on a CPU by using Structure from Motion points,
but is not able to handle very dense point clouds still
maintaining realtime performance. To test the effectiveness
of our proposal in this scenario, we added the dense point
estimation and our Probabilistic Simplification module to the
algorithm proposed in [9], which is the incremental version
of the pipeline described in Section II.

We tested the sequences 95 and 104 of the KITTI
dataset [29], and we compute the model accuracy in the same
way. The semantic segmentation are computed using [32]
pre-trained over ADE20K dataset (only 11 among the 150
classes have been used).

In Table I we compare the incremental mapping perfor-
mance from dense point clouds with or without the proposed
simplification. The accuracy is measured with the RMSE

TABLE I
INCREMENTAL MAPPING RESULTS.

Original Incremental Simplification
Sequence Accuracy Frame rate Accuracy Frame rate

RMSE(m) (f/s) RMSE(m) (f/s)
95 0.7135 1.0082 0.7173 1.5434

104 0.7775 0.4708 0.7846 0.6397

adopted in the previous section, while the speed is the total
number of frames of the sequence over the seconds spent
to build all the mesh incrementally. The results show how
the simplification method is able to keep a similar accuracy
while improving the frame rate.

Speed-up depends on the scene composition. Sequence
104 contains many elements which are not addressed by
the simplification procedure, e.g., trees, vegetation and cars,
therefore the frame rate increase is limited. Instead, sequence
95 is an heterogeneous scenes, therefore the frame rate
increases of more than 50%.

V. CONCLUSIONS

In this paper, we leverage on semantics to simplify redun-
dant regions of a dense point cloud prior to build a 3D mesh
upon to its points. We fuse these points into a Delaunay
triangulation which easily adapts to the point cloud even if
we decrease the density of some regions, and we extract a
visibility consistent mesh. We designed four methods which
provide different alternatives to decimate the point cloud,
halving its size without relevant loss in accuracy. Among
these methods the probabilistic approach in general is easier
to tune and proved to be able to identify a good trade
off between simplification and map accuracy. We have also
shown how a state-of-the-art incremental mapping method
can benefit from the proposed semantic point simplification
to process less redundant data and to consequently speed-
up the mapping. As future work, we plan to evaluate viable
energy efficient optimizations [33] for the proposed simpli-
fication procedure and we plan to design a flexible method
able to deal with every semantic class, e.g., by identifying a
per class simplification probability.
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