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Abstract— The sense of touch is essential for reliable mapping
between the environment and a robot which interacts physically
with objects. Presumably, an artificial tactile skin would facili-
tate safe interaction of the robots with the environment. In this
work, we present our color-coded tactile sensor, incorporating
plastic optical fibers (POF), transparent silicone rubber and
an off-the-shelf color camera. Processing electronics are placed
away from the sensing surface to make the sensor robust to
harsh environments. Contact localization is possible thanks to
the lower number of light sources compared to the number
of camera POFs. Classical machine learning techniques and a
hierarchical classification scheme were used for contact local-
ization. Specifically, we generated the mapping from stimulation
to sensation of a robotic perception system using our sensor.
We achieved a force sensing range up to 18 N with the force
resolution of around 3.6 N and the spatial resolution of 8 mm.
The color-coded tactile sensor is suitable for tactile exploration
and might enable further innovations in robust tactile sensing.

I. INTRODUCTION

Somatosensory system is responsible for human sensa-
tions through the skin. It can be considered as the hidden
ingredient of human dexterity in object manipulation. With
the robots replacing humans in more and more tasks, tactile
sensing is becoming essential for robots. This sense provides
a direct mapping of the object’s shape to the acquired
signals [1]. Such mapping is necessary both for dexterous
manipulation and safe human-robot interaction (HRI) [2].
Development of robust and effective tactile sensors is a major
challenge that could lead to advances in terms of the safety,
responsivity, and dexterity of robots [3], [4].

While sensing capabilities of the tactile sensors are im-
proving [5], there is also a need for qualitative improvements
– the sensors should be abrasion and water resistant – as
robots move from industrial workcells into human-inhabited
environments [6]. In human environments, a robot should be
able to manipulate an object with liquids in it [7] or do it im-
mersed inside water [8]. Since water is an electroconductive
media, a robust sealing is necessary to keep the electronic
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processing units safe. Sealing requires continuous main-
tenance and complex manufacturing together with proper
assembly of the robot fingertips [9]. This can be mitigated
by placing fragile signal processing electronics away from
the sensing unit, that is attached onto the fingertips. Such
implementation would also allow a humanoid robot to have
a centralized processing unit, e.g. in its torso.

We address this problem by developing an optical tactile
sensing array, which uses physical interaction with an ob-
ject to provide force sensing and contact localization. We
deliver the light from three sources with different colors
to a commodity vision camera via plastic optical fibers
(POFs) embedded inside transparent silicone. We use this
compressible silicone as a color-coded tactile sensor (see
Fig. 1). Our tactile sensor is energy efficient thanks to the
use of less number of light sources than the camera POFs.
Moreover, working with light beams rather than with a flow
of electrons can be advantageous for some applications. For
instance, data flow through electrical cables can be distorted
by a magnetic field but magnetic fields do not interfere with
optical signals [10].

In the remainder of this paper, we firstly review the
related work in Sec. II. In Section III, we explain the
working principle and software development of our color-
coded tactile sensor, and then we introduce its fabrication
process in Sec. IV. Afterward, we present our experimental
results on force measurement and contact localization to
benchmark the performance of our sensor (see Sec. V). For
these measurements, we use machine learning to measure
the contact force from the previously acquired samples (see
Sec. V-C). The last section summarizes our work.

II. RELATED WORK

Several types of tactile sensors based on various transduc-
tion methods (e.g. capacitive, resistive, magnetic, and optical)
were reviewed in [3]. Optical sensing has several advantages

Fig. 1: Color-coded tactile sensor. (a) Assembly with LEDs, camera and
plastic optical fibers. (b) Camera snapshot overlaid onto the sensor. The
camera image is processed to infer the sensor deformation.
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including high spatial resolution, sensitivity, repeatability and
also immunity from electromagnetic interference. Moreover,
some of these optical sensors can work under high ambient
pressures (up to 600 bar) [11]. Next, we first summarize
the materials used in these optical tactile sensors and then
overview the existing sensors.

A. Materials

There are different types of materials used in manufactur-
ing of optical sensors: various polymers including silicone,
polyurethane, and thermoplastic elastomers; POFs and hy-
drogels.

Liquid silicone rubber compounds (e.g. R©Smooth-on
Sorta Clear 18 and R©Techsil RTV27905) are widely used
in injection molding to create robust parts. The part quality
mainly depends on how well the silicone compounds are
mixed during molding. On the other hand, thermoplastic
rubbers, as in [12], provide a better ability to return to their
original shape after stretching them to moderate elongations.
These can be processed by heating the granules of the ther-
moplastic elastomer, shaping them under pressure, and then
cooling them to solidify. In contrast to silicone rubber and
elastomers, polyurethanes can be synthesized by chemical
reactions. Polyurethane parts are resistant to wear and tear.

Molding the above-mentioned materials requires manu-
facturing steps that can be avoided by 3D-printing. Stere-
olithography resins, e.g. R©Formlabs or R©Objet, can be used
for rapid prototyping. However, these parts still lack the
durability and strength of the classical counterparts.

With the aim of making wearable and biocompatible
parts, technological advances in bioengineering led to the
emergence of hydrogels [13]. A hydrogel, a rubbery and
transparent material composed mostly of water, can also be
a good choice for safe physical HRI.

Robot sensing technology also leverages inventions in
telecommunications besides the ones in bioengineering.
Glass and plastic fibers can be used as force sensors [14].
Stretchable fibers [15] that respond to deformations with a
color variation can measure strain forces. Tactile sensing
using such stretchable fibers is accomplished by periodically
changing the refractive index along the length of a fiber.

B. Optical Sensors

Using the materials described in Sec II-A, a variety of
optical tactile sensors were presented in the literature. The
general principle is based on the optical reflection between
mediums with different refractive indices. A conventional
optical tactile sensor consists of an array of infrared light-
emitting diodes (LEDs) and photodetectors. The intensity
of the light is usually proportional to the magnitude of the
pressure [14].

GelSight tactile sensor [12] uses a thermoplastic elastomer
coated with a reflective membrane highlighted by an LED
ring to capture surface textures with a camera. In [16], this
sensor was benchmarked in a texture recognition problem.
Similarly, researchers of the Bristol Robotics laboratory
developed a family of optical tactile sensors that are almost

ready for small-scale mass production [5]. Their TacTip sen-
sor uses a commodity image tracker originally used in optical
computer mice. It combines an image acquisition system and
a digital signal processor, capable of processing the images at
2000 Hz [17]. Thanks to the high image processing rate, they
can detect the slippage of a grasped object [18]. In [19], a
touch sensor, consisting of 41 silicone rubber markers, a light
source, and a camera, estimates the tangential and normal
forces by tracking these markers. Markers with different
colors are used in GelForce sensor [20].

Researchers embedded an optical tactile sensor into the
multi-modal tactile sensing system of an underwater robot
gripper [11]. As in [10] and R©Optoforce sensor, the sens-
ing principle is based on the light reflection delivered via
POFs. The POFs can be used as force sensing elements
due to the stray light, which is considered as a drawback
in telecommunications [14]. The deformation of a POF
increases the losses of the light propagated inside, as the
attenuation coefficient increases. In additon, the elasto-optic
metamaterial presented in [15] can change its refractive
index due to pure bending. Such POFs are fabricated by the
chemical vapor deposition technique. Their design generally
relies upon the phenomenon of optical interference [21].

Laboratory prototypes of image-based tactile sensors were
reported in [22] and [20]. In these sensing panels, LEDs
and photo-diodes/camera were placed against a reflecting
planar surface. When the surface deforms, it causes changes
in reflected beams. These sensors use optical light to detect
deformation of the contact surface, which can be used to
estimate the force.

In contrast to the above-mentioned approaches, we aim
to keep the processing and conditioning electronics away
from the sensing matter to increase the durability. In order to
estimate both the contact force and its location, we feed the
sensor with three different colors. The details of our solution
are covered in the next sections.

III. COLOR-CODED SENSOR DESIGN

We tackled the issues in the manufacturing and signal con-
ditioning, that the current sensors share to some extent, using
off-the-shelf components. To enable force measurements,
a commodity camera records the light intensity of POFs
embedded in a layer of silicone (Smooth-On Sorta Clear 18).
Transparent silicone is widely used in molding applications.
It does not require complex manufacturing, while satisfying
the transparency and mechanical requirements, such as water
and abrasion resistance. In the following, we first describe
the sensing principle using such silicone with a commodity
camera and then describe our sensor fabrication process.

A. Sensing Principle

Figure 2 illustrates the optical signal processing pipeline.
Light sources illuminate a sensing silicone. The illumination
is guided via POFs. A camera, incorporating a macro lens,
captures the light illumination trapped in the silicone. A
computer processes the recorded signals, and a machine
learning algorithm classifies the processed data. As a result



Fig. 2: The block diagram illustrating the sensing principle of the color-
coded optical tactile sensor.

Fig. 3: Sensing principle: (a) change of the light intensity and color of a
single POF due to deformation; (c) no change of the light inensity

we can obtain the location and normal force when the sensor
is in contact with the environment. We choose a transparent
silicone as the light propagation medium. This silicone is
supplied by three light emitting diodes (LEDs) with different
colors. Plastic optical fibers deliver this light into the silicone
material and also deliver the emerging color within this
matter to a commodity red-green-blue (RGB) vision sensor.
We utilize twelve POFs: three of these POFs emit light into
the silicone. The emitted light is scattered inside silicone and
is received by the rest nine POFs.

There are three light sources: red, green and blue. When
red, green and blue light frequency bands are mixed together
in equal proportions, white color appears. If one of these
bands is excluded, another color is observed, e.g. cyan when
the red band is excluded. In contrast, when the red band
is more intense than green and blue, LightCoral (#F08080)
appears. The color changes can be detected by acquiring the
color data using a RGB camera. When mixed in some soft
and transparent matter, these color changes might be used to
measure material deformations.

As soon as the silicone gets compressed after contact with
an object, the light scattering pattern changes. If its color
changes, one can use the color chart to determine whether
and to what depth the silicone is deformed. Thus, the color-
coded silicone substrate acts as a pressure-sensing media
and changes color to signal pressure level. A geometrical
explanation of this principle is shown in Fig. 3. The figure
exemplifies a one-dimensional case with one light source,
e.g. red, POF and one camera POF. A given POF can get
more light than others and vice versa as the directions of the
reflected light beams change during the deformation of the
sensing surface under an external force. Since the silicone
substrate can be approximated by a spring with a constant
Youngs modulus E, then this external force as function of
deformation d is given by F ∝

EA
D d, where A is the contact

area over the sensor and D is the thickness of the silicone
rubber [23]. Depending on the location of the deformation

and its depth, the emitted light intensity, I0, decreases with

the beam path I(r)∝ I0e−2 r2

ω2 [10], where I(r) is the measured
reflected intensity, r is the beam path to a camera POF, and
ω0 and ω are the spot size of the Gaussian beam at the source
r = 0 and at the camera POF, respectively. In some cases, e.g.
Fig. 3(a), r is shorter than when the sensor is not in contact,
e.g. Fig. 3(b). The light is trapped inside the silicone thanks
to the reflection that is realized using a thin film. The angle
of the reflection, θ modifies this path too. Moreover, the
compression of the silicone eventually alters the scattering
and absorption properties, which dramatically increase for
large deformations. For example, the LED light intensity
decreases due to the increased density of irregularities. This
effect depends on many properties such as the chemical
composition and impurities, the details of which are beyond
the scope of this work. However, we should note that
I0 is heavily affected by absorption when the silicone is
compressed.

B. Raw Data Descriptor

In this subsection, we explain the image processing for
our sensor. Since the acquired signals are light intensities;
the change of red, green, and blue channel intensities of
each reflected fiber can be used as a descriptor to infer
both the force applied to the sensor array and the location
of the contact. The descriptor algorithm is implemented
using Robot Operating System (ROS) and OpenCV library.
First, we acquire the images at 15 Hz with 640× 480
resolution. Then for each image, we define the regions of
interest (ROI) R around the locations of every POF. As a
result, for the input images, we define the ROIs regions
Ri, i = 1,2...9 ∈ Zw×h, where w and h denote the ROI
width and height, respectively. In each region, we exclude
the black pixels and normalize the red, green and blue pixel
values. We get nine mean values for each channel resulting
in 27 features µ j, j = 1,2...27 representing the surface
deformations. Figure 4 illustrates this descriptor which is
used to obtain the feature vector. Using the resultant feature
vector s=(µ1,µ2,µ3, ...,µ26,µ27)∈R27, we infer the sensing
surface deformation as described in Sec. V-C. Any surface
deformation depends on the sensor material and fabrication
which is described in the following section.

Fig. 4: Change of color in our color-coded tactile sensor. Depending on an
external force, the silicone deforms and the colors acquired by the camera
via POFs changes. (a) External force is zero. (b) Light intensities change
as the sensing surface deforms under applied external force.



IV. FABRICATION

Eventually, we aim to attach the color-coded tactile sensor
to robot grippers for object manipulation. Therefore, the
size of our sensor is 40× 40× 5 mm. There are three fiber
connections from the sides and nine fiber connections from
the bottom. Figure 5(a,b) illustrate the fabricated sensor with
the attached POFs. The distance between two neighboring
POFs at the bottom side is 5 mm in both directions. The
fibers that are on the sides are placed at the center of
the corresponding edges. The depth of the inserted fibers
is 5 mm. There are also extruded adapter sockets for the
POFs. These sockets with the height of 8 mm increase the
robustness of the connection between the POFs and silicone.
The shape of the sensor is obtained by molding silicone
into a plastic mold. The mold is 3D-printed using PLA
filament. The structure of the sensor includes three layers:
translucent silicone, reflective thin film, and silicone with
injected reflecting particles for durability and better light
reflection.

A. Silicone Sensor Layers

1) Silicone Compound: The silicone is used both as the
light transmission media and as a protective layer. There
are different types of silicone compounds with different
shore durometers [24]. The durometer scale determines the
hardness of elastic materials. For our tactile sensor, we used
Sorta Clear silicone compound with Shore level 18 from
Smooth-On. We chose this material over the commonly used
Polydimethylsiloxane (PDMS), e.g. as used in [23], due to
its better elasticity and durability. This allows large sensor
surface deformations without sustaining damage [25].

The silicone is first poured into a mold. Then, the mold
is degassed in a vacuum chamber. The proportion of the
silicone components (part A and part B) is 10 to 1 and the
solidification time is 24 hours. After the molded silicone
cures, it is covered with a reflective thin film.

2) Thin Film Magnetron Physical Vapor Deposition: The
effect of a thin film reflective layer is exemplified in Fig. 5(a).
Figures 5(c) and 5(d) illustrate a silicone sample before
and after adding the thin film. We tried several materials
including Aluminum (Al), Copper (Cu) and Silver (Ag) for

Fig. 5: Color-coded tactile sensor: (a) Front view of the sensor with silver
thin film. (b) Entrance of the optofibers and their sockets into the sensor. (c)
Silicone without the silver thin film. (d) Silicone with the silver thin film.

making this thin film. For Al target, the obtained thin film
was black (probably due to the fast oxidization). The re-
flectance characteristics of Cu was not desirable. Ag worked
best for our purposes without the oxidization problem.

To create this thin film, we used magnetron physical vapor
deposition machine (Kurt Lesker Lab-18). We installed the
silicone sample in front of the Ag electrode and pumped the
chamber for 90 minutes up to a pressure of 10−5 mT. The
deposition of the Ag thin films on top of the silicone substrate
is done by the magnetron sputtering at room temperature for
eight minutes at 100 W. When the power is applied to the
Ag electrode, the electrons accelerate in an electromagnetic
field and the applied voltage ionizes the Ar gas. This leads
to the formation of the plasma ring on the surface of the Ag
electrode, which sputters the Ag atoms from the electrode
and results in the formation of the Ag thin film on the surface
of the silicone sensor.

3) Protective Layer: The coated thin film wears and tears
during physical contact with the environment. Therefore, we
added one more silicone layer: Smooth On Sorta clear 18
mixed with a nickel powder. The nickel powder1 is added to
increase the reflectance of the thin film as the surface of the
silicone is not perfectly flat (see Fig. 5(d)).

B. System Integration

The deformation of the sensor illuminated from the side
via three plastic POFs is captured from the bottom by a
commodity camera via nine more POFs as shown in Fig. 6.

1) Light Sources: We obtain red, green, blue light sources
by use of corresponding color filters and high power surface-
mount LEDs (Nichia NVSW219CT). These LEDs are sol-
dered on a metal-core printed circuit board (MCPCB), and
are driven with 85 mA current to obtain the luminous flux
of 200 lm. A color filter is placed onto each LED (fixed by
a custom 3D-printed adapter, which is also used as a clamp
for the POFs as shown in Fig. 6(a)). Figure 6(c) illustrates
how these clamps are placed on the MCPCB. There are 16
LEDs on it, but we only use three.

1Nickel Silver Powder Smooth-On(c) https://www.smooth-
on.com/products/nickel-silver-metal-powder/

Fig. 6: Clamps: (a) Clamping structure for an LED, color filter and POF,
(b) clamping structure for the camera with the macro lens and POFs.
(c) System integration.



2) Optofibers: In order to prevent stray light, we
used TLC 1 mm Simplex Plastic Fiber (Part Number:
P96TB01TRBL22), which was covered with an insulation
layer. Diameter of the core is 1 mm, and the external diameter
with the insulation layer is 2.2 mm. Glue was used to fix the
fibers to the LED clamps (see Fig. 6(a)). In order to avoid a
drop of the light intensity, the ends of the fibers were polished
using a rotary tool (Dremel 4300) with fine sandpaper.

3) Camera: The light beams from POFs are acquired to a
desktop computer (Intel Xeon E5620, 4 GB DDR3 memory,
Ubuntu 16.04 Linux operating system) using an off-the-shelf
camera (Logitech HD Pro Webcam C920) at 15 Hz. Data
is sent via Robot Operating System (ROS) environment at
15 Hz using libuvc library. We replaced the lens of the
camera with a macro-lens (2 cm focal length) due to the
short distance between the sensing POFs and the camera.
POFs are fixed so that the ends of them are facing the camera
lens vertically (see Fig. 6(b)).

V. SENSOR CHARACTERIZATION

The fabricated sensor measures the contact force applied to
its sensing surface. This contact force can be inferred from
the changes in the camera image. Therefore, we need the
relation between the applied force and ROI mean values for
each color channel. We find this relation by compressing
our tactile sensor using a robot arm equipped with a ground-
truth force sensor. Exact relation between the applied force
and changes in the camera images depends on a variety of
fabrication properties, the details of which are beyond the
scope of this paper. More details can be found in [26] for
light propagation and in [24] for mechanical properties of
silicone materials.

A. Platform and Experimental Scenario

We characterized the fabricated sensor using an industrial
robot. The robot (UR10, Universal Robots) was controlled
using the Position/Velocity command interface running at
125 Hz. Ground truth force measurements were obtained by
a force/torque sensor (Weiss KMS 40) attached to the robot’s
end-effector. The arm controller and the force sensor inter-
faces were both implemented using ROS. An indentor [24]
was attached on the ground-truth force sensor to compress
the tactile sensor at exact locations. The indentor has a dome-
shape with 3 mm tip radius. Figure 7 shows this setup.

The robot end-effector moved vertically to press the color-
coded tactile sensor, which was placed inside a 3D-printed
plastic box and fixed on an optical table. First, we found
the end-effector pose when the indentor was at the closest
proximity to the sensor without registering any force. Then,
the end-effector progressively squeezed the tactile sensor up
to 3 mm with 0.6 mm steps (i.e. five depth levels). Afterward,
the robot end-effector moved back until to the pre-touch
position, positioned itself to a new location to squeeze the
sensor again. There were 25 total locations, and therefore,
25×5 contact states. We recorded ten images at each contact
state.

B. Surface Deformation and Force

The thickness of the silicone dictates the maximum al-
lowable displacement range and, thereby, the maximum
measurement force and its resolution [23]. In our sensor
design, we achieved the maximum detectable displacement
range of 3 mm. Figure 8 shows the response of the fabricated
molded silicone up to this displacement and its hysteresis.
Such displacement range would allow a robotic system to
maintain robust contacts [27]. However, there is a trade-off
between the maximum displacement range on one side, and
the sensitivity and hysteresis on the other side.

Force values and depth of the deformations exemplified in
Fig. 8 were obtained by squeezing the silicone at one of the
25 different locations. The locations of these contacts and the
POFs are illustrated in Fig. 7 right-hand side. The empirically
derived Young’s modulus of our sensor is 5.9 MPa.

C. Estimation of Surface Deformation From the Image

As described in Sec. III-B, we obtain the feature vector s
by computing the mean values of ROIs. In order to validate
this, we visualize this feature vector as bars with their lengths
proportional to the elements of the vector. When plotted
versus the surface deformation depths, the lengths of the bars
vary for different contact states. Figure 9 shows s for two
different locations Point 1 (X1,Y1) and Point 5 (X5,Y5) and
four different depth levels (Z1,Z2,Z3,Z5).

The optical response of the sensor is not the same for
every contact location. For instance, when the indentor
squeezes our sensor at the location (X1,Y1), the bars have

Fig. 7: Calibration setup consisting of the UR10 robot arm (Universal
Robots) and Weiss KMS 40 force sensor with the attached indentor (left).
The indentor pressing down on the silicone sensor (right).

Fig. 8: Hysteresis: compression (blue) and release (red). Hystere-
sis area = 15 Nm.



Fig. 9: 3D surface visualization by feature vectors at different contact locations and depths: 1.2 mm (first column), 1.8 mm (second column), 2.4 mm (third
column), and 3 mm (fourth column). Each feature vector corresponds to the applied contact force at a given contact location.

TABLE I: Image-to-force classification results
Method Cross-Validation Accuracy % Generalization Accuracy %

LDA 76.1 73.6
QDA 89.8 80.0
SVM 90 80.96
k−nn 91.8 81.5

lower heights than at the location (X5,Y5). Thus, a machine
learning technique would be suitable to build the map from
stimulation to sensation of a robotic perception system.

D. Image-to-Force Map

Various classification methods can be applied to estimate
the contact information including the force [17], [12]. We
applied traditional machine learning techniques, such as
Linear Discriminant Analysis (LDA), Quadratic Discrimi-
nant Analysis (QDA), Support Vector Machines (SVM) and
k−nearest neighbors (k−NN). In order to obtain the results,
we collected 270 samples per class from 27 experiments
(ten samples are recorded at every class) and allocated 20 of
these experiments for training and seven for testing datasets.
Number of classes is 125 due to 25 contact point locations
and 5 depth levels of the indentor resulting in a 33750 sample
dataset. The classification algorithms were implemented in
Matlab with the default parameters. Table I reports the
mean accuracy obtained from the training dataset through
5-fold cross-validation and the testing dataset accuracy for
generalization using the four chosen classification methods.

The classification methods have the generalization accu-
racy ranging from 73.6% to 81.5 %.

E. Hierarchical Classification

Classification of all 125 classes representing the contact
locations and depth levels in a single step results in the
highest generalization accuracy of 81.55% using k−NN
algorithm. In this case, the classification algorithm tries to
localize and find the depth of contact simultaneously. We
noted that the classification accuracy for contact localization
only (25 classes) is much higher (99.2% for the testing
dataset).

Thus, in order to infer the contact location and its depth
from the images with more than 81.5% accuracy, we decided

Fig. 10: Hierarchical localization of contact points.

to sequentially find the contact location and then its depth.
Figure 10 illustrates the resulting hierarchical classification
pipeline. First, 20 random trials were selected for training.
In the collected dataset, every contact location contains five
depth levels. Each of these five depth levels were labeled
as the same class to train the first level k−nn classifier
to localize the contact. Then, for every contact location, a
separate k−nn model was trained to retrieve the penetration
depth of a given contact location. At this step, the five depth
levels were labeled as a unique class. And we achieved
93.5% of accuracy for depth classification applied to the rest
seven trials set aside for testing. As a result, the accuracy
of finding the location and depth is increased to 92.7% with
the hierarchical classification.

VI. CONCLUSION

In this work, we presented the design and implementation
of our POF-based tactile sensor. Our approach combines
known optical design concepts with soft materials and uti-
lizes three different colors to increase the spatial resolu-
tion. The sensor acts as a force-sensing media – as its
sensing surface deforms, the color acquired by the optical
fibers changes. Such sensor provides several benefits that
normally involve more complex designs (e.g. robustness
and durability). We evaluate the design idea experimentally
and benchmark the efficacy of our sensor using a machine
learning-based approach. Experimental results confirm that
the color-coded tactile sensor is able to infer contact forces
and their locations. Thus, our sensor has the potential to
improve the dexterity of various robots in physical interaction
tasks. In the future, we will improve our sensor design
(by optimizing the design parameters) and also utilize it
for tactile motion control (e.g. squeezing an object for



determining its deformability).
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