
Visual Representations for Semantic Target Driven Navigation

Arsalan Mousavian2,◦, Alexander Toshev1,?, Marek Fišer1, Jana Košecká3,◦, Ayzaan Wahid1 James Davidson4
◦Work done while employeed at Google, 1Robotics at Google,
2NVIDIA, 3George Mason University, 4Third Wave Automation

Abstract— What is a good visual representation for naviga-
tion? We study this question in the context of semantic visual
navigation, which is the problem of a robot finding its way
through a previously unseen environment to a target object,
e.g. go to the refrigerator. Instead of acquiring a metric semantic
map of an environment and using planning for navigation, our
approach learns navigation policies on top of representations
that capture spatial layout and semantic contextual cues.

We propose to use semantic segmentation and detection
masks as observations obtained by state-of-the-art computer
vision algorithms and use a deep network to learn the navi-
gation policy. The availability of equitable representations in
simulated environments enables joint training using real and
simulated data and alleviates the need for domain adaptation
or domain randomization commonly used to tackle the sim-to-
real transfer of the learned policies. Both the representation
and the navigation policy can be readily applied to real non-
synthetic environments as demonstrated on the Active Vision
Dataset [1]. Our approach successfully gets to the target in 54%
of the cases in unexplored environments, compared to 46% for
a non-learning based approach, and 28% for a learning-based
baseline.

I. INTRODUCTION

Visual perception is one of the key capabilities of intelli-
gent robotic agents, enabling them to purposefully act in an
environment. The question then naturally arises as to what
is the most appropriate representation derived from visual
observations that can support various robotic tasks? We
study this question in the context of target-driven semantic
visual navigation, where an agent deployed in an unexplored
environment is tasked to navigate to a semantically specified
goal, e.g. go to refrigerator.

Earlier work on navigation has been fragmented and has
rarely resulted in reliable systems that can be comprehen-
sively evaluated in a variety of environments. Traditional
approaches focus on 3D metric and semantic mapping of
the environment [2], [3] followed by path planning and
control. Such approaches typically require building a 3D map
ahead of time, and reliable localization for mapping and path
following. They typically do not exploit general semantics
and contextual cues in the decision making stage.

More recently, the success of data driven machine learning
strategies for a variety of control and perception prob-
lems opens new avenues for overcoming the limitations
of previous approaches [4], [5], [6], [7], [8]. The gist of
these methods is to directly learn a mapping between raw
observations and actions in an end-to-end fashion for the
task. The additional appeal of learning based approaches is

?Primary contact: Alexander Toshev, toshev@google.com

Fig. 1: Visualization of detections (left), segmentations (mid-
dle) and depth (right). While for real data (top) we use off-
the-shelf detector and segmenter, the output on the simulated
data (bottom) comes from the labels in this data and the
renderer.

the capability of leveraging previous navigation experiences
in novel similar environments, with or without a map.

In this work we propose to use high-level semantic and
contextual features included in segmentation and detection
masks and learn a navigation policy from these observations.
Given extensive navigation experience in similar environ-
ments during training, the agent can discover commonly
encountered objects and contextual cues and learn policies
that can generalize to previously unseen environments. We
demonstrate that the proposed visual representations and
associated policy enables better generalization of the nav-
igation model trained on the smaller dataset. Furthermore,
these transferable representations enable simultaneous use
of real and simulated environments for training, without
the need for visual domain adaptation or randomization
commonly used to transfer between simulated and real envi-
ronments. These segmentation and detection masks capture
the outlines of a wide range of foreground and background
objects, and as such provide a detailed description of the
scene. We perform a thorough investigation of the above
representations and combine and contrast them with raw
RGB and depth inputs.

A further contribution of this work is the choice of the
model and training of the navigation policy. At training time,
we use an optimal path planning algorithm as a form of
stronger supervision to estimate the progress toward the goal
after taking an action. The navigation policy model learns to
predict this progress value and uses it to select an action
at test time. We investigate several models – a feed-forward

ar
X

iv
:1

80
5.

06
06

6v
3

 [
cs

.C
V

]
 2

 J
ul

 2
01

9

memory-free model as well as a model with internal state
implemented using an LSTM [9].

We use both synthetic [10] and real environments
[1] to train and evaluate the learned navigation policy
with a detailed ablation study of the choice of visual
representations and model architecture. This proposed
model reaches the target successfully 54% of the
time on previously unseen environments. Code and
visualization of the agent’s paths have been made available
at https://github.com/tensorflow/models/
tree/master/research/cognitive_planning.

II. RELATED WORK

The proposed work is related to a range of different
approaches towards visual navigation. Classical techniques
for navigation typically start with map construction, followed
by planning and execution of the planned trajectories. The
mapping stage uses visual observations for simultaneous
localization and mapping (for an extensive review see [2],
[3]). Given the model of the environment, state-of-the art
planning and control strategies can be employed [11].

More recent methods bypass the mapping and explicit pose
estimation steps and learn navigation strategies directly. The
existing learning based approaches differ in the architecture,
size and complexity of the models, cost of the training
stage, generalization capability, and type of supervision.
The existing formulations consider either a point-to-point
navigation strategy, where the goal is given as a coordinate
in an ego-centric coordinate frame [12] or a target-driven
navigation strategy, where the image of the target is given
as an input [7].

Reinforcement learning (RL) strategies and associated
deep learning architectures are discussed by Mirowski et
al. [4], [13]. The experiments are carried out in synthetic 3D
maze environments with a single goal. The observations in
these environments are simplistic mazes and do not exhibit
the complexity of real world settings. Mirowski et al. [4]
suggest overcoming the difficulties associated with sparse
rewards by using auxiliary losses for depth prediction and
loop closure detection. For simulated indoor environments,
basic RL strategies (feed-forward A3C, A3C with LSTM and
Direct future prediction method by Dosovitskiy et al. [14])
for point goal and room goal prediction are benchmarked in
the Minos environment [15].

For the related problems of object reaching with a manip-
ulator and quadcopter flying, Sadeghi et al. [16], [17] use
synthetic data with domain randomization to learn control
strategies.

Gupta et al. [12] and Khan et al. [18] use value iteration
networks [19] and imitation learning to learn navigation
strategies. Bruce at al. [20] learn navigation policies from
a single traversal of the environment.

The broader area of active and embodied perception
has received increased interest focusing on navigation, task
planning, and visual question answering. These tasks have
motivated different simulation environments derived from
SUNCG [10] or Matterport3D [21], [15] datasets. While

there are numerous architectures for visual question answer-
ing [22], [23], [8], with the exception of [8], the evaluation
metrics do not explicitly consider the navigation component.

III. NAVIGATION MODEL

A. Setup

We address the problem of navigating to a target, defined
by its class label, using purely visual observations. This
problem can be represented as a partially observable Markov
decision process (POMDP) (S,A,O, P,Rc). The state space
S consists of the pose of an agent, which is not observable.
The action space A is a discrete set of turns and translations
of pre-defined lengths inducing a lattice structure– described
in detail in the experiments section. Observation space O
are raw RGB and depth images. The probability P (s′|s, a)
reflects the transition to a new state s′ after an execution
of an action a in the current state s. Finally, the reward Rc

expresses the distance of the agent from the target c and can
be defined as the negative of the shortest path between the
current state s ∈ S and the target c: Rc = −d(s, c).

Within the above setup, our navigation policy is repre-
sented by a Neural Network π(a|o; c) which given the target
class label c and an observation o ∈ O predicts an action
a ∈ A. The policy generates a sequence of actions that move
the agent from its starting position to the target.

B. Visual Representations

The focus of this work is representations that can be
extracted from the visual observations. Such representations,
denoted by f(o) = (. . . , fi(o), . . .), are the bridge between
the raw signal and the controller. Thus, the model can be
written as π(a|f(o); c). In robotic applications the raw obser-
vations consist of an RGB image, which is often augmented
with a depth image, derived from Radar, LiDAR or stereo.
Therefore, a common choice of f is a ConvNet [24], [25],
which is typically designed for and pre-trained on a large
classification dataset [26]. Such a network is used to produce
a vectorial embedding of the image.

To this end we consider the following representations:
Det: A set of filled object detection masks. We use the

Faster R-CNN [27] object detector trained on COCO [28].
The detector output is converted to a H ×W × Cdet mask
where H and W are the height and width of the image and
Cdet is the total number of object categories in COCO. The
jth channel contains all detected boxes for the jth class as
0/1 masks.

SSeg: The output of the segmenter defined by Mousavian
et al. [29] that is trained on NYU V2 dataset [30]. The
resulting representation is a H × W × Csseg mask stack
where Csseg is the number of categories in the NYU V2
dataset.

Depth: The raw depth channel converted to H ×W × 2
where the first channel is the normalized depth values coming
from the sensor and the second channel is a binary mask that
indicates whether a pixel has a valid or missing depth.

RGB: The penultimate layer output of the ResNet-50 [25]
trained on ImageNet.

https://github.com/tensorflow/models/tree/master/research/cognitive_planning
https://github.com/tensorflow/models/tree/master/research/cognitive_planning

Fig. 2: Model Overview: RNN takes concatenation of joint representation of observations and target in addition to previous
action and success indicator. The model predicts the cost v(o, a; c) of taking action a at the current state. Finally, the
controller takes the action with the lowest cost (see. (3)).

Furthermore, RGB cannot be easily used on both real and
simulated data as the network produces different outputs on
the different domains. A large body of work focuses on
domain adaptation [31], [32], [33] and its applications to
robotics [34], [21]. Such approaches are hard to train as they
rely on still relatively unstable generative adversarial network
setups.

Both Det and SSeg address some of the above challenges.
They capture scene layouts, obstacles, and locations of target
objects (see Fig. 1). As we empirically show later, despite
being lossy compared to RGB, these representations capture
most of the necessary information for navigation without the
need for fine-tuning. Thus, large segmentation and detection
networks are used without being part of the training of the
navigation controller, which makes the optimization of the
latter easier and more stable.

Another advantage of Det and SSeg is that there is no
need for domain adaptation. While semantic segmenation
and detectors are used on real data, in simulation the
object masks and bounding boxes can be generated by
the renderer (see Fig. 1). Then the gap between real and
simulated data is related to the quality of the segmentation
and detector. This setup is particularly timely as research
on object detection [28], semantic segmentation [35] and
depth estimation [29] has been propelled by deep learning
methods with a variety of high performing models available.
We show empirically that by using simulation with these
representations we achieve substantial improvement without
any domain adaptation.

C. Model

The model π(a|f(o); c) using the above representation is a
Deep Neural Network (see Fig. 2). In addition to the current
observation the model takes as an input a description of the
target in the form of a one-hot vector over a pre-defined
set of classes. This secondary input modulates the network
behavior.

The architecture of the network is shown in Fig 2. The
CNN architecture that we use for extracting the represen-

tation from each feature extractor fi(o) consists of three
convolutional layers and a fully connected layer, all using
ReLU as activation. The convolution layers have kernal
sizes 8 × 8 × 8, 4 × 4 × 16, 3 × 3 × 16 and strides of
4, 2, 1 respectively. The fully connected layer produces a 128
dimensional embedding for each modality except RGB, for
which we use a pretrained ResNet50. The input target c is
presented with a one-hot vector and gets projected to an
embedding of size 128. All the embeddings are concatenated
and processed with a series of fully connected layers and an
LSTM. The size of the fully connected layers and LSTM is
2048.

Furthermore, we experiment with explicitly using the
previous action as an input to the model along with a binary
indicator of whether it resulted in a collision. We assume that
there is a collision detection module, which is commonly
present in robot systems. This input helps the model choose
a different recovery action when experiencing a collision.

D. Training

In our navigation setup we have full knowledge of the
environment at train time. We consider a discrete setting
where the environment is described by a graph Ge with nodes
representing a discrete set of states – poses (locations and
headings) of the agent. Edges in this graph correspond to
possible state transitions. Thus, for the problem of getting to
an object, one can use a shortest path planning algorithm.
At test time, however, the environment map (graph) is not
known. Nevertheless, we would like to learn a controller
which performs as close as possible to an optimal path
by exploiting general contextual cues. Therefore, instead of
employing Deep Reinforcement Learning, where at train time
the agent is to discover the optimal path guided only by
a reward definition, we use strong supervision from a path
planning algorithm.

The above setup falls into the domain of imitation learning.
Common approaches include behavioral cloning [36] and
Dagger [37]. In such approaches the agent is trained to
emulate an expert, in this case a path planner, producing

demonstrations. One drawback of the above approaches in
our setup, however, is that often times multiple actions at a
given state can follow an optimal path. And when an action
is not optimal, it isn’t necessarily incorrect, as it can still
lead the agent towards the goal, albeit not via the shortest
path. Therefore, we train our agent to predict the cost of
an action a, which is defined as the ’progress’ toward the
goal (an approximation of the negative of the value function
in RL) – the reduction of the shortest distance d(s, c) from
current state s to the target c after taking a:

y(s, a; c) =
∑
s′

P (s′|s, a)d(s′, c)− d(s, c) (1)

As defined above the value range of y is [−1, 1]. To penalize
collisions, we set y(o, a; c) = +2 if action a leads to colli-
sion. Finally, if a leads to the goal, we set y(o, a; c) = −2
to designate a ’stop’ state. Otherwise, the value of the action
’stop’ is set to +2 to discourage the agent to stop prematurely.
The value of the above cost reflects the ’correctness’ of
an action. Details of the transition model, P (s′|s, a), are
described in the experimental section.

Using the above definition of state-action cost, we train a
neural network v(o, a; c) to predict the above cost directly
from observations:

Loss =
1

|C||S||A|
∑
c∈C

∑
s∈S

∑
a∈A

(v(o, a; c)− y(s, a; c))2

(2)
The final navigation controller chooses at test time an

action with the lowest predicted cost:

π(a|o; c) = argmin
a∈A

v(o, a; c) (3)

Note that although we do not consider the history of ob-
servations explicitly in the above formulation, it is modeled
implicitly by the LSTM component of our model.
Discussion: During training we use both real and simulated
environments. The real data comes from dense scans of real
houses. Both environments are discrete in nature – we work
with a pre-defined set of possible locations and orientations;
the action space is discrete. Thus, in each state we can
enumerate all possible next state-action pairs, as shown in
the loss in Eq. (2). Contrary to most other POMDP setups,
S × A is not prohibitively large and we are guaranteed to
visit all state-action pairs eventually. Thus, there is no need
of state exploration guided by a policy.

IV. EXPERIMENTS

We use Active Vision Dataset (AVD) [1] for evaluation.
AVD consists of dense scans of 9 different homes, some of
which have been scanned twice. In order to evaluate gener-
alization capabilities, we use two different train/test splits. In
the first split, which we refer to as similar environments, the
train and test environments are different scans of the same
home (some of the objects are moved; scanning locations
are changed). The second split, called different environments,
contains different homes for test and train. The houses which
have been captured twice are indicated in the dataset.

As an additional source of training data, we use SunCG
[10], which is a large set of synthetically generated homes.
We use a subset of 200 as defined in [8]. All the evaluations
are done on AVD because we want to see the effect of
representation on the real data.

We consider a discrete set of actions {move forward,
move back, move left, move right, stop,
rotate ccw, rotate cw} and five semantic goal
categories {dining table, refrigerator,
television, couch, microwave}. The object
detection categories are borrowed from COCO [28] and the
semantic labels are from NYU-v2 [30]. We label the views
that are closest to goal categories. We use a pre-trained
object detector and semantic segmentation models for AVD
and groundtruth detection and semantic segmentation masks
for SunCG dataset. To match the settings of AVD, we use
the same camera parameters, camera height, and action step
size.

A. Training Details

Each minibatch consists of losses formulated over 8 ran-
dom trajectories. Each trajectory is generated by selecting
a random environment, from either AVD or SUNCG, gen-
erating a random goal and target and selecting the first 20
locations from this trajectory. The output of all fi(o) except
the raw image is resized to 64 × 64 pixels. Raw images
are resized to 299 × 299 pixels to match the resolution
at which the ResNet50 has been trained. We use Adam
Optimizer, learning rate of 10−4 and exponential decay
schedule with decay rate of 0.98 at every 1000 steps. The
model is optimized for 200 000 iterations on 40 GPUs, which
takes 16 hours.

B. Evaluation Settings

We perform evaluations only on the test environments
from AVD. The agent is run up to 100 steps, with action
stop terminating the episode early. The agent performance
is measured by success rate– defined as the portion of the
runs in which the goal was reached. The agent is considered
to have reached the goal if it is within 5 steps from any
instance of the goal object (coming closer than that provides
degenerate observations as the object often time covers the
full FOV). Initial locations are chosen randomly and they are
fixed between different experiments. Each initial location is
evaluated for all the goal categories.

C. Analysis

RGB vs Semantic Representation: To contrast the pro-
posed semantic representation with standard image em-
beddings, we use a ResNet50 [25] to compute an image
representation. This net is trained in an end-to-end fashion
together with the policy. We show performance in Fig 3.

We observe that our representation generalizes better on
unseen environments. This is shown by the higher perfor-
mance on different env. split, where at test time we see totally
different homes. This is true for both proposed semantic

Fig. 3: Success rates of the models on similar (blue) and
different environment split (red) of AVD.

Fig. 4: Success rate of our model with different represen-
tations when trained using AVD only (blue) or AVD and
SunCG (red).

representations, SSeg and Det. Further, adding depth seems
to hurt such generalization.

At the same time, a ResNet-based embedding allows the
model to overfit on scans from the same homes. As such,
this embedding might be more appropriate when we deploy
the robot to environments we have seen during training.

Use of Synthetic Environments: In this section, we eval-
uate the effect of augmenting training with simulated data
from SunCG dataset. During the training, an episode is
sampled uniformly from AVD or SunCG. The evaluation is
done on AVD only.

Results are presented in Fig. 4. The use of simulated
data in training improves the performance for Det and
SSeg and their combination. This shows that the proposed
representations are capable of using ample simulated data
without the need for domain adaptation. The performance
increase is in some cases over 10%. The reality gap, however,
is an issue for raw observations, such as Depth, where the
performance drops. While depth is perfect on SunCG, on
AVD depth is estimated using Kinect, which is noisy and has
missing values. To mimic the imperfections of Kinect depth,
depth values are clipped at 12m, perturbed by multiplying

Fig. 5: Success rates of a feedforward vs recurrent model
using AVD only (denoted by real) or AVD and SunCG.

.

Fig. 6: Success rate of our model using all and a subset of
the object classes from COCO in Det representation.

them with a scalar sampled uniformly from [0.9, 1.1], and
10% of the depth measurements are removed at random.

Reactive vs Recurrent Model: To emphasize the impor-
tance of recurrence in our model, we present results of a
feedforward network in Fig 5. We observe that the success
rate drops significantly when the model does not have a state.
Qualitatively, this is because a state-less model cannot correct
past wrong actions, and often times keeps repeating them,
leading to an oscillatory behavior (revisiting same state over
and over again). Furthermore, we see that more training data
does not rectify such behavior.

Importance of Different Object Classes: Our Det represen-
tation is based on 80 object types, as defined by COCO [28].
We would like to understand which of these classes are more
important for the navigation agent. For this, we train several
agents which use a subset of the all classes. In particular, in
Fig 6 we show performance of the model, where we remove
one of the six superclasses {Furniture, Kitchen,
Appliance, Electronic, Food, Indoor}.

The results show that the Furniture category, which
contains large furniture items such as couches, tables, and
beds, leads to the largest drop if removed. These objects
are important because they are detectable from far away and

exhibit strong correlation with the location of the agent in
the house. On the other hand, Food bears little importance
for the model, most likely due to its small size and lack of
permanent locations.

Comparison with non-learning baseline: In this section,
we compare the performance of our method with a semi-
random search method. This baseline search strategy is not
an optimal one. It is intended to give us an intuition for how a
simple search strategy compares to our method. The baseline
method, contrary to ours, is given access to the full graph of
the environment Ge and the pose for each view in the global
coordinate system. The registered poses are provided in the
dataset and are computed from a 3D reconstruction of all the
images for each house.

The baseline agent has two modes. The agent enters the
first mode if the object detector sees at least one instance of
the target category c. In this mode, the location of the object
is back-projected to the world coordinate system using the
pose of the current view, depth channel, and the intrinsic
parameters of the camera. The nearest view from Ge, that
is directed toward the projected point cloud of the object, is
chosen as a new destination. The shortest path is computed
toward the designated vertex and the agent executes the
shortest path without receiving any new observations.

If the agent does not see the object, it takes a random
action. Note that even if the object is detected from very far
away, the shortest path algorithm on Ge avoids obstacles and
computes a path for the part of the scene that is not explored
by the agent.

Fig 7 illustrates an example of such a situation. Note
that the accuracy of the baseline methods is affected by
the performance of the object detector. The baseline method
achieves 46% success rate over the same evaluation set with
the same initial poses. This shows the strength of our method,
which can achieve superior performance with significantly
less knowledge of the environment.

For comparison, we visualize the paths taken by our agent
in similar environments in Fig. 8. It can navigate successfully
across a home. The agent takes paths that are straight in
narrow passages, but occasionally turns around to explore.

V. CONCLUSION

We have demonstrated the use of semantic visual represen-
tations obtained from state-of-the-art detectors and segmen-
tors for target driven visual navigation. These representations
are used as observations in the training of a navigation
policy approximated by a deep network. The additional
appeal of the proposed choice is the ability to train the
navigation policies on synthetic CG data jointly with real
images without tackling the domain adaptation problem. The
detailed ablation studies of different feature representations
demonstrate across the board the effectiveness of semantic
segmentation and detectors in generalization to previously
unseen environments. The effect of adding a RNN compo-
nent is most dominant when synthetic data is added to the
training. Overall, adding training examples from simulated
environments improves the generalization capability of the

Fig. 7: Each row demonstrates the first mode of the baseline
method. After the target object has been seen and detecter
(left), the baseline uses depth and a pre-specified map (right),
to backproject the detection onto the map (object displayed
in green) and compute a path from its current location (red
arrow) to the detection.

Target: Couch Target: Fridge

Target: Fridge Target: Microwave

Fig. 8: Visualization of the path generated by the learned
policy. Green is the start point, Red is the end point, and
yellow triangles represent the target views.

proposed approach, except when the depth modality is used
with both real and synthetic data. The proposed strategy
effectively exploits contextual cues learned from visual rep-
resentations to guide the agent towards the goal in 54% of
the cases, and outperforms the non-learning based baseline
which uses the map and a state-of-the-art detector by 8%.

REFERENCES

[1] Ammirato, P., Poirson, P., Park, E., Košecka, J., Berg, A.C.: A dataset
for developing and benchmarking active vision. In: ICRA. (2017)

[2] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira,
J., Reid, I.D., Leonard, J.J.: Simultaneous localization and mapping:
Present, future, and the robust-perception age. IEEE Transactions on
Robotics (2016)

[3] Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M.,
Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In:
CVPR. (2016)

[4] Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A.J., Banino,
A., Denil, M., Goroshin, R., Sifre, L., Kavukcuoglu, K., Kumaran,
D., Hadsell, R.: Learning to navigate in complex environments. ICLR
(2017)

[5] Oh, J., Chockalingam, V., Singh, S., Lee, H.: Control of memory,
active perception, and action in Minecraft. MLR 48 (2016)

[6] Bruce, J., Sünderhauf, N., Mirowski, P., Hadsell, R., Milford, M.:
One-shot reinforcement learning for robot navigation with interactive
replay. ArXiv arXiv:1711.10137 (2017)

[7] Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L.,
Farhadi, A.: Target-driven visual navigation in indoor scenes using
deep reinforcement learning. CVPR (2017)

[8] Wu, Y., Wu, Y., Gkioxari, G., Tian, Y.: Building generalizable
agents with a realistic and rich 3d environment. arXiv preprint
arXiv:1801.02209 (2018)

[9] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
computation 9(8) (1997) 1735–1780

[10] Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.:
Semantic scene completion from a single depth image. CVPR (2017)

[11] Faust, A., Ramirez, O., Fiser, M., Oslund, K., Francis, A., Davidson, J.,
Tapia, L.: PRM-RL: long-range robotic navigation tasks by combining
reinforcement learning and sampling-based planning. In: ICRA. (2018)

[12] Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cogni-
tive mapping and planning for visual navigation. CVPR (2017)

[13] Mirowski, P., Grimes, M., Malinowski, M., Hermann, K.M., Anderson,
K., Teplyashin, D., Simonyan, K., kavukcuoglu, K., Zisserman, A.,
Hadsell, R.: Learning to navigate in cities without a map. In: NIPS.
(2018)

[14] Dosovitskiy, A., Koltun, V.: Learning to act by predicting future. ICLR
(2017)

[15] Savva, M., Chang, A.X., Dosovitskiy, A., Funkhouser, T., Koltun, V.:
Minos: Multimodal indoor simulator for navigation in complex envi-
ronments simulated environment for studying goal directed navigation.
ArXiv:1712.03931 (2017)

[16] Sadeghi, F., Toshev, A., Jang, E., Levine, S.: Sim2real view invariant
visual servoing by recurrent control. CVPR (2018)

[17] Sadeghi, F., Levine, S.: Cad2rl: Real single-image flight without a
single real image. RSS (2017)

[18] Khan, A., Zhang, C., Atanasov, N., Karydis, K., Kumar, V., Lee,
D.D.: Memory augmented control networks. ArXiv arXiv:1709.05706
(2017)

[19] Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration
networks. NIPS (2017)

[20] Jake Bruce, Niko Sunderhauf, P.M.R.H.M.M.: Learning deployable
navigation policies at kilometer scale from a single traversal. In:
Conference on Robot Learning, CoRL, PMLR 87:346-361. (2018)

[21] Zamir, A., Xia, F., He, Z.Y., Sax, S.: Gibson environment for embodied
real-world active perception. CVPR (to appear) (2018)

[22] Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D.,
Farhadi, A.: IQA: Visual question answering in interactive environ-
ments. ArXiv:1712.03316 (2017)

[23] Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.:
Embodied question answering. CVPR (to appear) (2018)

[24] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4,
inception-resnet and the impact of residual connections on learning.
In: AAAI. Volume 4. (2017) 12

[25] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: CVPR. (2016) 770–778

[26] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet:
A large-scale hierarchical image database. In: CVPR, IEEE (2009)
248–255

[27] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time
object detection with region proposal networks. In: Advances in neural
information processing systems. (2015) 91–99

[28] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollr, P., Zitnick, C.L.: Microsoft COCO: Common objects in context.
In: ECCV. (2014)

[29] Mousavian, A., Pirsiavash, H., Košecka, J.: Joint semantic segmen-
tation and depth estimation with deep convolutional networks. 3DV
(2016)

[30] Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation
and support inference from rgbd images. ECCV (2012)

[31] Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by back-
propagation. In: ICML. (2015) 1180–1189

[32] Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.:
Unsupervised pixel-level domain adaptation with generative adversar-
ial networks. In: CVPR. (2017)

[33] Zhang-Wei Hong, C.Y.M.e.a.: Virtual-to-real: Learning to control in
visual semantic segmentation. In: IJCAI. (2018)

[34] Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakr-
ishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige, K., Levine, S.,
Vanhoucke, V.: Using simulation and domain adaptation to improve
efficiency of deep robotic grasping. ICRA (to appear) (2018)

[35] Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.:
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs. CVPR (2016)

[36] Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of
robot learning from demonstration. Robotics and autonomous systems
57(5) (2009) 469–483

[37] Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning
and structured prediction to no-regret online learning. In: AISTATS.
(2011) 627–635

	I Introduction
	II Related work
	III Navigation Model
	III-A Setup
	III-B Visual Representations
	III-C Model
	III-D Training

	IV Experiments
	IV-A Training Details
	IV-B Evaluation Settings
	IV-C Analysis

	V Conclusion
	References

