
ar
X

iv
:1

81
2.

10
01

6v
2 

 [
cs

.C
V

] 
 2

2 
M

ar
 2

01
9

A Unified Framework for Mutual Improvement of SLAM and Semantic

Segmentation

Kai Wang1 Yimin Lin1 Luowei Wang1 Liming Han1 Minjie Hua1 Xiang Wang1 Shiguo Lian1 Bill Huang1

Abstract— This paper presents a novel framework for simul-
taneously implementing localization and segmentation, which
are two of the most important vision-based tasks for robotics.
While the goals and techniques used for them were considered
to be different previously, we show that by making use of
the intermediate results of the two modules, their performance
can be enhanced at the same time. Our framework is able to
handle both the instantaneous motion and long-term changes
of instances in localization with the help of the segmentation
result, which also benefits from the refined 3D pose information.
We conduct experiments on various datasets, and prove that
our framework works effectively on improving the precision
and robustness of the two tasks and outperforms existing
localization and segmentation algorithms.

I. INTRODUCTION

Localization and Segmentation are two of the most funda-

mental tasks for robotic movement and sensing. The former

computes the robot’s current position and orientation, and

the latter helps to perceive the distribution and precise

boundaries of the objects of interest within the robot’s field of

view. These two techniques are essential in many robotic ap-

plications including autonomous driving, Unmanned Aerial

Vehicles (UAV), robot patrolling and logistics, etc.

For the localization task, visual Simultaneous Localization

and Mapping (vSLAM) is one of the most promising meth-

ods due to its relatively low hardware and computational cost

characteristics in recent years. It utilizes image sequences

with some auxiliary sensor data such as depth map, Inertial

Measurement Unit (IMU) data, etc., to create the map of

the environment and return the current location information

at the same time. A big challenge in vSLAM is that the

environment in which the robot locates is usually changeable.

On one hand, instantaneous movement of some objects

during mapping will affect the precision of the map due to

the inconsistency of the moving trend in the scene [1]. On

the other hand, the map created will no longer be consistent

with the environment once some objects have moved after

mapping completes. As a result, subsequent localization

based on this map will not be accurate.

For the segmentation task, 2D image-based semantic

segmentation using deep neural network has proved to be

effective in most cases and has been widely used in many

systems [2]. It is able to output the exact boundaries of

a series of segmented regions and their classes. Anyway,

unprecise manual labeling and lack of similar training data

1 All the authors are with CloudMinds Technologies Inc., Beijing
100102, China. kai.wang,anson.lin,luowei.wang,
liming.han,michael.hua,xiang.wang,scott.lian,
bill@cloudminds.com

usually lead to inaccurate segmentation results for these deep

learning methods.

Previously, these two tasks were generally regarded as

two independent tasks whose results were rarely utilized by

each other. In this paper, we propose a novel framework for

simultaneously improving the vSLAM as well as semantic

segmentation precisions. The segmentation and vSLAM are

performed in an interweaved method and the results are

used to refine each other’s. Specifically, the computed pose

information of the previous and current frames are utilized

to refine the segmentation of the latter one, in which all

the potentially moveable objects are then identified and

sent to the vSLAM module for further computation of the

tracking and mapping of the corresponding frame. This

scheme repeats through the whole process and both the

vSLAM and segmentation precisions of this sequence are

therefore enhanced. Furthermore, the map created becomes

more robust to changes of the scene and the localization in

the same environment afterwards will benefit from it and

become more precise. This framework is tested on different

datasets and proves to be more effective over existing works

on both the vSLAM and segmentation tasks.

The contributions of this paper include:

• A unified framework of enhancing the vSLAM and

segmentation tasks mutually.

• A novel approach for enhancing both the mapping and

localization precisions in vSLAM by identifying and

processing both the moving and potentially moveable

objects respectively.

• An effective refinement scheme for image segmentation

by making use of 3D pose information.

The rest of the paper is organized as follows: Section II

reviews the related works on vSLAM and segmentation.

Section III introduces the proposed framework and workflow

in detail, and experimental results are shown and discussed

in Section IV. Section V gives the conclusion.

II. RELATED WORK

A. vSLAM for Dynamic Scenes

vSLAM is used to estimate the camera location and 3D

map of the scene through a set of feature correspondences ex-

tracted from a series of images [3]. Various works on vSLAM

have been proposed in recent years, from the seminal work

PTAM [4] to the popular ORB-SLAM2 [5]. Most of these

approaches assume that the observed scenes are relatively

static, and pose estimation might drift or even be lost as

there are not features to be matched consistently in the case

of scenes with dynamic objects.

http://arxiv.org/abs/1812.10016v2


Fig. 1. The overall workflow of the proposed framework, which contains a segmentation module and a vSLAM module. For each input frame, a coarse
pose and segmentation are first calculated. The two results are then used to estimate a fine pose and update a tracking map. A long-term map is also
maintained for the further visit of the same area. At the same time, the segmentation results can also be refined by using that of the previous frame and
the poses estimated in the two frames. The refinement of the vSLAM and segmentation results is implemented within a single iteration for each frame.

There have been works proposed to handle dynamic envi-

ronments [6]. For example, [7] computed the likelihood of

a moving object based on a motion metric computed from

optical flow and then segment the moving objects. [8] further

extended it to handle stereo image sequences. Recently,

researchers have shifted their focus to using deep neural

network to do the segmentation to remove outliers for accu-

rate pose estimation. For example, Mask-SLAM [9] excludes

feature points detected in the sky area or on cars using

the segmentation mask trained by DeepLab v2 [10]. The

work [1] proposed to combine multi-view geometry models

and deep-learning-based algorithms for detecting dynamic

objects and removed them from the frames. In [11], the depth

map, sparse scene flow and semantic cues are combined

to classify scene as either static background, movable and

moving objects. While these methods have proved that

excluding feature points in certain masked area makes the

estimation of camera motion more stable, they rely heavily

on the exact segmentation of the moveable objects and are

prone to be inaccurate when its precision is limited. The

idea in [12] which identified dynamic objects to enhance the

vSLAM precision and further provided a refined dataset for

training the object detection network is similar to our work,

except that the extraction of objects with object detection in

the first step is less accurate, and the second step remains an

offline scheme.

B. Image and Video Segmentation

The pioneering work [13] on deep neural network based

image segmentation explored the use of Convolutional

Neural Network (CNN) to segment the images, through

adapting classifiers for dense prediction by replacing the

last fully-connected layer with deconvolution layers. Later

on, [14] made use of the encoder-decoder architecture and

reused the pooling indices from the encoder to decrease

parameters. DeepLabv3 [15] augments the Atrous Spatial

Pyramid Pooling (ASPP) module in [10] with image-level

feature to capture longer range information as in [16], and

DeepLabv3+ [17] further extends it to include an effective

decoder module to refine the segmentation results along

object boundaries. Pyramid Scene Parsing Network (PSP-

Net) [18] implements spatial pooling at several grid scales

and demonstrates satisfactory performance.

Furthermore, algorithms have been proposed to achieve

instance-level segmentation. The prior work [19] task uses R-

CNN [20] to classify region proposals, which are then refined

by category-specific coarse mask predictions. MNC [21] pro-

posed a cascaded structure, which consists of three networks

used for differentiating instances, estimating masks, and

categorizing objects respectively. FCIS [22] performs object

segmentation and detection sub-tasks jointly and exploits the

strong correlation between the two sub-tasks with shared

score maps. Mask R-CNN [23] extends Faster R-CNN [24]

by adding a branch for predicting an object mask in parallel

with the existing branch for bounding box recognition.

There are also some works proposed for video sequence-

based segmentation. For example, [25] made use of the

spatial-temporal information of consecutive frames by intro-

ducing 3D-Conv [26] and Conv-LSTM [27] modules, so as

to enhance the precision of video segmentation. Since the

3D spatial information of adjacent frames was not utilized,

they may still fail to predict precise boundary information.

III. FRAMEWORK

A. Overall Workflow

The general workflow of the proposed framework is shown

in Fig. 1. This framework takes the RGB image sequences

as well as the depth map sequences as input. It includes two

major modules: the vSLAM module and the segmentation

module. For each input frame, the vSLAM module will

output the pose information of the camera w.r.t. the world and

update the map of the environment for long-term use, and the

segmentation module will produce an image segmentation

result with the semantic information of each pixel.

Specifically, the initial input frame will be first segmented,

and potentially dynamic objects are identified. At the same

time, a coarse pose is computed in the vSLAM module. The



results will then be sent to the vSLAM module to build the

map. Next, when a new frame comes, a coarse vSLAM and

segmentation will be performed first, and the coarse pose

together with the pose and segmentation result of the last

frame will be sent to the segmentation module to refine the

coarse result. After the final segmentation result of this frame

is computed, it will be sent to the vSLAM module to proceed

fine tracking and mapping, after which the precise map and

location information will be obtained.

Next, the detailed vSLAM and segmentation modules will

be introduced.

B. Initial Segmentation

For each input RGB frame, we used the FCIS [22]

algorithm which proved to be effective on various datasets to

perform an initial segmentation. We trained the network on

MS COCO [28] dataset which contains 80 classes for both

indoor and outdoor objects. For an input RGB image, FCIS

is able to compute the bounding box for each object. If the

pixel value in the bounding box is larger than a threshold, it is

regarded as part of the object; otherwise, it will be marked as

the background. We repeat this operation for all the bounding

boxes to get the mask for the whole image.

After the segmentation, we identified the moveable objects

from all the instances in the result, according to a predefined

shortlist in which only objects that are likely to move or be

moved (such as person, cars, cup, chair, etc.) among all the

80 classes are selected. The result is in the form of a mask

image with the region and instance ID of each segmented

instance encoded, and will be sent to the vSLAM module to

proceed the tracking and mapping computation.

C. vSLAM based on Segmentation Result

We use the ORB-SLAM2 algorithm [5] which has shown

satisfactory performance in many scenarios. To ensure the

stability, we used the RGB-D version of ORB-SLAM2 which

takes both RGB image and depth map as input.

Each time a new frame comes, we first implement a coarse

tracking to get an initial guess of the pose of the current

frame. Specifically, we first extract the ORB feature points

and align them with the depth map to get the 3D coordinates

(Px, Py, Pz) of each point P , and get the coarse rotation Rc

and translation Tc by minimizing the reprojection error as

what the original ORB-SLAM2 did.

The extracted feature points are then classified into a

background set A and other different sets {Bi|i = 1...n}
according to their positions in different segmented areas. If

a point P lies in the background area, it belongs to set A;

otherwise it falls into set Bi which corresponds to the area

of segmented instance i. The motion states of the classified

point sets will then be judged according to the coarse rotation

Rc and translation Tc. Specifically, we project the points in

the tracking map onto the current frame, and for each point

Pi in the frame, a best matching point Pmatch is found. If

the Euclidean distance between Pi and Pmatch is less than

a predefined threshold, then Pi is regarded as static. For

the set Bi that Pi belongs to, if the percentage of moving

points is less than a threshold, then the instance that set Bi

corresponds to is regarded as a static object in the current

frame, otherwise, it is deemed moving.

An example of the segmented regions and classified fea-

tures points is shown in Fig. 2.

(a) (b)

Fig. 2. Illustration of feature points and segmented area classifications.
(a) The detected feature points are classified into background (in green),
moving (in red) and moveable (in blue) points; (b) The segmentation result
with regions classified into background (A) and moving or moveable (B1-
B6) .

Next, 2D-3D matching between the points in the back-

ground set A and the sets {Bs} that are considered as static

and also in the tracking map is implemented by minimizing

the reprojection error, and fine rotation Rf and translation Tf

can thus be obtained. After the fine pose has been obtained,

it will be sent to the segmentation module for the refinement

of the initial segmentation result.

There are two types of maps created and maintained in

the vSLAM module: tracking map and long-term map.

The tracking map is used to compute the trajectory of the

camera during the tracking process. The new point Pm in the

tracking map is computed by projecting each point Pc the

background point set A and moving point set Bs of the new

key frame onto the tracking map through Pm = RfPc+Tf .

If there are already matching points, then no more update of

the map is required; otherwise, the newly projected 3D points

will be added into the tracking map. The use of only points of

the static objects will help the preservation of the information

used for computing the camera pose in the current scene, and

thus improves the tracking stability and trajectory precision.

The long-term map is designed for long-term use. It only

needs to be created at the first time when a robot navigates

in a new area, and can be reused later on to avoid duplicated

mapping computation when the same region is visited .

Therefore, only the points whose positions will probably

remain fixed over time should be included in this map to

provide stable environment information. To do that, each

time the tracking map is updated, we remove the points that

belong to set Bs in the tracking map and have the potential

to move in future, and add the rest points (i.e. the points in

set A) into the long-term map.

D. Refinement of Segmentation Result

After we get the coarse pose Rc, Tc of the current frame,

and the fine pose Rf , Tf as well as the segmentation result

of the previous frame, we can use them to update the

segmentation result in the current frame.

First, we project each 2D point (pu, pv) of the segmented

regions in the last frame which has been refined and assumed



to be accurate to (p′u, p
′

v) in the current frame according to

the following equations:

Pz = D(pu, pv)/DF, (1)

Px = (pu − cx) ∗ Pz/fx, (2)

Py = (pv − cy) ∗ Pz/fy, (3)

[

p′u
p′v

]

=





fx 0 cx
0 fy cy
0 0 1



 [R|T ]









Px

Py

Pz

1









/s. (4)

In the above equations, fx, fy and (cx, cy) are the fo-

cal lengths and principal point of the camera respectively.

D(pu, pv) is the depth value of (pu, pv) and DF is the depth

factor of the depth map. R = R−1

c Rf and T = Tf − Tx

represent the relative rotation and translation w.r.t. the last

frame. s is the scale factor of the image.

Next, we try to refine the initially segmented image

with each projected region Rep. The workflow is listed in

Algorithm 1. We first try to find a matching region for Rep in

the current frame, by measuring the similarity Scp between

each region Rec in the roughly segmentation result and Rep
using:

Scp = w1 ∗Dist(Rec, Rep)

+ w2 ∗

√

Area((Rec −Rep) ∪ (Rep −Rec))

Area(Rec) +Area(Rep)
,

(5)

where Dist(Rec, Rep) refers to the Euclidean distance

between the barycenters of Rec and Rep. The function

Area(·) computes the total number of pixels inside a region.

The first item measures the positional distances of the two

regions and the second one is used to compute their shape

difference. w1 and w2 are the weights for the two items

respectively. The region Rec with the smallest Scp value

which is smaller than a predefined threshold will be selected

as the matching region for Rep. We then compare the ratios

of their intersection area to the two regions, and the region

with larger ratio is considered as a reliable one and preserved

as the finally segmented region.

If no matching region is found for Rep, there is a high

possibility that the segmentation algorithm failed to recog-

nize an instance that was supposed to be segmented when the

number of segmented instances in the current frame is less

than that of the previous one. In that case, we will update

the segmentation result by adding Rep to it. If the numbers

of segmented instances are same, then we simply skip the

current Rep and repeat the same process for the next Rep.

It should be mentioned that this strategy is based on

the assumption that there is no drastic changes between

two adjacent frames. In some extreme circumstances, for

example, if the frequency of the camera is not high enough

to ensure the fast-moving objects be well captured, the

algorithm may fail on judging the region correspondence and

lead to fake results. This may be alleviated by introducing

Algorithm 1 Workflow for segmented regions’ update.

1: for a projected region Rep do

2: find the matching region Rec for Rep with (5)

3: if found then

4: compute Incp = Rec ∩Rec
5: compute Rac = Incp/Rec
6: compute Rap = Incp/Rep
7: if Rac < Rap then

8: replace Rac with Rap
9: else

10: //do nothing.

11: end if

12: else

13: if #regionst−1 > #regionst then

14: add Rap to segmentation result

15: else

16: //do nothing.

17: end if

18: end if

19: end for

frame interpolation into the computation, although this case

is rarely seen in real applications.

IV. RESULTS AND DISCUSSIONS

We test our framework on different datasets with ground

truths available, and compare with other state-of-the-art

works on vSLAM and image segmentation. We run each

sequence ten times as in [1] to compensate for the non-

deterministic nature of dynamic scenes. All tests were im-

plemented on a workstation with Intel i7 6700K CPU, with

32 GB RAM and Nvidia GTX1070 GPU.

A. Test Results on TUM Dataset

We first test the performance of the vSLAM module of

our framework on TUM dataset [29] in which 39 RGB-

D sequences are collected. Each sequence contains both

640 × 480 8-bit RGB images and 640 × 480 16-bit depth

images, with the ground truth of the camera trajectory

provided. Specifically, we select 6 sequences which contain

’walking’ and ’sitting’ from the ’fr3’ subset. The images

were taken in the ’desk’ scene, in which two persons are

either walking or sitting, and thus are suitable for testing

the efficiency of our algorithm under scenes with dynamic

objects.

We compared our algorithm with the original ORB-

SLAM2 [5] and DynaSLAM [1] in terms of Absolute

Trajectory Error (ATE) [29] which represents the tracking

precision by taking the ground truth as reference, and the

results are shown in Table I.

It can be seen from Table I that the improvement of the

performance of our algorithm on the ’walking’ datasets is ob-

vious. In these datasets, ORB-SLAM2 created a lot matches

of dynamic feature points due to the movement of the two

persons. This enlarges the pose error during optimization.

Similar to DynaSLAM, we segmented and discarded the



TABLE I

COMPARISONS OF ATE[M] OF OUR VSLAM MODULE AGAINST THE ORIGINAL ORB-SLAM2 [5] AND DYNASLAM [1].

Sequence ORB-SLAM2 DynaSLAM
Our vSLAM module

median min max

Walking halfsphere 0.351 0.025 0.019 0.010 0.028

Walking static 0.090 0.006 0.005 0.0005 0.008

Walking rpy 0.662 0.035 0.032 0.002 0.036

Walking xyz 0.459 0.015 0.014 0.001 0.029

Sitting halfsphere 0.020 0.017 0.021 0.002 0.031

Sitting xyz 0.009 0.015 0.009 0.001 0.022

moving objects which contribute to the dynamic points

and therefore reach higher precisions. The reason why our

algorithm outperforms DynaSLAM is because we refined the

segmentation results using 3D pose information and obtained

more accurate segmentation regions and boundaries. The

enhancement of segmentation precision makes the removal

of dynamic points more accurate and thus reduces the pose

error. For the ’sitting’ datasets, the improvement of our

algorithm is not quite obvious, as there are limited dynamic

objects in that scene, which do not affect the feature points

matching too much.

We also visualized the trajectory that our algorithm outputs

with those of ORB-SLAM2 and ground truth in Fig. 3 with

green, red and blue respectively. It can be seen that our result

exhibits much higher similarity to ground truth than ORB-

SLAM2 does.

(a) (b)

(c) (d)

Fig. 3. Comparison of output trajectories of our vSLAM mod-
ule(in green), ORB-SLAM2 [5](in red) and ground truth(in blue)
of the (a)’walking halfsphere’, (b)’walking static’, (c)’walking rpy’ and
(d)’walking xyz’ of the TUM dataset [29] respectively.

The average time for the coarse tracking is 6 ms, and the

fine tracking and mapping takes 22 ms.

B. Test Results on ScanNet Dataset

As the ground truth for segmentation is not available in

TUM dataset, we used the ScanNet dataset [30] to evaluate

the performance of our segmentation module. ScanNet con-

tains 1500 RGBD sequences taken in indoor environment,

and has totally 2.5 million images available. The resolutions

of RGB images and depth maps are 1296×968 and 640×480
respectively. With the provided extrinsic parameters, each

depth map can be mapped to the RGB image. Ground truths

of the segmentation is available for every RGB image. As the

image sets in ScanNet has 550 object classes, we manually

map each class to the MS COCO 80 classes according to its

name or general type.

For all the images, we compute the mean Average Preci-

sion (mAP) and mean Intersection over Union (mIoU) for

the results generated using our segmentation module and

the original FCIS [22] algorithm. The results are shown in

Table II.

TABLE II

COMPARISON OF FCIS [22] AND OUR SEGMENTATION MODULE ON

SCANNET DATASET.

FCIS Our segmentation module

mAP 0.6314 0.6504

mIoU 0.5620 0.5751

It can be seen that the segmentation precision of our

module has been improved comparing to that of FCIS [22].

This proves that the use of 3D pose information for the

refinement of segmented areas works well as expected.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Examples of the refinement of segmentation. (a)-(c): The results
of segmentation of last frame, initial segmentation of current frame with a
missing part, and refined segmentation of the current frame respectively. (e)-
(f): The results of segmentation of last frame, initial segmentation of current
frame with an oversized part, and refined segmentation of the current frame
respectively.

We selected two example groups of segmented images to



illustrate the refinement of segmentation of our algorithm

in Fig. 4. In Fig. 4(b), a table failed to be segmented

probably due to motion blur is added to the refined result

(see Fig. 4(c)) by projecting and adding the segmented part

of the last frame (see Fig. 4(a)) onto the current one. Fig. 4(f)

shows that the oversized segmented area (see the chair in

Fig. 4(e)) in the initial segmentation result was shrunk to its

correct range by projecting and combining the result in the

last frame (see Fig. 4(d)).

The initial segmentation for each frame takes 113 ms

on average, and the refinement takes about 50 ms. The

latter process can be further accelerated by utilizing parallel

computing or GPU techniques.

C. Test Results on AirSim Generated Dataset

In the above two tests, the results of our algorithm on per-

forming the two tasks have not been tested simultaneously.

Meanwhile, there is also a lack of a test on the relocalization

performance of the vSLAM module. Therefore, we created

a series of sequences using the Microsoft AirSim simula-

tor [31]. It allows the users to control the movement of a

car or UAV in a virtual outdoor environment, and collects

the RGBD images as well as other sensor data during the

process. The exact pose of the camera and also the exact

segmentation results can be generated automatically.

To generate the image sequence data, we select totally 40

different routes in a virtual city area, and run two passes

with different camera poses and moveable objects(vehicles,

pedestrians, etc.) which may either be moving or static along

each route, by controlling a virtual car. The resolutions for

the RGB and depth images obtained from the virtual camera

bound to the car are set to 640 × 480, with frame rate of

15 fps. The lengths of routes range from 160 m to 400 m.

There are totally 16 classes in the segmentation results, and

they are also mapped to the MS COCO 80 classes.

TABLE III

COMPARISON OF ORB-SLAM2 [5] AND OUR VSLAM MODULE ON

AIRSIM GENERATED SEQUENCES.

ORB-SLAM2 Our vSLAM module
median min max median min max

ATE[m] 0.82 0.43 1.03 0.39 0.28 0.61

To test the precision of relocalization in vSLAM, we use

the long-term map created in the first pass to compute the

fine tracking in the second pass, and compare the ATE[m]

of our vSLAM module and that of ORB-SLAM2. It can be

seen from the results shown in Table III that our vSLAM

module is much better than those of ORB-SLAM2. Note

that the ATE[m] values of the tracking results of the AirSim

generated dataset is much higher than those of the TUM

dataset. This is because the areas of the outdoor scenes in

AirSim are much larger than those in TUM which are only

limited regions indoors.

We show the matching points between two consecutive

frames in the generated dataset in Fig. 5. It can be seen that

the car contains some feature points which will be mapped

(a)

(b)

Fig. 5. Feature point matching for two adjacent frames with (a) and without
(b) segmenting dynamic objects.

to incorrect positions if the car disappears (see Fig. 5(a)).

By segmenting the car and excluding the feature points (see

Fig. 5(b)) on it during tracking and mapping, the tracking

precision when revisiting the same region will be enhanced.

We also evaluate the performance on segmentation of our

algorithm on all the 40 sequences of the second pass, and

list the results in Table IV. It can be seen that by making

use of the pose information to refine the initial segmentation

result, our algorithm enhances the accuracy of segmentation.

TABLE IV

COMPARISON OF FCIS [22] AND OUR SEGMENTATION MODULE ON

AIRSIM GENERATED DATASET.

FCIS Our segmentation module

mAP 0.6702 0.6893

mIoU 0.6491 0.6611

From the results tested on three different datasets, it

can be seen that our framework effectively improves the

precision of vSLAM and segmentation in both indoor and

outdoor environment. The performance promotion of the two

modules are more obvious for scenes with objects in motion

in the current scan or relocated in further scans.

V. CONCLUSIONS

We present a unified framework for combining the vision-

based localization and segmentation tasks for robotics. An

accurate pose can be refined from the coarse one by identify-

ing and handling the moving and possibly moveable objects

respectively with the help of the initial segmentation result,

and it further helps to remedy the errors and boundary

inaccuracy of the segmented regions to get a more precise

segmentation result. Experimental results on various datasets

show that our approach is able to make enhancements to both

the localization and segmentation for different environments,

especially those with dynamic objects and obvious changes.

The proposed framework has the potential to be applied to

many robotic applications which use vision sensors for syn-

thesized tasks, including autonomous driving, UAV, logistic

robots, etc.



REFERENCES

[1] B. Bescos, J. M. Fcil, J. Civera, and J. Neira, “Dynaslam: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics and

Automation Letters, vol. 3, no. 4, pp. 4076–4083, 2018.

[2] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of semantic
segmentation using deep neural networks,” International Journal of

Multimedia Information Retrieval, vol. 7, no. 2, pp. 87–93, 2018.

[3] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: a
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision

and Applications, vol. 9, no. 1, p. 16, 2017.

[4] G. Klein and D. Murray, “Parallel tracking and mapping for small
ar workspaces,” in 6th IEEE and ACM International Symposium on

Mixed and Augmented Reality (ISMAR), 2007, pp. 225–234.

[5] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions

on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[6] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual slam and
structure from motion in dynamic environments: A survey,” ACM

Computing Surveys (CSUR), vol. 51, no. 2, p. 37, 2018.

[7] J. Klappstein, T. Vaudrey, C. Rabe, A. Wedel, and R. Klette, “Moving
object segmentation using optical flow and depth information,” in
Pacific-Rim Symposium on Image and Video Technology, 2009, pp.
611–623.

[8] N. D. Reddy, P. Singhal, V. Chari, and K. M. Krishna, “Dynamic body
vslam with semantic constraints,” in Proceedings of the International

Conference on Intelligent Robot Systems (IROS), 2015, pp. 1897–1904.

[9] M. Kaneko, K. Iwami, T. Ogawa, T. Yamasaki, and K. Aizawa,
“Mask-slam: Robust feature-based monocular slam by masking using
semantic segmentation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, 2018, pp. 258–
266.

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Transactions on

Pattern Analysis & Machine Intelligence (TPAMI), vol. 40, no. 4, pp.
834–848, 2018.

[11] I. A. Bârsan, P. Liu, M. Pollefeys, and A. Geiger, “Robust dense
mapping for large-scale dynamic environments,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA),
2018.

[12] F. Zhong, S. Wang, Z. Ziqi, C. Chen, and Y. Wang, “Detect-slam:
Making object detection and slam mutually beneficial,” in 2018 IEEE

Winter Conference on Applications of Computer Vision (WACV), 2018,
pp. 1001–1010.

[13] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference

on computer vision and pattern recognition (CVPR), 2015, pp. 3431–
3440.

[14] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation,”
arXiv preprint arXiv:1511.00561, 2015.

[15] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” arXiv preprint

arXiv:1706.05587, 2017.

[16] T. Wu and W. U. Bajwa, “A low tensor-rank representation approach
for clustering of imaging data,” IEEE Signal Processing Letters,
vol. 25, no. 8, pp. 1196–1200, 2018.

[17] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” arXiv preprint arXiv:1802.02611, 2018.

[18] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 2881–2890.

[19] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous
detection and segmentation,” in European Conference on Computer

Vision (ECCV), 2014, pp. 297–312.

[20] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR), 2014, pp. 580–587.

[21] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via
multi-task network cascades,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 3150–
3158.

[22] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei, “Fully convolutional instance-
aware semantic segmentation,” arXiv preprint arXiv:1611.07709,
2016.

[23] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” IEEE

Transactions on Pattern Analysis & Machine Intelligence (TPAMI),
2018.

[24] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards real-time
object detection with region proposal networks,” IEEE Transactions

on Pattern Analysis & Machine Intelligence (TPAMI), no. 6, pp. 1137–
1149, 2017.

[25] Z. Qiu, T. Yao, and T. Mei, “Learning deep spatio-temporal de-
pendence for semantic video segmentation,” IEEE Transactions on

Multimedia, vol. 20, no. 4, pp. 939–949, 2018.
[26] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning

spatiotemporal features with 3d convolutional networks,” in Proceed-

ings of the IEEE international conference on computer vision (ICCV),
2015, pp. 4489–4497.

[27] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach
for precipitation nowcasting,” in Advances in neural information

processing systems, 2015, pp. 802–810.
[28] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,

P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision (ECCV), 2014,
pp. 740–755.

[29] J. Sturm, E. N., E. F., B. W., and C. D., “A benchmark for the
evaluation of rgb-d slam eystems,” in Proceedings of the International

Conference on Intelligent Robot Systems (IROS), 2012, pp. 573–580.
[30] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and

M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proceedings of the IEEE conference on computer vision

and pattern recognition (CVPR), 2017, pp. 2432–2443.
[31] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity

visual and physical simulation for autonomous vehicles,” in Field and

Service Robotics, 2017.


	I INTRODUCTION
	II RELATED WORK
	II-A vSLAM for Dynamic Scenes
	II-B Image and Video Segmentation

	III Framework
	III-A Overall Workflow
	III-B Initial Segmentation
	III-C vSLAM based on Segmentation Result
	III-D Refinement of Segmentation Result

	IV RESULTS and DISCUSSIONS
	IV-A Test Results on TUM Dataset
	IV-B Test Results on ScanNet Dataset
	IV-C Test Results on AirSim Generated Dataset

	V CONCLUSIONS
	References

