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Abstract— While the keypoint-based maps created by sparse
monocular simultaneous localisation and mapping (SLAM) sys-
tems are useful for camera tracking, dense 3D reconstructions
may be desired for many robotic tasks. Solutions involving
depth cameras are limited in range and to indoor spaces, and
dense reconstruction systems based on minimising the photo-
metric error between frames are typically poorly constrained
and suffer from scale ambiguity. To address these issues, we
propose a 3D reconstruction system that leverages the output
of a convolutional neural network (CNN) to produce fully dense
depth maps for keyframes that include metric scale.

Our system, DeepFusion, is capable of producing real-time
dense reconstructions on a GPU. It fuses the output of a semi-
dense multiview stereo algorithm with the depth and gradient
predictions of a CNN in a probabilistic fashion, using learned
uncertainties produced by the network. While the network only
needs to be run once per keyframe, we are able to optimise for
the depth map with each new frame so as to constantly make
use of new geometric constraints. Based on its performance
on synthetic and real-world datasets, we demonstrate that
DeepFusion is capable of performing at least as well as other
comparable systems.

I. INTRODUCTION

One of the goals of structure-from-motion (SfM) and
visual simultaneous localisation and mapping (SLAM) sys-
tems is the incremental creation of 3D scene reconstruc-
tions from moving cameras. Sparse SLAM systems such
as MonoSLAM [1], PTAM [2] and ORB-SLAM [3] create
sparse 3D maps of keypoints. While these features are
useful for camera tracking, dense reconstructions may be
preferred for safe robotic navigation, augmented reality,
and manipulation tasks. Dense reconstruction systems, such
as DTAM [4] and REMODE [5], typically create dense
scene representations by optimising for the depth values
that minimise the photometric error over several frames.
Unfortunately, depth estimation by minimising the photo-
metric error is not well-constrained due the the presence of
occlusions, and homogeneous or repeated texture. To combat
this, dense systems often use a regulariser based on planar
([6]–[10]) or smoothness assumptions ([4], [5]). LSD-SLAM
[11] tackles this issue by reconstructing only those points
that have a strong image gradient, but can therefore only
produce semi-dense reconstructions. Monocular reconstruc-
tion systems also suffer from an inherent scale ambiguity, as
it is not possible to determine a camera’s translation from
image correspondences alone. It is possible to address this
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Fig. 1: Fusing the depth predictions of a semi-dense multi-
view stereo system with the depth and gradient predictions of
a CNN allows for the creation of fully dense depth maps at
scale. The above projected keyframe depth map was created
by DeepFusion from only pose estimates and RGB images.

scale ambiguity by fusing vision-based measurements with
readings from an inertial measurement unit (IMU); however,
in situations with low accelerations (for example, when the
camera is still), scale becomes practically unobservable when
using low grade IMUs. One option to resolve these issues in
monocular dense reconstruction is through the use of a depth
camera (the approach taken by [12] and [13]), but depth
cameras have limited range, consume more power, and do
not typically work outdoors or in strong sunlight.

Recently, with the rapid growth of deep learning in
computer vision, several data-driven approaches to dense
reconstruction have been proposed. Presumably, the networks
used in these systems are able to make predictions about the
structure of the scene by leveraging some learned knowledge
about observed objects and their spatial relationships. While
many of these approaches advocate a completely end-to-end
framework (for example, [14]–[19]), there has been some
work demonstrating the benefit of combining both geometric
constraints and learned priors. As shown in [20], geometric-
based systems perform best on areas of high image gradients
(usually on the edges of objects) but struggle with interior
areas of low texture, whereas learning-based systems typi-
cally do reasonably well on interior points but blur the edges
of objects. Despite the evidence to their complementary
nature, however, the best approach to combining learning
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Fig. 2: The DeepFusion framework.

and geometry remains an open problem. For example, in
[21], the authors create a dense monocular SLAM system
based on DTAM, but use surface normal predictions from
a CNN as a strong prior on the depth map rather than use
a smoothness regulariser. Other approaches use geometric
reconstructions as an input to a network and then either “fill
in” any missing depth data [22] or refine them [23].

One problem with using a network as the final stage
in a reconstruction pipeline is that an expensive network
pass must be computed every time the underlying geometric
information is updated, which may be unacceptably slow for
real-time incremental systems. For this reason, a number of
approaches that take network depth predictions and refine
them with geometric constraints have been proposed. In [20],
the authors compute a network depth prediction for each
keyframe and update a semi-dense multiview stereo depth
map with each new frame. The two depth estimates are then
interpolated based on a set of tunable weights related to
the image structure. Another approach [24] predicts surface
normals and occlusion boundaries for each keyframe image
and then attempts to fill in missing values in the output
of a depth camera. Unfortunately, the solve time is too
slow to be used on incremental SLAM systems. In [25], a
CRF is used to refine the regression results. In [26], which
greatly inspired our work, the authors were able to create
accurate dense reconstructions using a fully-connected CRF
with network predicted uncertainties from a sparse set of
3D points generated by a monocular SLAM system. Since
they use the output of a monocular system to constrain the
dense reconstructions, however, the resulting depth maps
are ambiguous in scale. In our work, we use the idea of
maintaining global consistency by linking neighbouring pix-
els in our reconstruction through depth gradient predictions
and extend it to include the estimation of absolute scale.
Perhaps the work that is most comparable to ours is CNN-
SLAM [27], which uses a network to predict an at-scale
depth map for each keyframe and then refines it through
small baseline stereo constraints in real-time. The refinement
in CNN-SLAM, however, is done on a per-pixel basis and
therefore does not preserve global consistency.

In this paper, we propose DeepFusion, a 3D reconstruction
system that is capable of producing dense depth maps at scale
in real-time from RGB images and scale-ambiguous poses
provided by a monocular SLAM system. We use network
predicted depth gradients as a constraint on neighbouring
pixels to ensure global consistency in our reconstructions,

and learned uncertainties to fuse the different modalities in
a probabilistic fashion. Please see Figure 1 for an example
keyframe reconstruction.

II. METHOD

In this section, we describe our system for producing dense
reconstructions at scale in real-time. Please see Figure 2 for
an overview of the DeepFusion framework.

DeepFusion represents the observed geometry with a se-
ries of keyframe depth maps. With each new RGB image,
the system obtains the pose from a monocular SLAM system
(ORB-SLAM2 [3] in our implementation) and then updates
the semi-dense depth estimates for the active keyframe using
the method described in [28]. If the camera has translated
more than λtrans or had fewer than λinliers inliers in the
semi-dense estimation, a new keyframe is created.

To maintain a high frame rate, our network outputs
are only generated once per keyframe. Using a CNN, we
predict the log-depth, log-depth gradients and associated
uncertainties from the new keyframe image. Like [26] and
[29], we predict log-depths instead of depths or inverse
depths because it is numerically better for network prediction
(negative values are meaningful) and it has the convenient
property that the difference between two log-depths (the
gradient of the log-depth image) is the ratio of two depths,
which is scale-invariant. We also choose to predict log-depth
gradients in both the x- and y-directions on the image plane
rather than surface normals in order to maintain the linearity
of the optimisation problem, as this avoids the need for
performing dot product and normalisation operations. Single-
view depth prediction is a highly under-constrained problem,
and in practice it seems easier for the network to make
accurate predictions about fine-grained local geometry rather
than absolute per-pixel depth. For this reason, we predict
the absolute log-depth values and the log-depth gradients
separately as we want separate uncertainties to reflect the
difference in the network’s ability at these two different tasks.

If a new keyframe is not created, then the current semi-
dense depth map and network outputs are fused to update
the current depth map.

A. Network Architecture

For our network, we use a U-Net [30] architecture with
the same dimensions as the one used in [31], except that
we add three more identical decoders to predict log-depth
uncertainties, log-depth gradients, and log-depth gradient
uncertainties in addition to just the log-depths. All inputs



Fig. 3: The network consists of a U-Net-style encoder and de-
coder with five skip connections. During training, outputs are
extracted at four different resolutions with losses calculated
for each of them. While a single encoder is shared across all
tasks, a separate decoder is used for each of the network
predictions (depth, depth uncertainty, depth gradients and
depth gradient uncertainty).

and outputs have a resolution of 256×192. A diagram of
our network architecture is provided in Figure 3.

In order to fuse the outputs of the network with the
estimates coming from the semi-dense multiview stereo
system, we require an uncertainty associated with each pixel
in each of the log-depth and gradient images. To obtain this,
we use the method described in [32] to have the network
learn to predict both a mean and a variance with a maximum
likelihood cost function:

LNN(θ) =
∑
i

(yi − fθ,i(x))2

σθ,i(x)2
+ log(σθ,i(x)2), (1)

where θ is the set of network weights, x is the set of input
pixels, yi is the ground truth for pixel i, and fθ,i(x) and
σθ,i(x)2 are the network’s predictions for the mean and
variance, respectively. The total loss is the sum of this loss
function for each of the output images.

Like [31], we train our network on the SceneNet RGB-D
dataset [33], a dataset of 5 million rendered indoor scenes.
We train our network to predict log-depths that have been
normalised by the focal length of the SceneNet camera. In
the same manner as CNN-SLAM [27], we scale the log-
depth predictions of the network by the focal length of the
camera used at test time so we can recover absolute scale for
images captured by different cameras. Since all predictions
are done in logspace, the gradients (which represent depth
ratios) and uncertainties do not need to be scaled.

B. Semi-Dense Estimation

For our semi-dense multiview stereo component, we im-
plement the depth estimation method from [28]. For each
pixel, xi, in the keyframe where there is sufficient texture, a
search is made along the epipolar line for the depth value,
dsemi,i that minimises the sum of squared differences for five
equally spaced points. If there is a current depth estimate

for that pixel, the search is conducted over the interval
dsemi,i±2σsemi,i. Otherwise, the search is conducted over the
entire epipolar line. Given a pixel in the keyframe, xi, and
the estimated poses of the keyframe (TWC0

) and reference
frame (TWC1

), the photometric error is given by:

ei = I1

(
π
(

KT−1
WC1

TWC0
ρ(xi,dsemi,i)

))
− I0(xi), (2)

where I∗(·) is a scalar function that returns the intensity value
of a given pixel, π(·) is the projection and dehomogenisation
function, ρ(xi,dsemi,i) is the back-projection function that
returns a homogeneous 3D point for pixel xi with a depth
dsemi,i, and K is the camera intrinsics matrix.

We approximate the Jacobian of the error function, J, with
finite differences:

J ≈ 1

∆dsemi,i

∆e, (3)

where e is the 5x1 vector containing the photometric error
associated with each of the five points. When searching for
the minimum value along the epipolar line, even sized steps
of 1 pixel length are taken. Once the minimum is found,
we interpolate between two steps to find the optimal depth
at sub-pixel resolution. The difference in the photometric
error at the two endpoints of the interpolation is ∆e, and the
difference between the depths at those points is ∆dsemi,i.

We then approximate the uncertainty of each semi-dense
measurement by:

σ2
i = (JT J)−1. (4)

The semi-dense depth estimates and uncertainties are then
converted into logspace to match the network outputs.

C. Optimisation

To update the current depth prediction, we minimise the
following cost function consisting of three terms with each
new frame:

c(d, s) = csemi(d, s) + cnet(d) + cgrad(d), (5)

where d is the set of log-depth values to be estimated and s
is the scale correction factor.

The semi-dense cost term imposes a unary constraint over
the set of pixels where valid semi-dense log-depth values
have been estimated:

csemi(d, s) = rTsemi(d, s)R−1
semirsemi(d, s), (6a)

rsemi,i(di, s) = ln di − ln s− ln dsemi,i, (6b)

where Rsemi,i = σ2
i , the uncertainty estimated by the approx-

imation given in (4) and ln dsemi,i is the scale-ambiguous
log-depth predicted by the semi-dense system for pixel
i. Since the semi-dense log-depth estimates are calculated
based on the poses provided by a monocular SLAM system,
they have an arbitrary scale. Because the depth map we wish
to estimate, d, is to scale, we also need to solve for a scale
correction factor, s. With the fully dense per-pixel cost term
cnet, this scale correction factor becomes observable.



The network depth cost term imposes an additional unary
constraint over all pixels of the fused depth map:

cnet(d) = rTnet(d)R−1
netrnet(d), (7a)

rnet,i(di) = ln di − ln dnet,i, (7b)

where Rnet,i = σ2
θ,depth,i(x), the uncertainty predicted by

the network (see (1)) and ln dnet,i is the log-depth prediction
for pixel i made by the network. While the network may have
a high uncertainty about the absolute depth at any pixel (as
the uncertainty is conditioned on the image, it will depend
on how close the image is to the training data), this cost term
provides a weak prior on the absolute scale of the scene and
allows us to estimate the scale correction factor s.

In order to maintain global consistency while fusing to-
gether the semi-dense and network depth values, we include
an additional cost term that imposes pairwise constraints
between a given pixel and each of its four neighbours:

cgrad(d) = rTgrad,x(d)R−1
grad,xrgrad,x(d) (8a)

+ rTgrad,y(d)R−1
grad,yrgrad,y(d)

rgrad,x,i(di+1,di) = ln di+1 − ln di − gx,i (8b)
rgrad,y,i(di+W,di) = ln di+W − ln di − gy,i (8c)

where W is the width of the image, gx,i and gy,i are the
log-depth gradients in the x- and y-directions predicted by
the network, and Rgrad,x,i = σ2

θ,grad,x,i(x) and Rgrad,y,i =

σ2
θ,grad,y,i(x), the associated predicted uncertainties (see (1)).
The semi-dense depth estimates can be very noisy and the

network predictions can have extreme outliers which have a
significant impact on the final reconstruction. For this reason,
we use the Huber loss function on each of the cost terms.

We solve the system using the Opt [34] optimisation
framework. With Opt, we define an energy function for
each term in our cost function which are then automatically
compiled into GPU optimisation kernels. We compute 10
Gauss-Newton iterations, alternating between solving for the
depth and scale. With this setup, we are capable of solving
the system for each new frame in real-time.

III. EXPERIMENTAL RESULTS

A. Qualitative Results

Figure 4 shows some qualitative results from selected
keyframes on the ICL-NUIM [35] and TUM RGB-D [36]
datasets. Comparing the network depth predictions with
the final fused depth maps shows that including geometric
constraints from the semi-dense depth estimation and pair-
wise pixel constraints from the gradient predictions produces
depth maps that are more globally consistent and have fewer
blurring artifacts.

Figure 5 shows the network output for sample images
in the SceneNet RGB-D dataset [33]. The uncertainties
associated with the gradient images are clearly largest on
areas of high image gradient suggesting that the network
has learned that these regions tend to correspond with depth
discontinuities or other rapid changes in the depth gradient.

B. Reconstruction Evaluation

We evaluate our reconstruction pipeline by comparing
it to the results obtained by CNN-SLAM [27], a state-of-
the-art system that fuses together network predictions and
geometric constraints to produce fully dense depth maps.
Following the evaluation procedure of CNN-SLAM, we also
compare our results to the depth maps produced by a sparse
feature-based monocular system (ORB-SLAM2 [3]), a semi-
dense geometric system (LSD-SLAM [11]), a fully dense
reconstruction method (REMODE [5]), and a pure deep
learning approach (Laina, et al. [16]).

As there was no open-source version of CNN-SLAM
available at the time of writing, we evaluate DeepFusion on
the same sequences used in [27] and compare with their
reported results. The sequences used for the comparison
come from two different datasets: the synthetic ICL-NUIM
RGB-D dataset [35] and the real world TUM RGB-D SLAM
dataset [36]. The ICL-NUIM dataset provides rendered depth
maps as a ground truth comparison and the TUM RGB-D
dataset approximates this with Kinect depth camera images.

As proposed by [27], we measure the percentage of esti-
mated depth values that are within 10% of the corresponding
ground truth depth values in order to evaluate both the
reconstruction accuracy and density.

The results are presented in Table I. While DeepFusion
and CNN-SLAM have approximately the same performance
overall, this performance is not evenly distributed over the
two datasets. DeepFusion performs the best on four out of the
six ICL-NUIM sequences, whereas CNN-SLAM performs
the best on two out of the three TUM RGB-D sequences.
The reason for this most likely has to do with the training
data used by the two systems. Our network is trained on
the synthetic SceneNet dataset [33], whereas CNN-SLAM
uses the network described in [16] which is trained on the
Kinect-captured NYUv2 [37]. In addition, two of the TUM
RGB-D sequences used in the comparison consist of the
camera moving over flat planes covered in posters, with
seemingly little semantic information for the networks to
leverage. These results speak to the importance of keeping
the network’s training data as close as possible to the domain
in which the system will be deployed. While both DeepFu-
sion and CNN-SLAM clearly outperform the geometry-only
systems, the learning-based method proposed by Laina, et al.
[16] also does well, performing the best on two of the nine
sequences. This demonstrates the power of learning-based
approaches, but ultimately the systems that can make use of
both modalities perform the best overall.

C. Scale Optimisation Evaluation

While we include the network predicted log-depth values
in our optimisation problem to solve for the absolute scale
of the reconstruction, there are alternative methods. For
instance, in [21], the authors first predict a scale-ambiguous
reconstruction and then scale their reconstruction by finding
a least-squares fit with a network predicted depth map. The
advantage of our method is that we are able to use the relative



Fig. 4: Qualitative results for selected keyframes on the ICL-NUIM Office2 (top), ICL-NUIM LivingRoom1 (middle) and
TUM RGB-D fr2 desk (bottom) sequences. From left to right: input image, ground truth depth, semi-dense depth estimate,
network depth prediction, network depth gradient prediction in the x-direction, network depth gradient prediction in the
y-direction, and the optimised depth map.

Fig. 5: Example network predictions on sample images from the SceneNet RGB-D dataset. From left to right: input image,
log-depth prediction, log-depth uncertainty prediction, log-depth gradient prediction in the x-direction, log-depth gradient in
the x-direction uncertainty prediction, log-depth gradient prediction in the y-direction, log-depth gradient in the y-direction
uncertainty prediction.

TABLE I: Comparison of reconstruction accuracy in terms of percentage of correct depth values (within 10%
of ground truth) on ICL-NUIM and TUM RGB-D datasets (TUM/seq1: fr3/long office household, TUM/seq2:
fr3 nostructure texture near withloop, TUM/seq3: fr3/structure texture far). LSD-SLAM (BS) is LSD-SLAM bootstrapped
with a ground truth depth map, and REMODE uses LSD-SLAM (BS) poses and keyframes.

Sequence DeepFusion CNN-SLAM [27] LSD-SLAM (BS) [11] LSD-SLAM [11] ORB-SLAM [3] Laina [16] REMODE [5]

ICL/office0 21.090 19.410 0.603 0.335 0.018 17.194 4.479
ICL/office1 37.420 29.150 4.759 0.038 0.023 20.838 3.132
ICL/office2 30.180 37.226 1.435 0.078 0.040 30.639 16.708
ICL/living0 24.223 12.840 1.443 0.360 0.027 15.008 4.479
ICL/living1 14.001 13.038 3.030 0.057 0.021 11.449 2.427
ICL/living2 25.235 26.560 1.807 0.167 0.014 33.010 8.681
TUM/seq1 8.069 12.477 3.797 0.086 0.031 12.982 9.548
TUM/seq2 14.774 24.077 3.966 0.882 0.059 15.412 12.651
TUM/seq3 27.200 27.396 6.449 0.035 0.027 9.450 6.739

Avg. 22.466 22.464 3.032 0.226 0.029 18.452 7.649



uncertainties between the semi-dense estimates and network
predictions when performing our fusion.

To demonstrate that our method produces better results,
we implemented a version of DeepFusion that optimises for
a scale-ambiguous depth map using only the semi-dense and
gradient terms of the cost function and then finds a least-
squares fit with the network predicted depth and measured
its performance on sequences used for our reconstruction
evaluation. The results are presented in Table II. In seven of
the nine sequences, our method outperforms the least-squares
post-processing method.

TABLE II: Comparison of scale estimation methods in
DeepFusion in terms of percentage of correct depth values
(within 10% of ground truth) on ICL-NUIM and TUM
RGB-D datasets (TUM/seq1: fr3/long office household,
TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3/structure texture far). “Least Squares
for Scale Estimation” shows the results when using least
squares to align a scale-ambiguous estimation with the
network depth prediction to estimate a scaled depth map for
each keyframe.

Sequence DeepFusion Least Squares for
Scale Estimation

ICL/office0 21.090 18.135
ICL/office1 37.420 26.415
ICL/office2 30.180 31.359
ICL/living0 24.223 23.861
ICL/living1 14.001 10.372
ICL/living2 25.235 22.082
TUM/seq1 8.069 9.690
TUM/seq2 14.774 14.490
TUM/seq3 27.200 24.047

TABLE III: Analysis on the importance of pairwise
constraints on reconstruction accuracy in terms of
percentage of correct depth values (within 10% of
ground truth) on ICL-NUIM and TUM RGB-D datasets
(TUM/seq1: fr3/long office household, TUM/seq2:
fr3 nostructure texture near withloop, TUM/seq3:
fr3/structure texture far). “No Pairwise Constraints”
shows the results when fusing together only the semi-dense
and network log-depth values.

Sequence DeepFusion No Pairwise
Constraints

ICL/office0 21.090 16.641
ICL/office1 37.420 24.633
ICL/office2 30.180 30.899
ICL/living0 24.223 21.643
ICL/living1 14.001 12.774
ICL/living2 25.235 21.772
TUM/seq1 8.069 9.469
TUM/seq2 14.774 14.187
TUM/seq3 27.200 23.584

D. Global Consistency Evaluation

One of the primary differences between DeepFusion and
CNN-SLAM [27] is that DeepFusion includes a pairwise
constraint on neighbouring pixels in order to enforce global
consistency on the optimised depth maps.

To show that including these constraints does in fact
help produce more accurate reconstructions, we implement a
version of DeepFusion that optimises for a depth map with
absolute scale using only the network predicted log-depths,
the semi-dense log-depth estimates, and their associated
uncertainties. We evaluate the performance of this version
on the sequences used in the reconstruction evaluation. The
results are presented in Table III. In seven of the nine
sequences, our method outperforms the method that does not
enforce global consistency.

E. Timing Evaluation

To demonstrate the real-time capability of our system, we
show the approximate runtimes of each component in Table
IV. These runtimes were based on our implementation using
an Intel Core i7-5820K CPU and a GeForce GTX 980 GPU.

TABLE IV: Approximate timing information for key com-
ponents in the DeepFusion system.

Semi-Dense Optimisation Network Prediction

Mean 16ms 33ms 45ms
Min 1ms 26ms 44ms
Max 43ms 47ms 47ms

IV. CONCLUSION

We have presented DeepFusion, a system capable of
producing dense 3D reconstructions at scale in real-time.
By formulating a cost function that includes per-pixel losses
based on network depth predictions and sparse semi-dense
depth estimates with pairwise constraints from network depth
gradient predictions we are able to estimate both the shape
of the observed scene and its absolute scale. By predicting
both the per-pixel mean and variance, we are able to obtain
uncertainties for all network outputs and fuse them together
with the geometric constraints in a probabilistic fashion.
Since DeepFusion only requires the network to be run once
per keyframe, we are able to maintain real-time capability.

Through a series of experiments on synthetic and real
datasets, we demonstrate that DeepFusion performs at least
as well as other comparable systems. Furthermore, through a
series of ablation studies, we demonstrate the value of esti-
mating the scale of the depth maps by including the network
depth output as a per-pixel constraint in the optimisation and
using pairwise constraints to enforce global consistency.

In future work, we will attempt to improve DeepFusion
by more thoroughly investigating the impact that certain
design choices have on the performance of the algorithm.
For example, as was noted in our comparison with CNN-
SLAM, the choice of training data and its similarity to the



test environment likely has a significant impact on the quality
of the final reconstruction. Which training dataset to use
and how to ensure that the predicted uncertainty reflects
differences between training and testing environments are
open questions.

Related to the network predictions and their associated un-
certainties is the question of how to handle extreme outliers
that may be produced by the network. In DeepFusion, this
was handled by using a robust cost function (in particular, a
Huber loss function) in the optimisation. Whether other cost
functions that penalise extreme outliers less severely (such
as Tukey) would result in better performance remains to be
seen.

Finally, as with all other keyframe-based SLAM systems,
there are many trade-offs that need to be considered when
choosing keyframe selection criteria. How these trade-offs
are impacted when a geometry-based depth estimation is cou-
pled with a learning-based prediction should be investigated.
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