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Spatio-temporal representation for long-term anticipation of human
presence in service robotics

Tomas Vintr!, Zhi Yan2, Tom Duckett® and Tom4s Krajnﬂ<1

Abstract— We propose an efficient spatio-temporal model
for mobile autonomous robots operating in human populated
environments. Our method aims to model periodic temporal
patterns of people presence, which are based on peoples’
routines and habits. The core idea is to project the time onto
a set of wrapped dimensions that represent the periodicities
of people presence. Extending a 2D spatial model with this
multidimensional representation of time results in a memory
efficient spatio-temporal model. This model is capable of long-
term predictions of human presence, allowing mobile robots
to schedule their services better and to plan their paths. The
experimental evaluation, performed over datasets gathered by a
robot over a period of several weeks, indicates that the proposed
method achieves more accurate predictions than the previous
state of the art used in robotics.

I. INTRODUCTION

The technology has reached the state where autonomous
service robots are deployed for extended time periods in
human populated environments, where they assist people in
their daily chores [1] or help those who need special care [2].

Hawes et al. [1] describe the development of robots
deployed for long periods in several different scenarios. In
one scenario, a mobile info-terminal was required to offer
information to clients of a care home. For example, the
robot displayed a lunch menu near a cafeteria or provided
directions to visitors around the care home lobby. In both
cases, the robot had to reach a given spot before the people
arrived there to utilise the information provided. This was
done not only to provide the information on time but to
avoid problems when navigating between people and causing
a nuisance by crossing their path. [1], [3] demonstrated
that a robot that is able to anticipate human behaviour
and schedule its services accordingly accomplishes richer
interactions with humans and is considered to be more
helpful by the humans it shares its space with. However, the
study [3] pre-determined the locations at which the robot
provided its services and allowed it only to select the time
when it provided those services. As concluded by [3], it
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Fig. 1. Example of the warped hypertime projection of 1D data (number
of humans in a given area). The numbers Xx; observed at f; are projected
into a 3d vector space as (Xi,cos(2nt;/T),sin(27t;/T)), where they form
clusters because they exhibit a periodic behaviour with a period 7. Here,
the warped hypertime dimensions define a base of a cylinder, while the
numbers X; define a cylinder side. Obtained from [11].

would be useful to allow the robot to choose the locations
as well according to the typical areas of people presence.
This requires a mobile robot to learn a spatio-temporal model
that can predict the likelihood of people presence at different
locations and times.

Since the planning, localisation and navigation compo-
nents of most indoor mobile robots represent the robot
operational space using an occupancy grid [4], most previous
related work aimed to incorporate information about human-
induced environment dynamics into occupancy grid models.
For example, Kucner et al. [5] assumed that changes in
occupancy are caused by moving objects and attempted to
encode typical motion patterns into the grid. In particular, [5]
proposes to associate each cell with a probabilistic model,
which can predict the occupancy of the neighbouring cells
depending on the direction an object passed through the
given cell. A similar approach is proposed in [6], where
the direction of traversal over each cell is obtained using
an input-output hidden Markov model connected to the
neighbouring cells. Another approach [7], [8], [9] associates
each cell with a set of temporal models, which predict
the direction of people movement at a particular time. The
temporal models in [7], [8] are based on an approach
presented in [10], which efficiently represents the periodic
behaviour of changes caused by humans by employing
spectral analysis. In [10], the model is applied to occupancy
grids and can predict cell occupancies for a particular time.
During the prediction phase, the system simply models the
cell occupancies by a set of harmonic functions that capture
long-term patterns of the changes observed.

The primary problem of grid-based models is not only



their memory inefficiency (because of the necessity to model
a high number of discrete states separately), but also the
necessity to obtain measurements at all of the modeled
cells. In [12], the authors argue that continuous models
are of better use for robot navigation than discrete ones
and can be used to make short-term predictions of object
movement [13]. They employ data provided by a range-finder
sensor, which identifies not only the occurrence of humans
and other objects but allows to determine which space is
empty. Using this method the two categories of observa-
tions (empty and occupied) allow to employ a classification
method with a sigmoid-based output. Later work [14], [15]
speeds up model building by using an elegant combination
of kernels and optimisation methods. The speed-up achieved
by a combination of these methods allows to recalculate
the model on a frequent basis, but the model itself does
not represent the temporal domain. In [16], [17], [18], [19],
[20], the authors incorporate the environment dynamics into
the continuous model. [18] suggests using this continuous
probabilistic directional map to plan robot paths through
space in accordance with the directions imposed by the
movement of human crowds. Unlike the aforementioned
works, which are aimed primarily at modeling the spatial
distribution of objects or predicting their motion to support
robot path planning, we aim to build a model capable of
long-term prediction of people presence, which should be
able to support the scheduling of robot services.

Long-term predictions require analysis of time series,
which are typically gathered over long time periods. In the
time domain, the evolution of a given variable is usually
modelled as a combination of trend, seasonal and cyclic
patterns [21], [22]. While the trend represents the long-term
decrease or increase, cyclic patterns are understood as rises
or falls with no periodicity, and seasonality models the peri-
odic changes. While some of the periodicities are obvious, as
they are governed by daily and yearly rhythms, identification
of the periodicities from the observed data allows to discover
unexpected periodicities, which might significantly improve
the predictive power of temporal models [23]. The seasonal
patterns are often identified from the data by means of
spectral analysis and modeled by Gaussian processes with
periodic kernels [24] or Von Mises distributions [25]. In our
case, we assume that from a long-term perspective the effect
of any trend in people presence is not significant compared
to factors caused by human routines. As the cyclic changes
are not predictable in general, our method does not attempt
to represent them explicitly.

Previous work on time series analysis for long-term robot
navigation, which neglects trend and cyclic patterns with
unknown periodicity, is presented in Krajnik et al. [10]. The
authors propose to model the probability of environment
states in the spectral domain, which naturally represents
the “seasonality” of changes observed by the robot. In a
series of papers, the authors demonstrated that application
of the spectral-temporal models improves the efficiency of
long-term mobile robot localisation [10], planning [26],
exploration [27], etc. However, the spectral models of [10]

are designed to model the evolution of binary states over
time, and thus are applicable only to individual components
of discretised spatial models, e.g., occupancy grid cells [27],
landmark visibility [10], traversability of certain areas [26]
etc. In the aforementioned works, the spatial interdependence
of the environment components is neglected, and the mod-
els considered only the temporal but not spatial-temporal
relations of the represented environments. The necessity
to model a high number of discrete states also results in
memory inefficiency, which causes problems especially when
representing large areas.

We propose a method that aims to capture periodicities in
human presence in the robot’s operational area and use them
to anticipate human presence in the future. The method can
identify the dependence of human presence on time by mod-
eling the spatio-temporal distribution of their occurrences.
The problem of finding such distributions is that while the
modeled space is constrained, and thus one can gather an
arbitrary number of measurements from the same spatial
location, time itself unfolds indefinitely and one cannot get
an arbitrary number of measurements from the same spatio-
temporal area. The lack of the data itself makes estimation
of the density of humans at a given time and location rather
difficult. To deal with this problem, we search the measured
data for periodic patterns, and if we find some, we project the
timeline into a multi-dimensional space, curved in a way that
reflects the period found. Thus, data from the same phase of a
given period (e.g., the number of people occurrences from the
same hour of day) are projected approximately into the same
area of the curved space, see Fig. 1. After some time, the
data points projected onto the same area of the curved space
allow for an accurate estimation of the density of people at
a given time and location. The principal advantage of the
method presented is its continuous nature, which ensures its
memory efficiency and scalability both in space and time.

Since there might be more periodicities present in the data,
our approach can extend the continuous spatial represen-
tations by adding several dimensions representing different
periodicities of time. In particular, we transform every time
periodicity into two new dimensions that form a circle in
its 2d subspace and use them to extend the representations
that model the people occurrences in 2d space. We can un-
derstand this projection of time as follows: human behavior
is much more similar during two different Sundays than on
Sunday and Monday, although two Sundays are one week
apart, while Sunday and Monday are next to each other.
Similarly, people occurrences during two different mornings
are expected to be more similar than the occurrences in the
morning and evening. The circles also reflect time continuity
— human behaviour five minutes before midnight is probably
similar to behavior five minutes after midnight. From this
point of view, modeling time as linear has meaning only if we
would aim to study a long-term trend. Thus, the model of the
proposed method is built over the space extended by warped
hypertime, which efficiently represents both the structure of
the space (given by the environment) and time (given by the
human habits). A proof of this concept is given in [28].



II. METHOD DESCRIPTION

The aim of the method is to create a spatio-temporal
model capable of predicting future human presence across
the operational environment of the robot. As the model is
created from data gathered by a real mobile robot over
long time periods, it has to deal with the uncertainty of the
measurements, occlusions, missing data, etc. The input data
of the model are the positions of people provided by a state-
of-the-art people detection method based on vision or active
sensors, such as [29].

Let us assume that every time a robot measures the
position of a detected person, it obtains a tuple (x;, t;),
where X; describes the position and ¢; corresponds to the time
when the measurement was taken. Thus, our method aims
to find a function p(x,#), which characterizes the frequency
of occurrence of the vector x over time. Contrary to the
usual approach to the analysis of time series that iteratively
decomposes particular patterns, our approach is to create a
specific projection of tuples (x;, #;) into a new vector space,
and then create a model of the frequency of occurrence in this
space. (As said earlier, we assume that there are no long-term
trends and neglect cyclic patterns due to the nature of the
data.) To project time to the multidimensional vector space,
warped hypertime, we need to identify dominant periodicities
of the human presence in particular areas using tools related
to spectral analysis. Moreover, to locate areas of frequent
occurrence of data we use a clustering method. Thus, the
presented method combines spectral analysis and clustering.
The method has to determine the number and length of the
periodicites from the non-uniformly sampled data. Doing so
in one step would be susceptible to spectral aliasing [30]
with the consequence of finding wrong periodicities. Thus,
we choose an iterative approach that comprises of three steps:

1) clustering over spatio-temporal vector space (spatio-
temporal clustering),

2) identification of periodicities and

3) spatio-temporal vector space extension.

During the first step, it builds a spatio-temporal model
using a Gaussian Mixture Model. Next, it identifies the most
prominent periodicity of the residuals between the model and
measurements. In the last step, the vector space is extended
by the addition of new dimensions and the aforementioned
three steps are repeated using this extended space. If the
model created over the extended vector space performs worse
than the previous one, the method is terminated, and the
previous model is returned.

A. Identification of Periodicities

For the sake of notation simplification, we will start the
description of our method from the second step. To perform
identification of periodicities, we calculate the model error
over time as follows. At first, we partition the time line of
the training set into K discrete intervals (fx,f,c+1). Then,
we predict the number of occurrences within these time
intervals by integrating the values returned by our model
over the entire domain of x and given time interval (zc,t,c41).

The obtained values form a histogram m representing the
number of predicted occurrences for each time interval
(txcstx+1)- Secondly, we count the number of training data
(x,t) occurring during (#,fx11), obtaining a histogram h.
Then we calculate the differences of these histograms and
create a new time series of residuals

R(t) = m h(t,(,t,(+1)7 (1)

tK-,tK+l> B

where #; € (tx,tx11), K =0,...,K—1. The frequency spec-
trum of the time series R(r) is then processed by the non-
uniform Fourier transform method FreMEn described in [10].
Then we find the most prominent (i.e. with the largest
absolute value) component ¥; of the spectrum obtained from
the previous step and calculate the corresponding period 7;
from its circular frequency @, as Ty = 27/ ®;. The purpose
of this step is to identify periodicities across the entire space
regardless of their spatial distribution. The sensitivity of
the FreMEn method is sufficient to detect periodicities even
when they affect only a small area of the monitored space.

1) Short Overview of FreMEn: FreMEn [10] is a tool
to introduce the notion of time into spatial models used in
mobile robotics. The tool, which is available online [31],
has been shown to improve the efficiency of autonomous
robot operation in long-term deployments. For our purposes,
we reimplemented the FreMEn to identify the periodicities
in R(¢), which correspond to residuals of our model over
time. In particular, with the known function p we create
a histogram m and time series R(¢) and process it by
our FreMEn implementation, which performs a non-uniform
Fourier transform and identifies the dominant periodicities in
the R(z).

First, we choose a sufficiently large number representing
the maximum length of considered periodicities 77 and create
a set of candidate frequencies {a)T}L, , where ©; = 1/Tj.
A period T; corresponds to frequency @, as Tr = 1/@; and
Tx is the shortest periodicity taken into consideration. Then
we calculate the components of the frequency spectrum as:

1 & ;
Y= X R() el ner, @)
k=1

Finally, we choose the period corresponding to the most
prominent component of the spectrum, i.e., Ty : max {|v¢|}.

B. Spatio-temporal Vector Space Extension

Once we have identified the dominant period 7, we can
extend the space with two extra dimensions. For each (x;,1)
of the original measured data in space-time, we calculate its
projection into the space extended by warped hypertime as

T, T,
in 2d plane which represents therperiodi::ity and continuity
of the occurrences. Thus occurrences with a similar position
relative to periodicity T; are projected onto a similar position
on the circle. During the iterative process we can extend

follows: 5 5
TTt; TTt;
(x;,t;) — [ x;,co8 =, sin — |, (3)
T, T
where warped hypertime (cos 2””7sin%) forms a circle



the extended vector space with another two dimensions and
create a higher dimensional warped hypertime extension of
the space. Such projection of the measurements x; obtained
at time #; will be denoted @x,-, where:

2nt; . 2m;t
@+ly, = (@xi, cos =, sin =, (@)

TT@+1 TT@+1
0 _ 1 _ 2wt s 2T 2 _
and X, = X, X, = (X,-, cos Tfl’,sm Trll) , X; =

. 2@ty o 2T 2@t i 2W .

(x,, cos T, , sin T , COS Ty , sin T, ) etc. The spatial
component x; of every extended vector space ©*"x; is the

same, and the additional dimensions are created purely from
the time components ;. Fig 1 taken from [11] illustrates
the warped hypertime projection of a number of human
occurrences within a given area.

C. Clustering over Spatio-temporal Vector Space

To form the spatio-temporal model, we use clustering to
estimate the spatio-temporal density of the modeled phe-
nomena. This model will allow us to estimate the frequency
of occurrence of a given vector xp at a given time fg. In
other words, the model establishes a function p(xg, ), which
indicates the frequency of occurrence of a given vector x( at
time fo. Since we represent this function by several clusters
in the “warped hypertime-space”, the function p(xg,#) is
represented as a sum

C

P (x0,t0) = Y, atjuoj(c;, “xo), (5)
j=1

where ¢ is a number of clusters with centers at ¢;, ug; is a
membership function of vector @x, to the j’h cluster, and c;
is the cluster weight. Thus, for the purposes of the continuous
model creation we need a clustering method that provides a
membership degree u; (c j,@xo) as a function of distance
between the cluster center ¢; and projection @xo of (Xo,%0) -

At the end of this step, we also generate a discrete, multi-
dimensional histogram M which approximates the spatio-
temporal distribution of (x;,;) over time-space and compare
it to the histogram H, generated from the actual measured
data, using root-mean-square deviation [32]:

RMSD cyrrent = Z (Mbin - Hbin)27 (6)

bins

with bin defined according to procedure in section II-C.2.
Then, we proceed with the next steps. At this phase of
the next iteration, we calculate RMSD),,,,, according to (6).
If this error RMSD,,,, is lower than the error RMSD . yrent
before extending the space by (4), we proceed with the next
iteration. Otherwise, we revert to the previous model and
terminate the algorithm.

Note that difference between histograms m and M (or h
and H) lies in their dimensionality. While M and H divide the
whole domain of vectors (x,7), histograms m and h divide
only the time domain.

1) Clustering method: Initially, we tried to model the
spatio-temporal phenomena by a mix of Gaussian distribu-
tions, determined by an Expectation-Maximisation method
similar to [14], [18]. This method returns both necessary
parameters for our approach: membership functions u; and
cluster weights ;. However, the results obtained by the
multivariate Gaussian mixtures models were unsatisfactory,
because the cluster weights are calculated for ©x and not for
(x,t). The difference lies in the domain of these projections.
For example, let us consider the projection of {t;} onto the
circle that corresponds to a period of one week. Moreover,
let us consider data where some of the days (e.g., half of
the Fridays) are missing. This will decrease the weights of
the clusters corresponding to the Friday occurrences in ©x
compared to the case where measurements from all Fridays
in (x,7) are available. Therefore it is necessary to calculate
cluster weights «; in the space-time (x,?).

2) Cluster Weights: Having obtained the positions of the
clusters c¢;, their shape as covariance matrices X; and the
membership u;; of every vector @x; to every cluster by
GMM, we need to determine the cluster weights ;. These
weights correspond to the ratio between the number of
vectors belonging to the cluster, i.e., m; = Y/, u;;, and its
volume v; in the projection (x,7). Then we determine the
cluster weight as its density

(XjZI’I’lj/Vj. @)

To estimate the volume of the j-th cluster v; we need to
define the domain of the function p (x,#) and basic volume
unit b. The domain of (x,7) can be either defined during
measurement or it can be estimated as an union of reasonably
large neighborhoods of measured vectors. The basic volume
of space-time has to be chosen according to the purposes
of the model (for example, squared meter hour). Then we
can create histograms (namely M, H) over this domain
with bins of volume b. For the purposes of cluster volume
estimation, we also need a list of space-time vectors vg that
define the position of every bin, for example, the centres
of bins. By projecting these centres to the chosen warped
hypertime-space and using the chosen model, we obtain a
membership value ug; of every @vﬁ to every cluster. Then
we can calculate the volumes of clusters as follows:

vi= Y ®)
vp

It should be noted that the basic volume b directly influ-
ences the values predicted by the model. During estimation
of the number of occurrences at some position (xo,%), the
method returns the number of occurrences in the neighbor-
hood of the vector (xo,#) with volume b.

3) Poisson Distribution Based Initialization: Different
random initializations that are usually understood as de-
fault for clustering algorithms led to poor performance of
the tested methods, especially with a higher dimension of
the warped hyperspace-time. The Poisson distribution based



initialization proposed in [33] notably improved the com-
putational stability of clustering over the space-hypertime.
According to the instructions, we chose Ac¢ vectors from ex
and eliminated (A — 1) ¢ redundant vectors using Algorithm
L.

Algorithm 1: Elimination of redundant vectors.

Input: Ac randomly selected vectors from a set of
vectors

Output: ¢ vectors, each representing one cluster
fori=1to (A—1)c do

Calculate the set of distances between every pair

of selected vectors {dij};

Find min{d;;} = diy = dy;i # j ;

Find min{Y di; Y. diy} =Y. dim ;

Eliminate vector m;

III. EVALUATION

To evaluate our method, we utilised a dataset of people
presence collected at the University of Lincoln. The data
were collected by a mobile robot equipped with a Velodyne
3D laser rangefinder. The robot was driven to a location
which provided a good overview of one of the T-shaped
corridor junctions (Fig. 2). To localize people in the measure-
ments provided by the laser 3D scanner, we used a reliable
and efficient person detection and localisation method [29].
Since the robot batteries need to be recharged on a daily
basis, we could not collect the data in a continuous, 24/7
manner, but had to remove the robot from the observa-
tion spot every night when the building was vacant, and
there were no people at the corridors. The collected dataset
contains detections from early mornings to late evening
from weekdays over several weeks. A typical day contains
approximately 32000 people detection measurements, which
correspond to a large number of people walking or standing
in the monitored corridors. The method [29] provides human
detection result as a single vector, e.g., a point in space.
However, for the purpose of mobile robot path planning,
a human represents an obstacle with a particular spatial
volume. For this reason, we preprocessed the dataset by
substituting every detection vector by a set of vectors in its
spatial neighborhood with a diameter of 0.5m.

The primary purpose of the evaluation is to estimate the
predictive capability of the models created by the proposed
method. Therefore we split the gathered data into training
and test sets and learn the model from the training set only.
The training dataset consists of two weeks of measurements
and the test dataset consists of two days of measurements
from another week (Wednesday and Thursday). Then, we
partition the timeline of the test data into a spatio-temporal
3D grid G and create a 3D histogram H. In particular, for
each bin, we count the number of detections in the test data.
Then, we predict a histogram M for the same grid G using
models created from the training data. The overall error of
the method is calculated as a root-mean-square deviation
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Fig. 2. Model compared to the data. Black dots represent detections from
the test dataset and grey areas represent the model (darker area means higher
number of predicted occurrences). Black lines represent walls of corridors.

between histograms H and M, similar to equation (6). For
our evaluation, we calculated this error for different spatial
and temporal resolutions of the grid G,, i.e., for the different
basic volumes b, see Fig. 3.

To evaluate our method, we compare it to three other
spatio-temporal models. These three models represent the
space in a discrete way. In particular, they associate each
cell of the spatial 2d grid with a temporal model: Mean,
which is simply an average of the all past measurements
occurring within a given cell, Hist, which splits each day
into h intervals and predicts the number of occurrences as
an average for the relevant time of a day, and FreMEn, which
extracts f spectral components from the people occurrence
history and uses these periodic components for future pre-
dictions. To predict the number of occurrences at a particular
location at a particular time, we simply select the grid cell
that corresponds to the location and use the cell’s temporal
model to perform the prediction. In other words, to generate
the histogram M, we calculate a separate temporal model for
each cell of the grid G and then predict the values of the
cells in M using these models. On the contrary, our method
represents the space in a continuous way and to predict the
histogram M, it simply calculates the cell value according
to (5). Regardless of the way M is predicted, the error of
the method is calculated as the root-mean-square deviation
between the histogram of measurements H and histogram
M (6). The experimental evaluation is performed by an
automated system similar to the one presented in [34]. This
system first optimizes each method’s (Mean, Hist, FreMEn)
parameters and then runs pairwise t-tests to determine which
of the compared methods perform statistically significantly
better than other ones.



Prediction of Proposed Method Compared to the Hist and FreMEn
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Fig. 3.  Comparison of the predictive power of different methods. The
graph shows the reduction of the prediction error compared to the Mean
model, which neglects the temporal properties of the people presence. The
indicated values (y-axes) are calculated using (9). On the x-axis, there are
cell sizes or basic volumes. The white bar shows the prediction power of the
proposed method using three clusters, grey bar Hist and black bar FreMEn.

As the corridor is T-shaped, we decided to choose ¢ =
3 clusters for the proposed method. Since the error of
prediction is dependent on the partitioning used, we tested
the method for grids of various cell sizes (basic volumes b)
ranging from 0.1 to 1.0 meters and 10 to 60 minutes. To
better visualize the comparison of prediction capabilities of
different methods on different resolutions (Fig. 3), we show
the ratio between the RMSD of prediction of every compared
method to the RMSD of prediction gathered from the Mean,
ie.,

ratio = 1 — RMSD ethod/ RMSDgean. )

It can be seen in Fig. 3 that the proposed method signifi-
cantly outperforms the other ones. In most cases it is more
than 5% better than FreMEn and Hist. Fig. 2 also demon-
strates that the predicted distributions of the people depend
on time and follow the shape of the corridor. Moreover, the
proposed model is much more memory efficient compared
to FreMEn or the other models. This is because our model is
continuous and its complexity is not affected by the number
of cells in the underlying grid, consisting of the positions
of clusters {c;}, their weights {o;}, covariance matrices
{£;}, and a set of used periodicities {I¢}. For the two
periods and three clusters, it occupies 1.7 KiB of memory
space independently to the grid resolution. In contrast, Fre-
MEn needs several numbers for each modelled periodicity
of every cell of the grid-based representation. Thus, on our
dataset, where the aforementioned grid has a resolution of
100, 50, 20, and 10 cm, the FreMEn model occupies 1.1, 4.4,
27.2, and 108.9 MiB of memory respectively, see Table I.
In addition, the resolution of the proposed method is derived
from the cluster weights ;. Therefore it is possible to store
different resolutions of one model at almost no memory cost.

The downside of the proposed method is its computational
complexity, which is caused primarily by the fact that the

TABLE I
MODEL S1ZE OF COMPARED METHODS

resolution  proposed method  proposed method FreMEn Hist Mean

[cm x cm] c=3,@= c=3,@=3 f=5 h=24

100 x 100 1.7 KiB 2.4 KiB 1.1 MiB 19.3 KiB 3.3 KiB
50 x 50 1.7 KiB 2.4 KiB 4.4 MiB 307.3 KiB 12.9 KiB
20 x 20 1.7 KiB 2.4 KiB 27.2 MiB 1.9 MiB 80.1 KiB
10 x 10 1.7 KiB 2.4 KiB 108.9 MiB 7.7 MiB 320.1 KiB

method is iterative. While FreMEn calculates a temporal
model of all the grid cells in less than a minute, our method
built the spatio-temporal model in an hour (CPU Intel Core
17-5005U). Moreover, during the model buiding, the method
has to discretise the timespace to calculate the histograms
H and M. These occupy memory space comparable to
the discrete methods Mean, Hist and FreMEn. However,
once model building is finished, these histograms are not
needed any more, and the model consists only of the cluster
parameters and periodicities.

IV. CONCLUSION

We proposed a novel approach to anticipate human pres-
ence for robots that are required to provide people-oriented
services. The method uses projections of the time to several
new dimensions derived from the natural human behavior.
A projection of people detections into the created warped
hypertime-space is analyzed using Gaussian Mixture Models.
The obtained clusters are used to create spatio-temporal
model of the human presence distribution. This model is then
used to predict the occurrences in a given time and space.

We evaluated the proposed method on a real dataset from
the corridors at a university collected over several weeks.
Then, we compared the accuracy of the prediction to state-
of-the-art methods used in robotics, and showed that our
approach outperforms them in terms of prediction accuracy
and memory efficiency. Although the model building is
slower and computationally more demanding compared to
other tested methods, the model is usually re-built once
a day during the robot recharging which usually occurs
overnight [1]. The predictive power of the model allows
mobile robots to anticipate human presence across its op-
erational area, which improves the future efficiency of robot
operation. The efficiency and predictive power of the method
allows to create and maintain dynamic models of large
human-populated areas and make long-term predictions of
human presence.

The performance of the method depends largely on the
number of clusters chosen for representation. Our experiment
indicates that an appropriate number of clusters can be
inferred from the topology of the environment, which is one
of the future extensions of this method. Furthermore, we will
also evaluate the proposed method on larger datasets, such
as [35]. Dataset collection is also in progress at University
of Lincoln and at University of Technology of Belfort-
Montbéliard.
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