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Where Should We Place LiDARSs on the Autonomous Vehicle?
- An Optimal Design Approach

Zuxin Liu!, Mansur Arief? and Ding Zhao®*

Abstract— Autonomous vehicle manufacturers recognize that
LiDAR provides accurate 3D views and precise distance mea-
sures under highly uncertain driving conditions. Its practical
implementation, however, remains costly. This paper investi-
gates the optimal LiDAR configuration problem to achieve
utility maximization. We use the perception area and non-
detectable subspace to construct the design procedure as solving
a min-max optimization problem and propose a bio-inspired
measure — volume to surface area ratio (VSR) — as an easy-
to-evaluate cost function representing the notion of the size of
the non-detectable subspaces of a given configuration. We then
adopt a cuboid-based approach to show that the proposed VSR-
based measure is a well-suited proxy for object detection rate.
It is found that the Artificial Bee Colony evolutionary algorithm
yields a tractable cost function computation. Our experiments
highlight the effectiveness of our proposed VSR measure in
terms of cost-effectiveness configuration as well as providing
insightful analyses that can improve the design of AV systems.

[. INTRODUCTION

Critical to establishing safe driving for an autonomous
vehicle (AV) is ensuring how rapidly and accurately it
can perceive the surrounding environment and plan for
maneuvers. Extensive efforts undertaken to improve AVs’
perception include installing industry-grade cameras, such as
Grashopper2, Flea2, etc. [1], [2], [3]. These efforts are highly
dependent on the device configurations themselves, but even
more on external environmental conditions, such as lighting.
Therefore, many AV manufacturers have embraced LiDAR
because it provides distance measures, thus reconstructing
3D views, and gives 360-degree coverage up to a reason-
able distance. Some AV designs even incorporate multiple,
expensive LiDARs to gain an even higher degree of seeing
capability based on sensor redundancy [4]. Unfortunately,
the market price of LiDARs remains substantial [5]. For
example, a 16-beam Velodyne LiDAR costs almost $8,000
[6].

To the best of our knowledge, the research on optimal,
lower-cost LiDAR configurations for AVs is rare. A few
studies have investigated how to achieve optimal configu-
ration for the camera or 3D sensors, e.g., [7] proposed an
optimal camera configuration method to achieve the largest
field of view, while [8] optimize the camera’s pose for motion
capture systems. Both methods cannot be directly applied
for optimal LiDAR configuration, because, compared to
cameras, the receptive field of LiDAR is much more discrete.
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Previously, in [9], we studied the LiDAR configuration
problem by considering it as a min-max optimization and
using a cylindrical representation as a proxy to the cost
function and a mixed integer programming (MIP) to solve
the model.

Motivated by the fact that our previous work suffers
from the curse of dimensionality, i.e., it is unsuitable for
solving large-scale problems, such as those involving mul-
tiple LiDARs, in this paper, we propose to reformulate
the cost function by utilizing an easy-to-solve proxy. We
use volume to surface area ratio (VSR), which has both
geometric and bionic interpretations as a measure to evaluate
the performance of a particular configuration. The resulting
solution allows us to analyze the trade-offs between an AV’s
seeing capability and a LiDAR’s design cost. Our goal is to
find the right balance between the reliability and affordability
of AV perception systems without sacrificing driving safety.
Our proposed approach also allows us to tractably evaluate
the complex sensors specifically designed for autonomous
systems, such as artificial compound eyes [10], [11].

The remainder of this paper is as follows. Section
introduces the general concept and structure of our proposed
approach to the optimal LiDAR configuration problem. Sec-
tion [III] describes the model and our use of the Artificial Bee
Colony (ABC) algorithm. Section[[V]explains the experiment
settings and discusses the results. Section [V| concludes and
suggests some future directions.

II. METHODOLOGICAL FRAMEWORK

In this section, we begin by defining the region of interest
(ROI) and the perception area of LiDAR beams, both of
which form the basis of the configuration problem. Then
we introduce the non-detectable subspace and propose the
maximum VSR as the cost function. We also adopt the Arti-
ficial Bee Colony (ABC) algorithm to solve the optimization
problem.

A. ROI and perception area of LIDAR beams

We account for the limitation of LiDAR’s detection range
by considering that the LiDAR’s placement does not influ-
ence the regions that are far away from the AV. This con-
sideration aligns with many real-world applications where
the perception algorithm chooses only a portion of the
LiDAR sensor data as its input. For example, VoxelNet
[12] use the point cloud data within a certain bounding
box around the LiDAR as the input to perform the object
detection task. Considering the ROI around the AV in the
LiDAR configuration problem, we want to obtain as much
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information as possible by well-covering the whole ROI with
LiDAR beams.

We define the ROI by three-dimensional geometric proper-
ties — the length, width, and height — of a cuboid in the world
coordinate. Fig. [[(b)] shows an example of an AV located at
the bottom-center of the x-y plane of the ROI, which allows
us to define the perception area as the whole trajectory of
LiDAR beams after a 360-degree rotation, i.e., each beam
forms a surface. Note that we can only detect the objects
that intersect with the perception area.

To simplify the representation, we assume that the beam
always provides a perception line along its trajectory, i.e., the
trajectory line forms a cone when the LiDAR beams rotate
360-degrees. Thus, we can model the whole perception area
of a multi-beams LiDAR as the union of finitely many cones
sharing the same vertex and vertical axis. Fig. [I(a)] shows
the cone-like perception area of the LiDAR beams, where
0. represents the pitch angle of the k-th laser beam.

B. Non-detectable subspace segmentation

Given the ROI and the LiDAR configuration, the percep-
tion area of each LiDAR can intersect with each other as well
as with the ROI boundaries. Therefore, the perception area
segments the ROI into many irregular shape subspaces. We
define them as non-detectable subspaces because the object
located within one of the subspaces cannot be detected if
both the LiDAR and object are static.

Fig. shows an example of the non-detectable sub-
spaces. We let V; denote the number of LiDARSs to be placed.
Each LiDAR has N, beams. Fig. [I(a)] shows one LiDAR
segmenting the ROI into N, 4 1 subspaces. From bottom
to top, we denote each subspace by a number in ascending
order from O to N,. Therefore, for N; LIDARS, the maximum
number of subspace N is

N, = (N + 1) (D

We note that it is hard to represent the non-detectable
subspaces analytically because their shapes are different and
irregular. Section |llI| introduces our solution, which is a
cuboid-based segmentation method.

One subspace

(a) Segment ROI into cuboids (b) BFS-based second-level segmen-

tation result

Fig. 2: Subspace segmentation

C. Cost function

Note that all of the non-detectable subspaces should be as
small as possible to obtain the most informative perception
from the LiDAR. Since the notions of how big or small
are somewhat vague because each shape is different and
irregular, we use the radius of the inscribed sphere to define
the size of the subspace. As Fig. shows that the subspace
of the largest size, i.e., the one with the largest blindspot, is
the one with the largest inscribed sphere.

To fix the worst possible case, we express the optimal
LiDAR configuration as a min-max optimization problem to
minimize the largest inscribed spheres from all subspaces.
See [9] for the details. We note, however, that it is very hard
to solve the inscribed sphere directly, so we propose another
easy-to-solve indicator — the volume to surface area ratio
(VSR) — which is inspired by bionics, to define the size of
the subspace.

In the bionic world, VSR could be one dominating factor
in the shapes and sizes of cells [13], [14]. A cell receives
nutrition from the outside environment through the cell
membrane; the surface area represents the cell’s efficiency in
absorbing nutrition, and its volume represents the amount of
nutrition needed. As the cell grows bigger, its volume and
membrane surface area also enlarge. Because the increase
rate of the surface area is less than the volume, and the rate
of absorption decreases, it is not economical for a cell to
grow too big [13].

In this paper, we consider each non-detectable subspace
as a cell and each surface area as the membrane. Loosely
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speaking, we consider the object to be detected as nutrition.
Thus, we want to obtain the smallest possible VSR for
optimal detection, especially of small objects. Specifically,
we are interested in mitigating the worst-case scenario,
i.e., we want to minimize the maximum VSR from the
constructed non-detectable subspaces of the ROL

We can also describe the VSR by using the formula of the
radius of an inscribed sphere in a polyhedron [15]. When
we know the volume, denoted as V', and the surface area of
the polyhedron, denoted as S, we can express the radius of
inscribed sphere R as R = 3 X % Therefore, the VSR can
represent the ‘size’ of any shape of our interest.

In practice, engineers value the ability of LiDAR configu-
rations to detect objects. In this paper, the object detected rate
(ODR) represents the probability of an AV to detect a certain
object. We let some objects of interest, which can also be
represented as the cuboids-based objects, randomly appear
within the ROI. We denote N, as the number of subspaces
occupied by the cuboids. If Ngs > thres, where thres is a
predefined threshold, we assume the object is detected. In the
following experiment, we simulate the object to randomly
appear within the ROI M times and tally the occurrences
T where the object is detected. This setting allows us to
calculate the ODR as ODR = % Minimizing the maximum
VSR will increase ODR (Fig. [3] is the general relationship
between these measures). Therefore, we set the objective of
the optimization model as minimization.

D. Artificial Bee Colony optimization algorithm

We note that the optimization problem is non-convex,
and the solution space is continous, high-dimensional and
constrained. Therefore, using heuristic optimization method
is a suitable choice in this case. We adopt the Artificial
Bee Colony (ABC) optimization algorithm [16] as the solver
for this LiDAR configuration problem, because its better
performance and fewer hyper-parameters than other similar
population-based algorithms [17].

The ABC optimization algorithm is inspired by the be-
havior of foraging bee swarms. The solutions correspond to
food sources, and the cost function corresponds to the nectar

amount (i.e., the fitness) of a particular food source. Greedy
selection policy is employed to ensure that the algorithm
converges quickly, and a roulette wheel selection method is
adopted to explore around the food sources for the nectar of
the highest amount.

Technically speaking, the swarm of bees is divided into
three groups: employed bees, onlookers, and scouts. The
employed bees measure the nectar amount of food sources,
and each employed bee corresponds to a food source. The
onlookers adopt the roulette wheel selection method to select
the existing food sources to be further explored. If the quality
of an existing food source has not been improved within a
certain number of iterations, its corresponding employed bee
abandons the food source and becomes a scout to search for
a new food source randomly. See [18] for a comprehensive
review of ABC algorithms.

III. MODEL FORMULATION

As mentioned, it is very hard to represent the subspaces
analytically, so we adopt a cuboid-based method for approx-
imation. By segmenting (discretizing) the ROI into many
small cuboids, we only need to determine which subspaces
belong to which cuboids. Fig. 2] shows the steps: segment
the ROI into many cuboids; transform each cuboid from
world global coordinate to LiDAR local coordinate; perform
first-level segmentation and use base-n notation to represent
each subspace, and for each base-n notation use breadth-first
search method to perform second-level segmentation.

A. Cuboid coordinate transformation

We denote 0, as the k-th laser beam of a LiDAR, and
formulate the cone-like perception area as:

zp = tan g /22 + Y2, 2)

where z,,y,, 2, are the coordinate points on the perception
area relative to the LiDAR coordinate system. Since it is
difficult to formulate the cone in the world coordinate if
the LiDAR rotates, we transform the cuboid from world
coordinate into LiDAR coordinate to facilitate the following
segmentation.

Let [Zw, Yw, 2, Quw, Buw, Y] denote the pose of a LiDAR in
the world coordinate, where |2, Y, 2] represent the position
and [au,, Bw,Yw] represent the orientation. Then we obtain
the rotation matrix R,g~ as

CaCB  CaSBSy — SaCy CaSBCy — SaSy
Raopy = |5aC8  8a585y — CaCy SaS8Cy — CaS~y |, (3)
—5,3 6587 C/gC7

where ¢ represents cos and s represents sin in short. For
example, ¢, represents cos(a). We denote Ty = (2,7, 2]
as the translation vector, and express the transformation
matrix from the LiDAR coordinate to the world coordinate
Twi as
R T,

T, — aBy zTYyz | 4
Finally, we denote X, = [y, Yuw, 2w] and X3 = [x1,y1, 21
as the coordinates of the cuboids in the world coordinate



system and LiDAR coordinate system, respectively. Then,
the transformation between the coordinate system satisfies

X, =T, Xu. )

The two systems, which represent the cuboids in both the
LiDAR and the world systems, set the stage for the two seg-
mentation processes, which we decompose into two levels:
base-n first-level segmentation and breadth-first search (BFS)
second-level segmentation.

B. Base-n notation first-level segmentation

After obtaining the cuboid coordinates in the LiDAR
coordinate, the next step is to determine which subspace the
cuboid belongs to. Here, we use base-n notation to identify
the subspace.

We assume there are N; N,-beam LiDARSs to be placed.
According to equation (1), each LiDAR could segment
the ROI into Nj + 1 subspaces, resulting in (N, + 1)M
maximum number of subspaces. Therefore, each subspace
can be represented by a base-n notation dyds...d;...d,,, where
n equals the LiDARs’ number N;, and d; indicates the
number of subspaces of the ¢-th LiDAR, ranging from 0 to
Np.

We denote 6;; as the pitch angle of the k-th beam of
the i-th LiDAR, where k € 0,1, ..., Ny. [z, yi, zit] is the
cuboid coordinates in the ¢-th LiDAR coordinate system. To
determine the digit d;, we need to find the unique beam k
that satisfies

zit > tan 0;p_1)\/22% + y3,
zy < tan ;g \/m

1<k<Ny—1 (6)

or
zi < tanbip\/2?% + v, k=0 7
or
zg > tanOp/x3 +yZ, k=N (8)

Then, the digit d; = k and thus, iterating over all the
LiDARs allow us to determine the cuboids’ subspaces in the
ROI.

C. Breadth-first search (BFS) based second-level segmenta-
tion

A base-n notation of the subspace denotes each cuboid
in the ROIL The cuboids of the same base-n notation are
the non-detectable subspace segmented by the laser beams.
However, the segmentation is not thorough. For example, the
right side of Fig. 2(b)] shows the cuboids of the same base-n
notation. Therefore, we use a BFS-based method to perform
the second-level segmentation.

We classify the cuboid that has an overlapping face with
the root node into the same group of the root cuboid. After
searching all the non-visited candidate cuboids, we mark the
root node cuboid as visited. We implement the same process
for the left non-visited candidate cuboids until all the cuboids
are marked as visited. The left side of Fig. shows the
result of performing the second-level segmentation.

D. Optimization model

To construct the optimization problem, we denote the
number of LiDARs as IN; and the number of laser beams
as N,. We denote the i-th LiDAR configuration as C; =
[%:, Yi, 2, 4, Biy i), Where «y, B;,7; each represents the
yaw, pitch and roll of the LiDAR in world coordinate,

respectively.

Since the LiDAR configuration C is limited
by the installation position of the car, we define
CVmin = [zmin7 Ymin; Zmin; ¥min; ﬁminy ’}/min] and
Cmax = [:L'maxa Ymax; Zmax; ¥max ﬂmaxv ’Ymax] which

represent some lower- and upper-bound of the LiDAR
configurations, respectively. As such, the i-th configuration
C; is valid if it satisfies the physical constraint:

C(rﬂin S Oi S Crnax- (9)

Let CN = {Cy,Cy,...,Cn,} be the configuration set.
Further, if we denote the VSR of the j-th subspace as
Lossj(CN) for any given configuration set C N and denote
the set of cuboids coordinate in j-th subspace as .S;, then

V(S))
SA(S;)’

where V(S;) and SA(S;) are the volume and surface area
of the S; cuboid set, respectively. Solving the V'(.S;), only
requires calculating the number of the cuboids. We denote
[ex, ey, €] as the cuboids edges length along the x,y, z axis
such that the number of cuboids in S; is n;. We solve V' (.S;)
by:

Loss;(CN) =

(10)

(1)

The surface area SA(S;) comprises 3 parts: the surface
area along = — y plane SA,,, along x — z plane SA,. and
along y — z plane SA,.. To know the size of the cuboid,
we only need to count the overlap faces along the different
planes.

The algorithms to solve the 3 parts are the same, so here
we use SA,, as an example. We denote S as the cuboid
set, and iz, Siy, Si» as the ¢ — th cuboid’s index along the
x,y, z axes. The steps are shown in Algorithm

We formulate the optimization problem as

Lossj(CN)

V(S;) = egeyesn;

CN = arg min max
ON j (12)

subject to Cipin < CN < Cpax

where C'N represents the optimized configuration solution.

To solve (I2)), we deploy the ABC algorithm and generate
a swarm of artificial bees to explore the solution space. Let
i = (@1, ooy Tig, oo, Tiq) (0 = 1,2, 7) denote the solutions,
where 7 represents the number of bees and d represents
the solutions dimension. fit(z;) represents the quality of
the solution x;, which is negatively related with our cost
function. Defining probability P; as

fit(a:i)

b= ity

13)



Algorithm 1 Solving the Surface Area of the Cuboid Set

Algorithm 2 Artificial Bee Colony (ABC) Algorithm

Require: Cuboid set, S; Cuboid resolution, [e,, e, €.];
Ensure: The surface area along = — y plane, SA,,;
1: Sort the coordinates of cuboids in S according to xt—y—z
axes in an increasing order
2: sz = Size(S) ,ent=0,i=1
3. repeat

4: if Sw: = S(ifl)x and Siy = S(ifl)y and Siz =
S(i—l)z + 1 then

5: ent =cent + 1

6: end if

7: t=1+1

8: until i = sz

9: SAzy = 2(sz — ent)egey

Best Bee's Cost
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Fig. 4: The convergence trend of ABC solutions for mini-
mizing the cost function - the max VSR

allows the onlookers to select the solution x; and examine its
quality fit(x;). Next, the algorithm prescribes a new solution
v; near the currently selected solution z; by computing

vij = Tij + Qi (Tij — Thj), (14)

where k € {1,2,....,7} and j € {1,2,...,d} are randomly
chosen indices. We note that ¢;; is a random number in the
range [—1,1]. If the fit(v;) > fit(x;), then we replace the
solution x; with v;, i.e., the bees move to v;. Adopting the
analogy described in Section Algorithm [2] summarizes
the iterative steps of the ABC algorithm.

IV. EXPERIMENT AND DISCUSSION

We consider an ROI of size [60, 20, 4] in meters, excluding
the rectangular region = € [27,33],y € [8,12],z € [0,4],
which is very close to the AV and we do not consider its
in the perception algorithm at this point. The lower- and
upper- bound of the LiDARs pose are [28,9,2.2,0,0,0] and
[31,11,3,3.1415,3.1415, 0], where the first three compo-
nents are measured in meters and the last three are measured
in radians. The yaw angle is not be optimized because the
LiDAR will rotate 360 degrees.

We use Velodyne VLP-16 [6] as our candidate LiDAR
components. For tractability, we set the resolution of the
cuboids as [1,0.5,0.2]. To solve the problem, we set 200
bees and use the ABC algorithm to iterate 800 times. Fig. ff]
shows how the ABC algorithm converges in the 4 LiDARS’

Require: Number of bees, 7; Iteration number, Iter Max;
Threshold to abandon a food source, thres;
Ensure: The optimal solution, z;, ¢ =1, ..., 7;
1: Randomly initialize the food source x;, i = 1,...,7
2: Get the quality of each food source fit(z;)
3: Set cycle=0and cnt; =0,i=1,...,7
4: repeat
5 for each food source x; do
6: Generate new food source v; using equation (14)
7: if fit(v;) > fit(z;) then
8: Replace x; with v;
9: else
10: cnt; = cent; + 1
11: end if
12:  end for
13:  for each onlooker do

14: Select a food source using a roulette wheel selection
method based on equation (I3)

15: Generate new food source v; around x; using equa-
tion (T4)

16: if fit(v;) > fit(z;) then

17: Replace x; with v;

18: else

19: cnt; = cent; + 1

20: end if

21:  end for
22:  for each food source x; do

23: if cnt; = thres then
24: Replace x; with a randomly generated solution
25: end if

26:  end for
27:  cycle = cycle + 1
28: until cycle equals Iter Max

case. The red line represents the average value of all the bees’
max VSR, and the blue line represents the best solution’s
max VSR in each iteration. Fig. 4] shows that the search area
of the bees converges to the regions associated with lower
cost values. Fig. [5] shows the optimized LiDAR configuration
solutions for 1, 2, 3, and 4 LiDARs.

A. Maximum VSR trend in the number of LiDARs

Given the type of LiDAR, AV designers may need to
determine a proper number of LiDARs. Fewer LiDARs may
influence the detection performance, but too many LiDARs
causes information redundancy and increases the computa-
tion burden. We showcase an application for determining the
number and type of LiDARs to place. We consider three
types of LiDARs: 4-beam, 8-beam, 16-beam LiDAR, with
evenly distributed angles of the pitch from —15° to 15°.
Our goal is to yield the optimal configuration and compare
the detection uncertainty performance for the different types
of LiDARs.

Fig. [6] shows the results after 800 iterations. The fact
that the marginal improvement rate decays as the number
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of LiDARs increase implies that the LiDAR beams space
configuration, which can also be interpreted as the ability to
detect small objects, may not increase when the number of
LiDARs reaches a certain value. Optimal configuration plays
a significant role when an AV design employs a few sensors,
such as the artificial compound eye [11]. The fact that the
maximum VSR of the AV design is either larger, or the same
at best, when the configuration is not optimized, implies a
dominated performance compared to the solution obtained
by the proposed method.

B. Comparison between different LiDAR types

The proposed method can help AV engineers choose
the optimal LiDAR types, or improve LiDAR design. For
example, the marked points in Fig. [f] show that two 8-beam
LiDARs outperform both the one 16-beam and the four 4-
beam LiDARSs when configured optimally using our proposed
method. Intuitively, the four 4-beam LiDARs should be
chosen, because its configuration is more flexible. However,
its physical constraints, i.e., the angles of the pitch of its
beams, can limit performance. This insight analysis will
be highly advantageous for AV designer to better achieve
affordable and safe AV design, and for LIDAR manufacturer
better design the LiDAR type.

V. CONCLUSIONS

This paper proposed a solution to the optimal LiDAR
configuration problem which will help designers and manu-
facturers determine the proper number of sensors and their
placement on autonomous vehicles. The overall relationship
between the size of non-detectable subspaces, such as the
blindspot of a given LiDAR configuration, the volume to
surface area ratio (SVR), and the object detection rate (ODR)
was investigated by using a new VSR-based measure. The
Artificial Bee Colony (ABC) algorithm was adopted to
segment the subspaces of the region of interest (ROI) into
a cuboid-based representation. That yielded efficient compu-
tational performance. The experiment results indicated the
effectiveness of the solution in prescribing configurations that
obtained maximum detection performance without becoming
computationally burdensome.

The research in this paper will be extended to investigate
occlusion problems, and the solutions will be validated with
real-world testing. The results are expected to bring AV de-
signers, engineers, and manufacturers together to deploying
autonomous vehicles and fleets with a reliable and affordable
perception system.
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