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Abstract— Set-Based Multi-Task Priority is a recent frame-
work to handle inverse kinematics for redundant structures.
Both equality tasks, i.e., control objectives to be driven to a
desired value, and set-bases tasks, i.e., control objectives to
be satisfied with a set/range of values can be addressed in
a rigorous manner within a priority framework. In addition,
optimization tasks, driven by the gradient of a proper function,
may be considered as well, usually as lower priority tasks.
In this paper the proper design of the tasks, their priority
and the use of a Set-Based Multi-Task Priority framework is
proposed in order to handle several constraints simultaneously

in real-time. It is shown that safety related tasks such as, e.g.,
joint limits or kinematic singularity, may be properly handled
by consider them both at an higher priority as set-based
task and at a lower within a proper optimization functional.
Experimental results on a 7DOF Jaco2 arm with and without
the proposed approach show the effectiveness of the proposed
method.

I. INTRODUCTION

Robotic systems are requested to perform more and more

complex operations in all kind of environments, leading

to flexible control architectures that allow them to adapt

to the particular situation in a reactive manner. The most

widely used approach is to split the entire operation in

several elementary control objectives, implemented as sub-

tasks, possibly to be performed simultaneously. The potential

conflict among tasks is resolved by setting a priority and

computing the resulting motion commands that assure the

achievement of the higher-priority tasks, if feasible, and

tries to accomplish the lower-priority ones as much as

possible given the constraints imposed by the more important

tasks. This approach has been widely applied exploiting the

system redundancy and the null-space projection in both

dynamic [1], [2] and kinematic [3] control architectures.

A first classification among tasks can be made with respect

to the control objective that they express: equality-based

tasks aim to bring the task to a specific desired value,

for instance to move the end-effector of a manipulator to

a certain position and orientation. Most of the the main

redundancy resolution algorithms in literature have been

developed to handle this kind of tasks [4], [5], [6]. Set-

based tasks, or inequality constraints are tasks in which the

control objective is to keep the task value in an interval, i.e.,

above a lower threshold and below an upper threshold. In

this category lie tasks such as the obstacle avoidance, the

joint limit avoidance and the arm manipulability. Currently

Authors are with the Department of Electrical and Information Engi-
neering of the University of Cassino and Southern Lazio, Via G. Di Bia-
sio 43, 03043 Cassino (FR), Italy {pa.dilillo, chiaverini,
antonelli}@unicas.it

one the most popular approaches to handle this kind of tasks

is to express the inverse kinematics problem as a sequence

of QP (Quadratic Programming) problems [7], [8]. Task-

priority frameworks have been extended to handle also set-

based tasks in [9], [10].

The choice of the prioritized order of the tasks within

the hierarchy has a major importance and strongly affects

the behavior of the system, thus it is useful to divide them

in three categories and assign them a decreasing priority

level [11]: safety-related, operational and optimization tasks.

Safety tasks such as obstacle avoidance or mechanical joint

limits [12] have to be necessarily set at an higher priority

level with respect to the operational tasks, as they assure the

integrity of the system and of the environment in which it op-

erates. At the lowest priority level there are the optimization

tasks that help in increasing the efficiency of the operation,

but they are are not strictly necessary for its accomplishment.

In this paper we propose a method for increasing the

performances of a robotic system by setting proper optimiza-

tion tasks together with the necessary safety and operational

ones. The idea is to set a low-priority optimization task for

each one of the safety-related, high-priority task, aiming to

minimize the number of transitions between their activa-

tion and deactivation states. Given the null-space projection

method, the activation of a high-priority task affects the

operational task potentially deviating it from the desired

value. In this perspective, minimizing the activation of all

the safety-related tasks allows the system to better execute

the operational task.

Inspired by the work [13], where the set-based multi-

task priority framework [10] is used to handle, in simulation

only, the kinematic singularity of a snake-like robot setting a

proper task at two priority level simultaneously, in this work

we extend that idea in order to handle several set-based tasks.

In addition, we prove its practical efficiency implementing it

experimentally on a 7 DOF Jaco2 anthropomorphic arm.

This paper is organized as follows: Section II introduces

the task priority framework used in the experiments; Section

III describes the proposed approach for the optimization tasks

handling; Section IV shows the experimental results; Section

V presents the conclusions.

II. SET-BASED TASK-PRIORITY INVERSE KINEMATICS

For a general robotic system with n DOF (Degrees of

Freedom), the state is described by the joint values q =
[q1, q2, . . . , qn]

T ∈ R
n . Defining a task as a generic m-

dimensional control objective as a function of the system

state σ(q) ∈ R
m , the inverse kinematics problem consists



in finding the q vector that brings σ(q) to a desired value

σd. The linear mapping between the task-space velocity and

the system velocity is [14]:

σ̇(q) = J(q)q̇, (1)

where J(q) =
∂σ(q)
∂q ∈ R

m×n is the task Jacobian matrix,

and q̇ is the system velocity vector. Thus, starting from an

initial configuration, in case that m = n meaning that the

number of DOF of the system is equal to the task dimension,

the joint increment needed to bring the task value closer to

the desired one can be computed by resorting to the CLIK

(Closed-Loop Inverse Kinematics) algorithm:

q̇ = J
−1(q)(σ̇d +Kσ̃) (2)

where K is a positive-definite matrix of gains, σ̇d is the

desired task velocity and σ̃ = σd − σ is the task error.

A robotic system is defined redundant if n > m, thus if it

has more DOF that the required ones for the accomplishment

of a certain task. In this case the Jacobian matrix is not

invertible anymore and multiple possible solutions for Eq.

1 exist. The system can be solved imposing a constrained

minimization problem, in which the cost function is:

g(q̇) =
1

2
q̇T q̇ (3)

that selects among all the possible solutions the one that min-

imizes the joint velocity norm. In this way Eq. 2 becomes:

q̇ = J†(q)(σ̇d +Kσ̃) (4)

where J† is the Moore-Penrose pseudoinverse of the Jaco-

bian matrix, defined as:

J
† = J

T (JJT )−1 (5)

In general the solution of Eq. 4 lies is the subspace

R(J), and in the redundant case its orthogonal complement

N (J) 6= ∅ can be exploited to add other components that

would not affect the accomplishment of the task. For this

reason the general solution can be written as:

q̇ = J†σ̇ +Nq̇0 (6)

where:

N = I − J
†
J

is the null space projector and q̇0 is an arbitrary vector that

can be used to minimize or maximize a scalar value by

setting

q̇0 = k0(
∂w(q)

∂q
)T

where k0 is a gain and w(q) is a secondary objective

function.

Another useful exploitation is to define a second task

with a specific desired value and compute the solution that

accomplishes both the tasks. Unfortunately this solution

may not exist due to the infeasibility of their simultaneous

resolution. In this case it is necessary to define a priority

between the tasks and compute the solution that achieves

the primary one while minimizes the error on the secondary

one. Given two tasks σ1 and σ2 it is possible to compute the

system velocities q̇1 and q̇2 that accomplish them separately

using Eq. 4. The composition of the two tasks solutions

q̇1 and q̇2 can be performed by resorting to the SRMTP

(Singularity-Robust Multi-Task Priority) framework [6]:

q̇ = q̇1 +N 1q̇2 (7)

In [15], [16] the SRMTP Inverse Kinematics framework

has been extended to handle an arbitrary number of tasks, by

resorting to the NSB (Null Space-based Behavioral) control.

Given a hierarchy composed by h tasks sorted by priority

level, the solution is computed as:

q̇ = q̇1 +NA
1 q̇2 + · · ·+NA

h−1q̇h (8)

where NA
i is the null space projector of the augmented

Jacobian matrix JA
i defined as:

JA
i =

[

JT
1 JT

2 . . . JT
i

]T
(9)

The NSB algorithm has been developed to handle equality-

based tasks, thus control objectives in which the goal is to

bring the task value to a specific one, e.g. moving the arm

end-effector to a target position and orientation. However,

several control objectives may require their value to lie

in an interval, i.e. above a lower threshold and below an

upper threshold. These are usually called set-based tasks or

inequality constraints. A set-based task can be seen as an

equality-based one which gets active or inactive depending

on the operational conditions. In particular, it is necessary

to set different reference values for each set-based task:

physical thresholds σM (σm), safety thresholds σs,u < σM

(σs,l > σm), and activation thresholds σa,u = σs,u − ε
(σa,l = σs,l + ε). When the task value reaches an activation

threshold, it is added to the task hierarchy as a new equality-

based task with desired value equal to the corresponding

safety threshold:

σd =

{

σs,u if σ ≥ σa,u

σs,l if σ ≤ σa,l
(10)

Then it can be deactivated when the solution of the

hierarchy that contains only the other tasks would push its

value toward the valid set. Defining JA as the Jacobian

matrix of σA, if JAq̇ > 0 the solution would increase the set-

based task value, otherwise if JAq̇ < 0 the solution would

decrease it. In this way, σA can be deactivated if

σA ≥ σa,u ∧ JAq̇ < 0 (11)

or

σA ≤ σa,l ∧ JAq̇ > 0 (12)

Figure 1 shows a generic set-based task value over time

and the corresponding σa,l, σa,u (green dashed lines) and

σs,l, σs,u (red-dashed lines). The background color high-

lights the activation (magenta) and deactivation (yellow)

state. At the beginning, the task is inactive, as its value

lies within the valid interval, thus the hierarchy contains

only the other tasks. As soon as its value reaches σa,l,
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Fig. 1. A generic set-based task value over time, the corresponding σa,l,
σa,u (green dashed lines) and σs,l, σs,u (red-dashed lines), activation
(magenta background) and deactivation (yellow background) state.

it gets activated and added to the current hierarchy. The

corresponding solution brings the task value to σs,l with a

time constant proportional to the task gain. It remains at

that threshold until condition (11) or (12) are satisfied. From

that point the task is deactivated and it is removed from the

hierarchy. The same happens with the upper thresholds σa,u

and σs,u. For more details about the activation/deactivation

algorithm see [17].

III. OPTIMIZATION TASKS HANDLING

The priority order among the tasks in the hierarchy

strongly affects the behavior of the system during the execu-

tion of a certain operation. All the set-based tasks related to

the safety of the system, such as the mechanical joint limits

and the obstacle avoidance, have to be necessarily placed at

the top priority level. The execution of the operational task is

constrained to the fulfillment of an active higher-priority task

and, in case of conflict between them, it leads to a deviation

of the operational task from the desired trajectory. Optimiza-

tion tasks such as the maximization of the arm manipulability

can be placed at a lower priority level with respect to the

operational one, due to the fact that they are not strictly

necessary for the accomplishment of the operation. The idea

that we propose in this work is to define proper optimization

tasks aiming to minimize the activation/deactivation of high-

priority safety tasks. In particular, it would be desirable

that the control algorithm tries to push a high-priority task

further away from the imposed minimum/maximum limits

even when it is not active, exploiting the system redundancy.

In order to implement this method in the Set-Based Multi-

Task Priority framework an equality-based optimization task

should be added in the hierarchy for each one of the set-

based high-priority tasks, at a low-priority level with desired

value:

• greater than the maximum task value if the correspond-

ing set-based task has a lower threshold

• lower that the minimum task value if the corresponding

set based task has an upper threshold

• equal to the mid-point between the minimum and maxi-

mum thresholds if the corresponding set-based task has

both of them

obtaining the hierarchy shown in Fig. 2. This kind of

approach leads to the minimization of the high-priority

tasks activation and improves the system performances in

tracking the operational task, always assuring that the safety

thresholds are respected during the motion.
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Fig. 2. Proposed task hierarchy: for each one of the high-priority safety
tasks there is the corresponding low-priority optimization task aimed to
minimize its activations

In this work we take into account two kind of tasks:

the arm manipulability and the joint limits. The measure of

manipulability [18]:

σ(q) =

√

det(JJT )

goes to zero when the manipulator reaches a singular con-

figuration, as J loses rank. For this reason it can be seen as

a distance from a singular configuration.It is possible to add

it to a hierarchy as a high-priority set-based task, defining

a minimum threshold that the manipulator cannot exceed

during the movement. For this work the task Jacobian is

computed numerically following the Algorithm 1. Setting

it at a lower priority with respect to the operational task

implies that it is accomplished only when it is not in conflict

with the primary task, and it can be used as a maximization

control objective: choosing the desired value higher than the

maximum measure of manipulability that the arm can exhibit

the resulting behavior is the same as applying Eq. 6, thus

the arm follows the desired trajectory trying to maximize

the manipulability measure.

Merging the aforementioned behaviors by including in

the hierarchy two manipulability tasks, one at lower priority

and one at a higher priority with respect to the operational

one, the resulting behavior is that the arm never reaches a

singular configuration (for the effect of the high-priority task)

while tries to maximize the manipulability measure during

all the trajectory even when the corresponding set-based task

in inactive (for the effect of the low-priority task), without

interfering with the operational one.



Data: current joint positions vector q ∈ R
n

Result: numeric Jacobian of the manipulability task

J ∈ R
1×n

initialize ∆q, qinc

for i=1:n do

for j=1:n do

if j=i then
qinc(j) = q(j) +∆q

else
qinc(i) = q(j)

end

end

w = ManipulabilityValue(q)

winc = ManipulabilityValue(qinc)

J(1, i) = (winc − w)/∆q
end
Algorithm 1: Computing the manipulability Jacobian

The joint limit task is usually used for avoiding self-

collisions, and it can be seen as a high-priority set-based

task with a lower threshold σs,l and an upper threshold σs,u

that constraints its movement in a feasible set of values. The

task value is simply the i-th joint position while the Jacobian

is a row vector with a 1 at the i-th column and zeros at

the other ones. The corresponding optimization task is an

equality-based task in which the desired value is:

σd =
σs,u + σs,l

2

In this way the joints are pushed toward the middle of

the chosen limits while the end-effector follows the desired

trajectory, minimizing the activation of the high-priority set-

based task.

IV. EXPERIMENTAL RESULTS

In this section experimental results on a 7DOF Kinova

Jaco2 manipulator that prove the effectiveness of the pro-

posed approach are shown. In the first case study we focus

the attention on the joint limit tasks, while the second one

takes into account the manipulability tasks. In both case

studies we first perform the experiment with the hierarchy

that contains only the high-priority set-based tasks, followed

by the corresponding experiment in which we add also the

low-priority optimization tasks.

A. First case study: joint limits task

The desired path for the end-effector is shown in Fig. 3. It

is composed by four waypoints with a square shape keeping

constant the x coordinate of the arm base frame. Upper

and lower limits, intentionally chosen in order to get active

during the motion, on six joints have been set and added at

a high priority with respect to the end-effector position task,

obtaining the following hierarchy:

1) Joint limits (set based)

2) End-effector position (equality)

Figure 4 shows the joint positions over time together with the

imposed limits. Notice that the seventh joint position is not

Fig. 3. Desired path for the first case study represented in Rviz

reported because it is not included in the hierarchy as it does

not give any contribution to the position of the end-effector.

It is clear that the joints 1,3,4,5 and 6 reach one of the

limits during the movement, activating the corresponding

task that stops their motion.

For the second experiment the implemented hierarchy is:

1) High-priority joint limits (set based)

2) End-effector position (equality)

3) Low-priority joint optimization (optimization)

The starting configuration, the desired sequence of waypoints

and the the imposed joint limits are the same of the previous

experiment and Fig. 5 shows the joint positions.

It is possible to notice that this time only two joints reach

the limits, while joints 3, 5 and 6 benefit from the lower-

priority optimization tasks, being further from the limits with

respect to the previous experiment. Figure 6 shows a 3D

representation of the executed path for the two experiments.

The activation of the joint limit tasks in the first experiment

makes the end-effector deviate from the desired path, while

in the second one it follows the desired path clearly better

given that less higher priority tasks get active during the

movement. The end-effector does not track perfectly the

desired path because two joint limits get active anyway.

B. Second case study: manipulability task

The second case study takes into account the behavior

of the system when two manipulability tasks are added to

the hierarchy with different priority order. The desired path

for the end-effector is shown in Fig. 7. It is a simple straight

line (blue-dashed) that starts from the yellow circle and ends

on the green circle, to be followed forwards and backwards

with a constant orientation. The red circle corresponds to

the configuration depicted in Fig. 8, in which the measure of

manipulability reaches a very low value (10−5). In the first

experiment the task hierarchy is:

1) High-priority arm manipulability (set based)

2) End-effector position and orientation (equality)

Figure 9 shows the measure of manipulability over time.

The task gets active two times, when the desired trajectory

reaches the red circle, and the control algorithm effectively
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Fig. 4. First case study, only high-priority joint limit tasks: joint positions
over time and safety thresholds (red-dashed lines). Five joints reach the
limits during the execution of the trajectory.

avoids the singular configuration keeping the measure of

manipulability above the chosen threshold.

Let us now add a second manipulability task at a lower

priority while following the same path, resulting in the

following hierarchy:

1) High-priority arm manipulability (set based)

2) End-effector position and orientation (equality)

3) Low-priority arm manipulability (optimization)

Figure 10 shows the measure of manipulability with the

chosen threshold for the primary manipulability task. The

desired value for the low-priority manipulability task is set

at 1.2, which is greater than the maximum value that the arm

can exhibit. It is clear that the lower priority manipulability

task maximizes the value: the result is that when the desired

trajectory reaches for the first time the singular configuration

the corresponding task gets active, but it deactivates very

quickly with respect to the previous case. Additionally,

when the end-effector returns to the initial position the task

does not even activate, because the maximization of the

manipulability measure during the trajectory has rearranged

the configuration of the arm, basically changing the position

of the elbow. Figure 11 shows a comparison of the second

part of the executed path between the two experiments,
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Fig. 5. First case study, high-priority and optimization joint limit tasks:
joint positions over time and safety thresholds (red-dashed lines). The
optimization tasks make the joints stay further from the limits with respect
to the previous experiment.
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Fig. 7. Desired path for the second case study. It is composed by two
waypoints (yellow and green circles). The red circle is associated with a
configuration in which the measure of manipulability is very low (10e−5)

Fig. 8. Configuration close to singularity. Front view (left) and lateral view
(right)

from the green circle to the yellow circle. In the experiment

performed with the hierarchy containing only the high-

priority manipulability task the executed path deviates from

the desired one given the activation of the set-based task. In

the second case it does not get active, and the end-effector

can track the desired path much better.

V. CONCLUSIONS

In this paper we have shown a method for improving the

tracking capabilities of the operational tasks in presence of

higher-priority safety tasks in the hierarchy. We have first

described the inverse kinematics framework that allows to

define different kind of tasks and to sort them in priority.

Then we have discussed how the choice of proper optimiza-

tion tasks at a lower priority level for each one of the safety

tasks can minimize the activation of the safety-tasks, leading

to a better execution of the operational ones. Experimental

results on a 7DOF Kinova Jaco2 arm proved the effectiveness

of the proposed method on two different kind of set-based

safety tasks.
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