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Learning to Drive from Simulation without Real World Labels
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Abstract— Simulation can be a powerful tool for under-
standing machine learning systems and designing methods to
solve real-world problems. Training and evaluating methods
purely in simulation is often ‘“doomed to succeed” at the
desired task in a simulated environment, but the resulting
models are incapable of operation in the real world. Here we
present and evaluate a method for transferring a vision-based
lane following driving policy from simulation to operation on
a rural road without any real-world labels. Our approach
leverages recent advances in image-to-image translation to
achieve domain transfer while jointly learning a single-camera
control policy from simulation control labels. We assess the
driving performance of this method using both open-loop
regression metrics, and closed-loop performance operating an
autonomous vehicle on rural and urban roads.

I. INTRODUCTION

This paper demonstrates how to use machine translation
techniques for unsupervised transfer of an end-to-end driv-
ing model from a simulated environment to a real vehicle.
We trained a deep learning model to drive in a simulated
environment (where complete knowledge of the environ-
ment is possible) and adapted it for the visual variation
experienced in the real world (completely unsupervised and
without real-world labels). This work goes beyond simple
image-to-image translation by making the desired task of
driving a differentiable component within a deep learning
architecture. We show this shapes the learning process to
ensure the driving policy is invariant to the visual variation
across both simulated and real domains.

Learning to drive in simulation offers a number of
benefits, including the ability to vary appearance, lighting
and weather conditions along with more structural varia-
tions, such as curvature of the road and complexity of the
surrounding obstructions. It is also possible to construct
scenarios in simulation which are difficult (or dangerous) to
replicate in the real world. Furthermore, simulation provides
ground-truth representations like semantics and even privi-
leged information such as the relative angle and position of
the vehicle with respect to the road [25]. However, applying
this knowledge to real-world applications has been limited
due to the reality gap, often expressed as the difference in
appearance from what can be rendered in simulation to how
the physical world is viewed from a camera.

In contrast to the many efforts to improve the photometric
realism of rendered images [5], [7], [25], [26], this work
learns an invariant mapping between features observed in
simulation and the real environment. This representation
is jointly optimised for steering a vehicle along a road in
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Fig. 1: We constructed a model for end-to-end driving (vision to
action) for lane following by learning to translate between simu-
lated and real-world imagery (Xsim, rea: from domains dsim, reat),
jointly learning a control policy from this common latent space Z
using labels ¢ from an expert driver in simulation. This method
does not require real-world control labels (which are more difficult
to acquire), yet learns a policy predicting a control signal ¢ which
can be applied successfully to a real-world driving task.

addition to image translation. While enjoying the benefits
of simulation, this method is also adept at inferring the
common structure between the target environment and what
has been seen in simulation. This is analogous to transfer-
ring skills learned though playing virtual racing games to a
person’s first experience behind the wheel of a car [14].

In summary, the main contributions of this work are:

o We present the first example of an end-to-end driving
policy transferred from a simulation domain with con-
trol labels to an unlabelled real-world domain.

« By exploiting the freedom to control the simulated
environment we were able to learn manoeuvres in
states beyond the common driving distribution in real-
world imitation learning, removing the need for multi-
ple camera data collection rigs or data augmentation.

o We evaluated this method against a number of base-
lines using open-loop (offline) and closed-loop metrics,
driving a real vehicle over 3km without intervention on
a rural road, trained without any real-world labels.

« Finally, we demonstrate this method successfully driv-
ing in closed-loop on public UK urban roads.

A supplementary video demonstrating the system behaviour
is available here: https://wayve.ai/sim2real


https://wayve.ai/sim2real

II. RELATED WORK

There has been significant development in building sim-
ulators for the training and evaluation of robotic control
policies. While recent simulated environments, such as [24],
[5], have benefited from continued progress in photo realis-
tic gaming engines, the reality gap remains challenging. [28]
address this problem by exploiting a simulator’s ability to
render significant amounts of random colours and textures
with the assumption that visual variation observed in the
real world is covered.

An active area of research is in image-to-image trans-
lation which aims to learn a mapping function between
two image distributions [16], [15], [11], [38]. Isola et al.
[11] proposed a conditional adversarial network where the
discriminator compares a pair of images corresponding to
two modalities of the same scene. Zhu et al. [38] relaxed the
need for corresponding images by proposing a cyclic con-
sistency constraint for back translation of images. Similarly,
Liu et al. [15] combine cross domain discriminators and a
cycle consistent reconstruction loss to produce high quality
translations. We extend this framework to accommodate
learning control as an additional supervised decoder output.

A problem closer to this work is that of unsupervised
domain adaptation combining supervision from the source
domain with pairwise losses or adversarial techniques to
align intermediate features for a supervised task [29], [34],
[8]. However, feature based alignment typically requires
some additional pairwise constraints, [29] or intermediate
domains [34], [35], to bridge significant shifts in domain
appearance. Other related work align both feature and pixel
level distributions for the perception only task of semantic
segmentation [8]. The very recent work of Wenzel et al.
[33] learns transfer control knowledge across simulated
weather conditions via a modular pipeline with both image
translation and feature-wise alignment.

While the large majority of work in autonomous driv-
ing focuses on rule-based and traditional robotic control
approaches, end-to-end learning approaches have long held
the promise of learning driving policies directly from data
with minimal use of brittle assumptions and expensive hand
tuning. Pomerleau [23] first demonstrated the potential fea-
sibility of this approach by successfully applying imitation
learning (IL) to a simple real-world lane following task.
Muller et al. [20] further successfully learned to imitate
functional driving policies in more unconstrained off-road
environments with toy remote control cars.

More recently, Bojarski et al. [1] demonstrated that
simple behaviour cloning could be scaled to a larger and
more complex set of lane following scenarios when using
a multi-camera system and modern neural net architectures.
Codevilla et al. [4] took a similar multi-camera approach,
and learned to navigate successfully in simulated urban
driving scenarios by conditioning on higher level driving
decisions. Building on this, Miiller et al. [19] transferred
policies from simulation to reality by using a modular archi-
tecture predicting control decisions learned from semantic

image segmentation.

Mehta et al. [18] take a learning from demonstration
approach, and augment the control prediction task to depend
on intermediate predictions of both high-level visual affor-
dances and low-level action primitives. Kendall et al. [12]
demonstrated that pure reinforcement learning approaches
with a single camera system could be successfully applied
for learning real-world driving policies, though single cam-
era systems have typically not been implemented to date,
attributed largely to the robustness gained from training
data with multiple views and synthetic control labels. In
this work, robustness is achieved through noisy experiences
captured in simulation.

In this work, we use an intermediate representation where
an implicit latent structure is formed, as opposed to more
explicit representations, such as semantic segmentation [9].
The work presented in this paper is closest to [36] who
recently proposed to exploit image translation for learning to
steer while also sharing a similar philosophy in reducing the
complexity of the simulated environment to minimise the
sufficient statistics for the desired task. Our work differs in
that we use a bi-directional image translation model where
we are not dependent on having real-world driving com-
mands. We also demonstrate the efficacy of a driving policy
on a real system, showing closed-loop performance metrics
rather than solely open-loop metrics against a validation set.

III. METHOD

The problem of translating knowledge from expert
demonstrations in simulation to improved real-world be-
haviour can be cast into the framework of unsupervised do-
main adaptation. Here, the training set consisted of image-
label pairs from a simulated environment (X;p,, Csim ). An
independent set of unlabelled images (X,.,;) from the real
target environment was used to capture the distribution of
real-world observations. Crucially, it is important to note
there were no pairwise correspondences between images
in the simulated training set and the unlabelled real-world
image set.

A. Architecture

Our framework consisted of various modules, which can
broadly be broken down into an image-translator, a set of
domain discriminator networks and the controller network
for imitation learning. Fig. 2] provides a high-level overview
of our model, showing the flow of information between the
different modules.

1) Translator: The image-translation module followed
the general framework proposed in [15]. This consisted
of two convolutional variational autoencoder-like networks
where the latent embedding was swapped for translating
between domains. More formally:

Zd :Ed(Xd) +€ (1)
X4 =Ga(Z4) 2

where d € [sim,real] represents the domain and e ~
N(0,1) is noise added during training, but set to zero for
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Fig. 2: Model architecture for domain-transfer from a simulated
domain to real-world imagery, jointly learning control and domain
translation. The encoders Egim,req map input images from their
respective domains to a latent space Z which is used for predicting
vehicle controls ¢. This common latent space is learned through
direct and cyclic losses as part of learning image-to-image trans-
lation, indicated conceptually in Figure [3|and in Section [II-B}

inference. The process of translation consisted of computing
Zq4 using one domain encoder and then predicting X with
the other.

2) Discriminators: For each translated image a two-scale
discriminator was used to align the appearance distribution
of the translator output with the images in the corresponding
domain.

3) Controllers: The control architecture is broadly based
on the end-to-end control architecture in [4], where the
image translator forms the primary convolutional encoder.
The latent tensor Z; is passed through CoordConv [21]
layers to learn a spatially aware embedding suited for
control from this latent translation representation. Finally,
the spatially aware tensor is reduced with global average
pooling and then followed by fully connected layers.

B. Losses

Figure [3] gives an overview of the main losses.

1) Image Reconstruction Loss: For a given domain d, Fy
and G4 constitute a VAE. To improve image translation we
used an L1 Loss L,..on between an image X, and the re-
constructed image after passing it through the corresponding
VAE, X[°°" = G4(Eq(X4)), as shown in Figure

2) Cyclic Reconstruction Loss: Assuming a shared latent
space implies the cycle-consistency constraint, which says
that if an image is translated to the other domain and then
translated back, the original image should be recovered
[38], [15]. We applied a cyclic consistency loss L., to the
VAEs, given by an L1 loss between an image X, and the
image after translating to the other domain, d’, and back,
X;yc = Gd(Ed/ (Gd/(Ed(Xd)))), see Figure

3) Control Loss: To guide our model to learn features
that are useful for driving, we also used a control loss
Lecontrol, Which is an L1 loss between the controller’s
predicted steering ¢ = C(E4(X4)) and the ground truth
given by the autopilot, ¢, shown in Figure

Control should be based on the semantic content of an
image and independent of which domain the original image
came from. We therefore introduced a cyclic control loss
Leye control, a8 shown in Figure @, an L1 loss between
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Fig. 3: Learning the latent space Z for translation and control
requires a combination of direct and cyclic losses: learning to
reconstruct images intra-domain, translating them inter-domain,
while jointly learning a supervised control signal from the sim-
ulation domain. This figure does not illustrate the adversarial
or perceptual loss. The latent reconstruction loss is conceptually
analogous to Lcyc in B_El but applied to the latent space. Section
[T-B] describes these loss terms in further detail.

the predicted steering ¢ and the steering predicted by the
controller when the image was translated to the other
domain and then encoded, ¢%¥¢ = C(Eqy(Gy(Eq(Xq))))-

4) Adversarial Loss: Both the image-translator and the
discriminators were optimised with the Least-Squares Gen-
erative Adversarial Network (LSGAN) objective proposed
by [17]. The discriminator (3) and generator (@) adversarial
losses ensured that translated images resembled those from
the chosen domain.

Lr56aN (D) =Exp,.. [(D(X) — 1)+ 3)
Ezpr(2)(D(G(Z)) — 0)?]
Lrscan(G) =Ez.p,2)[(D(G(2) —1)*] @)

5) Perceptual Loss: To encourage consistent semantic
content across the two domains, we employed the use
of a pre-trained VGG [27] model, which was applied to
both the original and translated images. The perceptual loss
Lperceptual Was expressed as the difference between the
features extracted from the last convolutional layer in the
VGG16 model for a given input image and its translated
counterpart. Extracted features were normalised via Instance
Norm (IN) [31] following the result from Huang et al.
[10] demonstrating that applying IN before computing the
feature distance makes the perceptual loss more domain-
invariant.



6) Latent Reconstruction Loss: ldeally we wanted to
encode the semantic content of the images within the latent
space such that Z is independent of the domain from which
an image came. We therefore applied a latent reconstruction
loss Lzrecon, an L1 loss between the latent representation
of an image Z; and the reconstruction of the latent repre-
sentation after it was decoded to the other domain and then
encoded once more, Z°°°" = Eq (Ga (Zq)).

The total discriminator loss for a given domain was
Lrscan(D4) @B). The VAEs and the controller were
trained jointly using a weighted sum of losses with weights
Ai, given by

»Ctot :)\O»Crecon + )\1£cyc + >\2£cont7‘ol

+ >\3£cyc control T >\4£LSGAN (G) (5)
+ AE')‘Cperceptual + /\6£Zrecon-

The image translator was optimised using ADAM [13],
with a learning rate of 0.0001 and momentum terms of
0.5 and 0.999. The controller was trained using stochastic
gradient descent with a learning rate of 0.01.

IV. EVALUATION

To evaluate our approach in Section [T, we considered
data gathered from a simulated domain (with a procedurally
generated environment) and a real domain (gathered from
driving on real roads). We trained models using the methods
n first in a rural setting, to compare our method to
a number of baseline approaches. We then demonstrate our
method scaling to the complexity of public urban roads in
the United Kingdom.

Table [II| presents in-domain and cross domain open-loop
(offline) metrics for the learned controller, and Table
presents closed loop imitation control results evaluated on a
physical vehicle in the rural environment. Qualitative results
of the image-to-image translation are shown in Figure [/| for
both the rural and urban setting. The following subsections
detail the performance metrics used and test scenarios
considered, followed by an analysis of the obtained results.

A. Simulation Domain

1) Procedural Environment Generation: For the purpose
of this work we created a simulated environment where
we could build up a significant training set of image- and
control-label pairs on procedurally generated virtual roads.
Figure [Z_f] illustrates the rural simulated world, while Figure
shows the urban simulated world.

For each data collection run in the rural world, a single
road was created using a piece-wise Bézier curve gener-
ated by sampling 1-dimensional Simplex noise [22]. The
curvature of the road could be coarsely controlled using
the frequency parameter of the noise. The road surface
was then assigned a random texture from a finite set of
example road textures. Once the rural road was constructed,
trees and foliage were placed using Poisson Disk Sampling
[2] according to a foliage density parameter. In simulation
we were able to vary environmental factors, such as cloud

cover, rainfall, surface water accumulation, and time of day.
However, we fixed these as we wished to learn an image-
to-action control policy in a very narrow source domain:
we did not require high variance in the source distribution,
rather to learn how the higher variance target distribution
translates to the source.

For the urban world, we use a similar approach to
procedurally generate a road network. We procedurally
add buildings, trees and parked cars. Care was made to
approximate the layout and topology of the real-world urban
environment, but not the visual complexity or photo-realism.
Instead, we rely on the image translation model to transfer
the policy from the cartoon-like simulated world to the
visually rich real-world.

2) Simulated Expert Agent: The labelled training set was
generated from an expert autopilot agent. The expert driver
has a simple proportional controller empirically tuned to
track the lane based on ground-truth distance from the
centre, maintaining a constant vehicle speed. The curve
from Section used to generate the road was used
to generate a set of lane paths which were offset from the
central curve. One end of the road was chosen at random
and the simulated vehicle was placed at the end and told to
follow the corresponding lane path.

To perturb the vehicle state, we used additive Ornstein-
Uhlenbeck (OU) process noise [30] to the expert driver’s
actions. This had the effect of generating a more robust
training dataset by moving the vehicle throughout the driv-
able lane space, observing the expert driver’s response from
each perturbed pose. The OU noise parameters 6 and o were
selected to maximise the magnitude of perturbation while
still allowing the expert driver to largely stay within the
lane. This simulation environment ran asynchronously, with
image-label pairs captured at 10Hz.

Leveraging this expert agent to learn to drive with im-
itation learning is only possible in simulation. It requires
privileged information, such as the distance to the centre
of the lane, which is not available in the real world.
Furthermore, we perturb the state with noise to generate
richer training data; this would be dangerous in the real
world as it would require swerving on the road.

B. Real-World Domain

1) Rural road: We considered a single driving environ-
ment for initial real-world testing, consisting of a 250m
private one-lane rural road, shown in Figure 4 For safety,
the vehicle was only driven at 10 kmh~! in the absence
of any other vehicles wishing to use the road, both in data
collection and under test.

2) Urban road: In addition, we consider an urban road
environment in Cambridge, UK. We select minor public
roads in dense suburban areas and opportunistically test
when they are void of other traffic. Figure [6] illustrates
typical scenes. We test across sun, overcast and raining
weather conditions.



(a) The 250m real-world rural
driving route, coloured in blue.

(b) A procedurally generated
curvy driving route in simulation.

(d) Simulated road.

(¢) Real-world rural road.

Fig. 4: Rural setting: aerial views of the real-world (a) and
simulated driving routes (b), along with example images from each
domain showing the perspective from the vehicle (c, d).

C. Data

Table E| outlines the training, and test, lane following
datasets used. For each domain, we collected approximately
60k frames of training data and 20k frames of test data.

TABLE I: Datasets used for driving policy domain adaptation.
Each simulation frame has associated expert control labels.

Test Frames

17741
19141

Training Frames

60014
57916

Simulation
Real

1) Data Balancing: The maximum steering range of
each vehicle was parameterised to £1.0. Due to the nature
of driving, the labelled training set was heavily dominated
by data with near-zero steering angles (i.e., driving straight),
as shown in Figure 3] If the controller is trained with a naive
mean absolute error (MAE) loss, it could feasibly predict
zero steering for all outputs and fail to learn the correct
image-steering mapping.

To address this problem, we split the data into
eight bins according to the steering angle, and uni-
formly sampled from each bin, upsampling the data
such that every bin contained the same number of
samples as the bin with the maximum number of
data. The bins edges used in our experiments were
[-1,—-0.075,—0.05, —0.025, 0.0, 0.025,0.05,0.075, 1]. The
steering limits differ between vehicles, hence we applied a
linear calibration to the real vehicle steering output.
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Fig. 5: The steering data distribution (in the range +1.0) differs
dramatically between the simulation and real world, where simu-
lation has much greater variance. The real-world data has shorter
tails and is heavily concentrated around the zero position, due to
the profile of the rural driving route.

D. Transfer Learning Results

1) Baselines: We compared our method to the following
baselines:

o Simple Transfer this takes a model pre-trained in
simulation and directly applies it to the real-world data.
Note: compared to the following this model only sees
examples from simulation.

o Real-to-Sim Translation uses the unsupervised image-
to-image translation to convert a real-world image to
the simulation domain for direct application of the
controller pre-trained in simulation.

o Sim-to-Real Translation uses the unsupervised image-
to-image translation for training a controller on trans-
lated images (sim-to-real) with corresponding simu-
lated actions. At test time no translation was performed
and only the controller was used.

o Latent Feature ADA applies Adversarial Domain
Adaptation (ADA) [34] to the feature space to align
encoders from simulation and real data.

For evaluation, we also compared a Drive-Straight policy
as a proxy to assess road curvature, and to quantitatively
assess the efficacy of offline metrics.

2) Performance Metrics: Open-loop evaluation of con-
trol policies is an open question: [3] and [36] present a range
of metrics, demonstrating weak correlation between offline
metrics and online performance. We adopted two metrics to
compare driving policies: mean average error (MAE), and
Balanced MAE. These metrics for all approaches tested here
are outlined in Table [l The MAE between the predicted
and ground-truth steering is a useful loss function, but poor
reflection of actual performance due to the data imbalance.
We propose a Balanced-MAE metric: discretising the vali-
dation data as per the bins in Section [[V-C.I] computing the
MAE of the data per bin, then taking an equally weighted
average across all bins (similar in principle to mean AP
in object detection or recognition tasks). Qualitatively, we
found that this metric correlates with closed-loop driving
performance in simulation.

For closed-loop testing on our rural driving route, we used
a simple measure of distance travelled per safety driver in-
tervention in metres travelled, averaged over 3km of driving.
During test, we ran the models at close to the camera’s 30Hz



(a) Simulated urban world.

all experiments.

(b) The real-world autonomous vehicle used for

(c) An example of the real-world urban roads used
for closed loop testing in Cambridge, UK.

Fig. 6: Urban setting: illustrations of the simulated and real-world domains for urban road scenes. Despite quite a large appearance
change from the cartoon-like simulated world to the real-world, our model is able to successfully transfer the learned control policy to

drive in in the real world, with no real world labels.

frame rate. Table [Tl outlines the performance of our system,
as well as a number of baseline models. We found that the
open-loop metrics in Table [[I] hold only a weak correlation
with real-world performance, demonstrated by the differ-
ence in closed- and open-loop performance between our
model and the baseline approaches. Clearly, further work
is needed to develop open-loop metrics which support real-
world performance.

TABLE II: Open-loop control metrics on the simulation and real
test datasets from Table [l}

Simulation Real

MAE Bal-MAE MAE Bal-MAE
Drive-Straight 0.043 0.087 0.019 0.093
Simple Transfer 0.05 0.055 0.265 0.272
Real-to-Sim Translation - - 0.261 0.234
Sim-to-Real Translation - - 0.059 0.045
Latent Feature ADA 0.040 0.047 0.032 0.071
Ours 0.017 0.018 0.081 0.087

TABLE III: On-vehicle performance, driving 3km on the rural
driving route in fa] For policies unable to drive a lap with < 1
intervention, we terminated after one 250m lap (}).

Mean distance / intervention (metres)

Drive-straight 23t

Simple Transfer of

Real-to-Sim Translation 10t

Sim-to-Real Translation 28t

Latent Feature ADA 15t
Ours No intervention over 3km

3) Loss Ablation: The various terms in Eqn. [j] are
designed to work in concert to maintain a structured latent
space to facilitate zero-shot transfer from simulated label to
the real domain. The following ablation study investigates
the influence of each term by setting the corresponding
weighting A to zero, effectively removing it from the
training procedure. Table [[V] shows that all terms play a
significant role in reducing the error with the exception of
the cyclic control factor. This indicated that the other cyclic

losses are sufficient to maintain a shared latent structure.
Not surprisingly, the L1 cyclic reconstruction and GAN
loss from [15] are most critical for control transfer. Finally,
as removing the control term prevented the network from
learning anything sensible, we instead evaluated the effect
of the gradients of the controller on the image translator.
Here we zeroed the gradients from the controller before
flowing back into the translator, effectively turning the
controller into a passive neural stethoscope, as described
in [6]. These gradients would normally help inject structure
for the task into the translator in an auxiliary fashion leading
to better real-world performance. This increase in error by
not optimising the encoders for both tasks could also be a
contributing factor to the poor performance of the translation
baselines (real-to-sim and sim-to-real).

TABLE IV: Ablation by removing single terms in eqn. |5} Values
expressed as the average error multiplier across three runs for the
open-loop metrics when transferred to the real domain test dataset.
For the Control term the gradients applied to the image translator
for this loss are removed (1).

MAE Bal-MAE
Recon. L1 1.602 1.259
Recon. Cyclic L1~ 2.980 2.395
Z Recon. 1.766 1.270
Perceptual 1.693 1.435
Cyc Control 0.923 1.068
GAN 1.893 1.507
Control-grad(}) 1.516 1.433

4) Urban Road Results: To further demonstrate the ef-
ficacy of our method, we performed closed-loop testing on
public UK urban roads. Using our model, we were able
to successfully demonstrate the vehicle lane-following on
dense urban side streets in Cambridge, UK. Examples are
shown in Figure [7b]

We observed one main conclusion: the model is typically
able to drive if, and only if, the visual translation is
successful. For example, when the topology of the road and
all cars are translated correctly between domains, the car’s
control policy gives the desired lane-following closed-loop
behaviour. When a car is mis-translated into a footpath, the



(a) Rural environment.

& i

(b) Urban environment.

Fig. 7: Qualitative results of the image translation model for (a) rural and (b) urban environments. In each example, the top four rows
show images originating in our simulated environment, and the bottom half showing translation from real world images. The columns
left to right are as follows: original, image reconstructed from latent back to original domain, translated to other domain, and taking

the translated image and translating it back to the original domain.

control policy requires intervention. Therefore, we conclude
that this method may be able to scale to more complex do-
mains, beyond simple lane following tasks, if the simulator
is capable of simulating these scenarios and we can learn a
successful domain translation model.

5) Visualisation: Understanding the performance of a
control policy coupled with image domain transfer can be
difficult. The bi-directional image translator provides the
ability to inspect the model’s interpretation of the road
surface as shown in Fig. [7]] Here we can observe that the
curvature and offset of the road is appropriately translated
across domains facilitating a consistent transfer of the
steering signal. Interestingly, in the third row of Figure [7a]
(where the vehicle is nearly driving off the virtual road,
which is far from the distribution of collected real images)
we notice the model will generate an image closer to the
distribution of real-world observations. In such scenarios,
the controller is trained with a high magnitude steering
command to correct its course in simulation, which results
in robust behaviour in the real world as it controlled the
vehicle back into the distribution of real observations.

V. CONCLUSIONS

Learning a driving policy from simulation has many
advantages: training data is cheap, auxiliary ground-truth
information can be provided with ease, and the vehicle
can be put in situations that are difficult or dangerous to
undertake in reality. Previously, with the substantial gap
in complexity between the two domains, it was considered

infeasible to transfer driving policies from simulation to the
real world.

In this work, we present the first system that is capable of
leveraging simulation to learn an end-to-end driving policy
to directly transfer to real-world scenarios without any
additional human demonstrations. This model jointly learns
to translate images between the real-world operating domain
and a procedurally generated simulation environment, while
also learning to predict control decisions off of the latent
space between the two domains given only the ground-
truth labels from simulation. We empirically validated our
proposed model in closed-loop against several baselines,
successfully driving 3km between interventions on a real-
world lane following task. We further evaluated the model
using several standard open-loop metrics, observing that
these metrics ultimately did not prove predictive of driving
performance. Finally, we demonstrated this system driving
in closed-loop on public urban roads in the United Kingdom.

This work provides evidence that end-to-end policy learn-
ing and simulation-to-reality transfer are highly promis-
ing directions for the development of autonomous driving
systems. We note that standard open-loop metrics for this
problem need to be improved, and leave this question
to future work. Furthermore, the addition of orthogonal,
but relevant, approaches on temporal motion consistency
[32], [37] could further advance this field. We hope this
work inspires further investigation of both learning driving
policies directly from data, and exploiting simulation for
removing the constraints of the real world.
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