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Abstract— Pose estimation is one of the most important
problems in computer vision. It can be divided in two different
categories — absolute and relative — and may involve two
different types of camera models: central and non-central.
State-of-the-art methods have been designed to solve separately
these problems. This paper presents a unified framework that
is able to solve any pose problem by alternating optimization
techniques between two set of parameters, rotation and transla-
tion. In order to make this possible, it is necessary to define an
objective function that captures the problem at hand. Since the
objective function will depend on the rotation and translation
it is not possible to solve it as a simple minimization problem.
Hence the use of Alternating Minimization methods, in which
the function will be alternatively minimized with respect to
the rotation and the translation. We show how to use our
framework in three distinct pose problems. Our methods are
then benchmarked with both synthetic and real data, showing
their better balance between computational time and accuracy.

I. INTRODUCTION

Camera pose is one of the oldest and more important
problems in 3D computer vision and its purpose is to find the
transformation between two reference frames. This problem
is important for several applications in robotics and computer
vision, ranging from navigation, to localization and mapping,
and augmented reality.

Pose problems can be divided in two categories: absolute
and relative. In the absolute pose problem, the goal is to find
the transformation parameters (rotation and translation) from
the world’s to the camera’s reference frame, using a given set
of correspondences between features in the world and their
images. On the other hand, the relative pose aims at finding
the transformation between two camera coordinate systems,
from a set of correspondences between projection features
and their images. In addition, cameras can be modeled by
the perspective model [1], [2], known as central cameras, or
by the general camera model [3], [4], [5], here denoted as
non-central cameras. We have noticed that, in the literature,
the four cases mentioned above have been in general treated
separately, being each case solved by a specific method (a
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(a) Central (b) Non-Central

Absolute Pose Problems

(c) Central (d) Non-Central

Relative Pose Problems

Fig. 1. Representation of the pose configurations that can be solved using
the proposed framework: (a) & (b) show the absolute pose for central
cameras and non-central cameras, respectively; and (b) & (c) depict the
relative pose for central cameras and non-central cameras, respectively. Blue
features (both 3D points and 3D lines in the camera and world coordinates
respectively) are the input data.

scheme of those specific configurations is shown in Fig. 1.).
In this paper, we aim at proposing a general framework for
solving general pose problems (i.e. absolute/relative using
central/non-central cameras).

In addition to central/non-central & absolute/relative cases,
pose problems may use minimal or non-minimal data. While
the latter consists in estimating the best rotation and trans-
lation parameters that fit a specific pose, the former is
important for robust random sample consensus techniques
(such as RANSAC [6]). Minimal solutions aim at providing
very fast solutions (which are achieved by using the minimal
data necessary to compute a solution), and their goal is to
obtain a solution that is robust to outliers, rather than giving
the best solution for the inliers within the dataset. This means
that, even in an environment with outliers, it is important to
run non-minimal techniques after getting the inliers from a
RANSAC technique to get the best solution.

Being one of the most studied problems in 3D vision, there
are several distinct algorithms in the literature to solve each
of the problems. When considering absolute pose problems
(see Figs. 1(a) and 1(b) for the case of 3D points and
their respective images), there are solutions using minimal
data with both points and line correspondences for central
cameras [7], [8], [9], [10], for non-central cameras [11], [12],
[13], [14], [15]; using non-minimal data using both points
and lines for central cameras [16], [17], [18], and for non-
central cameras, [19], [20], [21], [22], [23], [24].

When considering relative pose problems (see Figs. 1(c)
and 1(d)), there are several solutions for the central camera
model, both using minimal data [25], [26], [27], [28] & non-
minimal data [29], [30], [31]; and for general non-central
cameras using minimal data [32], [33] & non-minimal data
(using both points and lines) [34], [35], [36]. An interesting

ar
X

iv
:1

90
4.

04
85

8v
1 

 [
cs

.C
V

] 
 9

 A
pr

 2
01

9



minimal method that combines both absolute and relative
problems was recently proposed in [37].

In this paper we are interested in non-minimal solvers,
i.e. we assume that, if necessary, a RANSAC technique was
used to get the best inliers before applying our method. We
propose a more generic and simpler approach to solve these
problems, that can be used in all pose problems. We managed
to do so by formulating our problem as an optimization one.
Thus, it is necessary to provide an expression for the objec-
tive function and the gradients for both the translation and
rotation parameters. In the rest of this section we describe the
problem, the challenges, and our contributions. In Sec. II we
present our framework and the involved algorithms. Sec. III
shows some applications in which we use the proposed
framework, and the experimental results are presented in
Sec. IV. Conclusions are drawn in Sec. V.

A. Problem Statement and Challenges

In its simplest and most general form, the solution to any
pose problem (whether it is absolute/relative for central/non-
central cameras) verifies

F(R, t) =

N∑
i=1

ei(R, t,Di)
2 = 0, (1)

where ei are the geometric/algebraic residuals, R ∈ SO(3)
is the rotation matrix, t ∈ R3 is the translation vector,
N is the total number of correspondences and Di is the
known data related with the ith correspondence. This data
may involve correspondences between 3D projection lines
(relative pose problems) or between projection lines and 3D
points (absolute pose problems). Under this formulation, any
problem can then be stated as

{R∗, t∗} = argmin
R∈SO(3), t∈R3

F (R, t). (2)

In terms of challenges, this problem is, in general, difficult
due to its non-linearities:

1) F is usually a high degree polynomial with monomials
combining the nine elements of the rotation matrix and
the translation vector; and

2) R ∈ SO(3), i.e. RTR = I, corresponds to nine non-
linear quadratic constraints.

B. Our Contributions and Outline of the Paper

We propose a framework to solve absolute/relative pose
problems, for central/non-central camera models, using an
Alternating Minimization Method (AMM) and define the
corresponding optimization models. The proposed frame-
work requires as inputs:

1) The Di upon which the objective function can be
obtained;

2) The specific objective function expression and its Eu-
clidean gradients w.r.t. the rotation (∇g(R)) and the
translation (∇h(t)).

Both inputs come from the geometry of the problems and
from the derivatives of the objective function. There is no
need for complex simplifications nor additional complex

solvers, which have been used to solve this type of problem
in the literature. This is tackled in Sec. II.

To sum up, the main contributions of this paper are:
1) The use of an AMM to relax the high degree polynomi-

als associated with F and their respective constraints
(first challenge presented in the previous subsection);

2) Present steepest descent based algorithms to find the
optimal rotation and translation parameters;

3) Provide some applications of our framework, in which
we use the objective functions of [34], [38], and [21]
(with slight changes to ensure that they do not depend
on the number of correspondences).

The proposed technique is evaluated using synthetic and
real data, in which we prove that, despite the simple formu-
lation, it significantly improves the computational time when
compared with the state-of-the-art techniques.

II. SOLVING POSE PROBLEM USING ALTERNATING
MINIMIZATION

This section presents our generic framework. We start
by describing the Alternative Minimization theory (Sec. II-
A), and then propose an algorithm to solve a general pose
problem (Sec. II-B). Finally, Sec. II-C presents the solvers
used in the framework.

A. Alternating Minimization Method (AMM)

The goal of an AMM [39], [40] is to find the minimum
of a given objective function depending on two variables P
and Q, where P belongs to a given set P , and Q to Q.
According to [40], the AMM may be formulated as

{P ∗, Q∗} = argmin
(P,Q)∈(P×Q)

Λ (P,Q) , (3)

where P and Q are the sets of variables, and Λ : P×Q → R
is the function to be minimized. The strategy is to fix one of
the variables and solve the resulting optimization problem,
in an iterative way. Then, in each iteration, there are two
distinct problems that need to be solved:

Pk = argmin
P∈P

Λ (P,Qk−1) (4)

Qk = argmin
Q∈Q

Λ (Pk, Q) , (5)

starting with a suitable initial guess Q0. The stopping con-
dition for the iterative cycle is

|Λ (Pk, Qk)− Λ (Pk−1, Qk−1) | < τ or k = kmax, (6)

where τ is a threshold for the absolute value of the variation
of the objective function in two consecutive iterations, and
kmax is the maximum number of iterations allowed.

B. AMM for Pose Problems

Since a pose estimation problem aims at finding a rotation
matrix R∗ and a translation vector t∗, the AMM variables
P and Q are set to R and t, respectively. In order to use
AMM to solve these problems, we need: 1) an expression
for the objective function & its gradients; and 2) solvers to
the minimization problems.



Algorithm 1 General AMM algorithm for solving pose
problems

1: t0 ← initial guess; . Sets an initial guess for the translation
2: δ ← 1; . Defines an initial value for the error
3: k ← 1; . Variable identifying the iterations
4: τ ← tol; . Sets the limit tolerance
5: kmax ← max iter; . Sets the maximum number of iterations
6: while δ > τ and k < kmax do . Iterative cicle
7: Rk ← argminR∈SO(3)F (R, tk−1); . New rotation
8: tk ← argmint∈R3F (Rk, t); . New translation
9: δ = |F (Rk, tk)−F (Rk−1, tk−1)|; . Updates the error

10: k = k + 1; . Adds one iteration
11: R = Rk and t = tk; . Sets the output estimation

Let us consider a generic pose problem, as shown in
(2). Depending on the problem, data Di can be 2D/2D or
3D/2D correspondences (either relative or absolute poses,
respectively). Then, we can use the method presented in
Sec. II-A to solve the problem: an iterative method which
starts by taking an initial guess on the translation (t0) and
solve for R1:

R1 = argmin
R∈SO(3)

F (R, t0) , (7)

yielding an estimate for the rotation matrix which will be
plugged into

t1 = argmin
t∈R3

F (R1, t) . (8)

This process repeats for all new estimates tk, until the
stopping condition of (6) is met. An overview of the proposed
method is given in Algorithm 1. As a framework, in this
stage, one has only to provide F (R, t), which depends on
the specific pose problem to be solved. Below, we present
two efficient techniques to solve (7) and (8).

C. Efficient Solvers for the AMM Sub-Problems (7) and (8)

To ease the notation, we consider g (R) = F (R, tc)
and h (t) = F (Rc, t), where Rc and tc represent constant
rotation and translation parameters.

Efficient solution to (7): We use a steepest descent algorithm
for unitary matrices [41], [42] that does not consider the
unitary constraints explicitly. This is achieved by iterating in
the SO(3) manifold. At the beginning of each iteration, we
compute the Riemannian gradient (Zk), which is a skew-
symmetric matrix. Geometrically, it corresponds to the axis
from which a rotation step will be calculated. Then, we find
the angle that, together with the axis, defines the rotation
step that will be applied to the rotation at the beginning of
the iteration to reduce the value of the objective function.
The details are described in Algorithm 2.

Efficient solution to (8): We use another algorithm of
steepest descent type [41]. In each iteration, the translation
gradient is calculated and multiplied by a coefficient. Then
it is added to the current translation. In this way, the solver
will converge to a translation vector that will minimize the
function for a certain rotation matrix. Details are shown in
Algorithm 3.

Algorithm 2 Generic Solver for the Rotation Matrix. Al-
though g(R) depends on the translation, this variable remains
constant during the algorithm, so it is omitted. ∇g (R)
stands for the calculated Euclidean gradient of the objective
function.

1: X0 ∈ SO(3)← initial guess; . Initial guess for the rotation
2: µ1 ← 1; . Initial angle for the deviation in the SO(3) manifold
3: δ ← 1; . Sets an initial value for the error
4: τ ← tol; . Sets a limit for the tolerance
5: k ← 0; . Initiates the number of iterations
6: while δ > τ do . Optimization cycle
7: Zk ← ∇g(Xk)X

T
k −Xk∇g(Xk)

T ; . Riemannian gradient
8: zk ← 0.5 trace(ZkZ

T
k ); . Rate at which a rotation step is found

9: Pk ← I+ sin (µk)Z
T
k + (1− cos (µk))

(
ZT
k

)2; . Iterative step
10: Qk ← PkPk; . Initial hypothesis of an iterative step
11: while g(Xk)− g(QkXk) ≥ µkzk do . Updates the hypothesis
12: Pk ← Qk; . Updates the iterative step
13: Qk ← PkPk; . Computes the new hypothesis
14: µk ← 2µk; . Updates the step
15: while g(Xk)− g(QkXk) < 0.5µkzk do . Updates the step
16: Pk ← I+ sin (µk)Z

T
k + (1− cos (µk))

(
ZT
k

)2; . Step
17: µk ← 0.5µk; . Updates the rotation angle
18: Xk+1 ← PkXk; . Computes the new estimate
19: δ ← ‖Xk+1 −Xk‖frob; . Sets the new error
20: k ← k + 1; . Updates the iterative counter
21: R← Xk; . Returns the best estimate

Algorithm 3 Generic Solver for the translation vector.
∇h (t) represents the calculated gradient of the objective
function in order to the translation’s elements

1: x0 ∈ R3 ← initial guess; . Initial guess for the translation
2: δ ← 1; . Sets an initial value for the error
3: α← step; . Chooses a step
4: τ ← tol; . Sets a limit for the tolerance
5: k ← 0; . Initiates the number of iterations
6: while δ > τ do . Optimization cycle
7: xk+1 ← xk − α ∇h (xk); . Updates the guess

8: α =
(xk+1−xk)

T (∇h(xk+1)−∇h(xk))
|∇h(xk+1)−∇h(xk)|2

; . Updates α

9: if h (xk+1) > h (xk) then . Checks if function value increased
10: break; . If it is, stop the cycle
11: δ ← ‖h (xk+1)− h (xk)‖frob; . Updates the error
12: k ← k + 1; . Updates the iterative counter
13: t← xk; . Returns the best estimate

Keep in mind that Algorithms 1, 2, and 3, upon which
our general framework is based, only require the objective
function F(R, t) (which depends on the pose problem) and
its gradients ∇g (R) & ∇h (t).

To evidence the simplicity of our framework in solving
pose problems, we present, in the next section, three different
applications, i.e. we explain how the framework is applied
to three different F(R, t).

Our framework was implemented in C++ in the OpenGV
framework. The code are available in the author’s webpage.

III. APPLICATIONS OF OUR FRAMEWORK

This section presents three applications of the proposed
framework to solve: a relative pose problem (Sec. III-A) and
two absolute pose problems (Secs. III-B and III-C).



A. General Relative Pose Problem

A relative pose problem consists in estimating the rotation
and translation parameters, which ensure the intersection of
3D projection rays from a pair of cameras. Formally, using
the Generalized Epipolar constraint [43], for a set of N
correspondences between left and right inverse projection
rays (which sets up Di), we can define the objective function
as

F(R, t) =

N∑
i=1

vT
(
aia

T
i

)
v with v =

[
e
r

]
⇒

F(R, t) = vTMv, where M =

N∑
i=1

aia
T
i , (9)

where ai is a 18 × 1 vector that depends on Di and e &
r are 9 × 1 vectors built from the stacked columns of the
essential [44] and the rotation matrices, respectively.

The expressions of ∇g(R) and ∇h(t) are computed
directly from (9):

∇g(R) = 2
dvT

dr
Mv and ∇h(t) = 2

dvT

dt
Mv, (10)

where dvT

dt and dvT

dr are matrices whose expressions, due to
space limitations, are in the supplementary material. Check
the author’s webpage.

B. General Absolute Pose Problem

This section addresses the application of the proposed
framework to the general absolute pose, i.e. for a set of
known correspondences between 3D points and their respec-
tive inverse generic projection rays (as presented in [3], [4],
[5]), which set up Di. We consider the geometric distance
between a point in the world and its projection ray presented
in [45], [38]. After some simplifications, we get the objective
function

F(R, t) = rTMrrr+vT
r r+ tTMtrr+ tTMttt+vT

t t+ c,
(11)

where matrices Mrr, Mrt, Mtt, vectors vr, vt, and scalar c
depend on the data Di. Again, due to space limitations, these
parameters are in the supplementary material. The gradients
are easily obtained [46]:

∇g(R) = 2Mrrr + vr + MT
trt and (12)

∇h(t) = 2Mttt + Mtrr + vt. (13)

Although not necessary for our framework, one important
advantage of having (11), (12), and (13) in this form instead
of the more general formulation of (1), is that the calculation
of the objective function and its gradients will not dependent
on the number of points, leading to a complexity O(1),
instead of O(N).

C. General Absolute Pose Problem using the UPnP Metric

In Sec. III-B, the geometric distance is used to derive an
objective function. In the present case we derive a function

based on [21]1. The starting point is the constraint

αivi + ci = Rpi + t, ∀i ∈ [1, N ], (14)

where αi represents the depth, ci ∈ R3 is a vector from
the origin of the camera’s reference frame to a ray’s point,
vi ∈ R3 represents the ray’s direction, and pi is a point in the
world’s reference frame. Eliminating the depths αi will result
in an objective function which has the same format as (11),
but matrices Mrr, vr, Mtr, Mtt, vt, and scalar c do not
depend on the data in the same way as in the previous case
(details will also be provided in the supplementary material).

IV. RESULTS

This section presents several results on the evaluation and
validation of the proposed framework, in the pose problems
of Sec. III. The code, developed in C++ within the OpenGV
framework [47], will be made public. We start by evaluating
the methods using synthetic data (Sec. IV-A), and conclude
this section with the real experimental results (Sec. IV-B).

A. Results with Synthetic Data

This section aims at evaluating our framework (Sec. II)
under the applications presented in Sec. III, using synthetic
data. More specifically, we use the OpenGV toolbox2. Due
to space limitation, we refer to [47] for the details on the
dataset generation.

We start by the relative pose problem addressed in Sec III-
A, here denoted as AMM, in which the results are presented
in Fig. 2. We consider the current state-of-the-art techniques:
ge (Kneip et al [48]); the 17 pt (Li et al [34]); and the
non-linear (Kneip et al [21]). We use randomly gener-
ated data, with noise varying from 0 to 10. For each level
of noise, we generate 200 random trials with 20 correspon-
dences between lines in the two camera referential frames,
and compute the mean of the errors: 1) The Frobenius norm
of the difference between the ground-truth and estimated
rotation matrices; and 2) The norm of the difference between
the ground-truth and the estimated translation vectors. In
addition, we store and compute the mean of the computation
time required to compute all the trials. The results for the
errors are shown in Fig. 2(a) and for the computation time
in Fig. 2(b).

Next, we evaluate the techniques in Secs. III-B and III-
C, for the estimation of the camera pose. Again, we con-
sider the OpenGV toolbox to generate the data, the metrics
used were the same as before, as well as the number of
trials & correspondences. In this case we consider both
the central and the non-central cases. Results are shown
in Figs 3(a) and 4(a). In addition to the methods in
Secs. III-B and III-C (denoted as AMM (gpnp) and AMM
(upnp), respectively) for the central case, we consider: p3p
(ransac) (a closed-form solution using minimal data [7]
within the RANSAC framework); epnp (presented in [16])
and upnp and non-linear (shown in [21]) which are

1The well known method denoted as UPnP.
2The state-of-the-art techniques were already available to use.



(a) Sensitivity to noise pixels for the general relative pose

Method Time [ms]
ge 1.495× 100

17pt 4.376× 101

amm 1.000× 10−1

non linear 1.223× 102

(b) Execution time (ms) for different
algorithms

Fig. 2. Results for the evaluation of the method proposed in Sec. III-A (which implicitly uses our framework), as a function of the sensitivity to noise
(a) and as a function of the required computation time (b). The current state-of-the-art techniques were considered.

(a) Sensitivity to noise pixels for the central absolute pose

Method Time [ms]
epnp 8.965× 10−2

upnp 5.102× 10−1

non linear 4.081× 10−1

amm gpnp 6.400× 10−2

amm upnp 7.152× 10−2

p3p (ransac) 1.953× 10−1

(b) Execution time (ms) for different
algorithms

Fig. 3. Evaluation of proposed framework with applications of Secs. III-B and III-C, in a central absolute camera pose. We evaluate both the errors
in terms of noise in the image (a) and in terms of computation time (b). In terms of state-of-the-art techniques, we consider both the ones with lower
computation time and with robust sensitivity to noise.

(a) Sensitivity to noise pixels for the non-central absolute pose

Method Time [ms]
gpnp 3.85× 10−1

upnp 5.10× 10−1

non linear 4.74× 10−1

amm gpnp 6.35× 10−2

amm upnp 7.04× 10−2

gp3p (ransac) 1.38× 100

(b) Execution time (ms) for different
algorithms

Fig. 4. Evaluation of proposed framework with applications of Secs. III-B and III-C, in a non-central absolute camera pose. We evaluate both the errors
in terms of noise in the image (a) and in terms of computation time (b). In terms of state-of-the-art techniques, we consider both the ones with lower
computation time and with robust sensitivity to noise.

state-of-the-art techniques to compute the camera absolute
pose. For the non-central case, we considered: the gpnp
(presented in [38]); the upnp (proposed by Kneip et al [21]);
the gp3p (ransac) (minimal solution [11] used within
the RANSAC framework); and the non linear (method
presented in [21]).

As the initial guess for translation t0, required by our
framework (Algorithm 1), we use the solution given by
respective minimal solvers for the absolute pose problems,
and the solution given by the linear 17pt with a minimum
required number of points for the relative pose problem3.
These are very sensitive to noise but very fast, being therefore
suitable for a first estimate.

For the relative case (Fig. 2), the rotation found is close

3Note that this solution with the miminimum number of points is
significantly faster than the one shown in Tab. 2(b) for the 17pt that uses
all the available points

to the ge for each noise level and it takes significantly less
time. The non linear algorithm has the best accuracy,
but its computation time is one order of magnitude higher
than all other algorithms considered.

For the central absolute pose (Fig. 3), the upnp and
non linear present the same or higher accuracy than our
method, but their computation time is one order of magnitude
higher (10 times slower). The epnp algorithm’s computa-
tion time is similar to ours but significantly less accurate,
while the minimal case with RANSAC (p3p (ransac))
is slower and less accurate than ours. For the general non-
central absolute pose case (Fig. 4), concerning the upnp
and non linear, the conclusion is the same as before,
likewise the minimal case within the RANSAC framework
gp3p (ransac).

From these results, one can conclude that the AMM
framework proposed in this paper performs better than other



(a) Used camera system.

(b) Three images acquired at the same instant
of time.

(c) Recovered path using only Camera 1. (d) Recovered path using the three cameras

Fig. 5. These figures show the recovered paths from the multi-perspective camera system shown in (a), whose set of images in a specific instance of time
is given are shown in (b). (c) shows the results obtained for the path using the absolute central case (only camera 1 was considered), and (d) presents the
results for the absolute noncentral case, where all the three cameras of the multi-perspective system were considered.

methods, despite the fact that it involves an iterative set of
simple optimization steps.

B. Results with Real Data

For the experiments results with real data, we have consid-
ered a non-central multi-perspective imaging device, which
is given by three perspective cameras with non-overlapped
field of view (see the setup in Fig. 5(a)). Datasets such as
KITTI [49] usually consider stereo systems in which the
cameras are aligned with the moving direction of the vehicle.
In such cases, when we find the correspondences between
two images, the projection lines associated with pixels cor-
responding to the projection of the same world point become
nearly the same, making it difficult to recover the pose using
the epipolar constraint (degenerate configuration). This new
dataset was acquired to avoid degenerate configurations.

Images were acquired synchronously4 from a walking path
of around 200 meters (see examples of these images in
Fig. 5(b)). To get the 2D to 3D correspondences, we use
the VisualSFM framework [50], [51].

Cameras’ intrinsic parameters were computed offline. The
correspondences between image pixels that are the images of
3D points are converted into 3D projection lines by using the
correspondent camera parameters and their transformation
w.r.t. each other. The bearing vectors (direction correspond-
ing to the projection rays) and camera centers w.r.t the
imaging coordinate system are given as input (Di) to the
framework (as well as the 3D points), which were used to
compute the absolute pose.

In this experiments, it was considered the following state-
of-the-art methods: gpnp presented in [38]; the upnp et
al [21]; the miminimal solution gp3p [11]; and the non
linear method [21]. Looking at 5(c) and 5(d), it is possible
to conclude that all methods retrieve the path.

In terms of results, for the central case the following times
were obtained: non linear 18.00s; upnp 0.75s; epnp
0.07s; amm (gpnp) 0.11s; and amm (upnp) 0.11s (the
values of time are the sum of the time computed along

4We use the ROS toolbox (http://www.ros.org/) for that purpose.

the path). For the general mon-central case the following
times were obtained: non linear 37.59s; upnp 1.14s;
amm (gpnp) 0.17s; and amm (upnp) 0.27s.

These results are in accordance with the conclusions of the
precedent subsection. Because of its simplicity, the proposed
framework solves these problems faster than current state-of-
the-art approaches designed to solve specific pose problems.

V. DISCUSSION

In this paper, we have proposed a general framework
for solving pose problems. Instead of considering each one
individually, we start from a general formulation of these
kind of problems, and aimed at a framework for solving
any pose problem. We state the problem as an optimization
one, in which we use an alternating minimization strategy
to relax the constraints associated with the non-linearities of
the optimization function.

Theoretically, our framework comes with three different
algorithms that were optimized for pose estimation purposes.
As for inputs, in addition to the data, the proposed frame-
work requires an objective function (which depends on the
considered residuals and data) and their respective gradients
w.r.t. the rotation and translation parameters, being therefore
very easy to use because: 1) there is no need to eliminate
unknown variables to relax the optimization process; and 2)
no specific solvers are needed. The framework was included
in the OpenGV library, and will be made available for the
community5.

In terms of experimental results, we run several tests using
both synthetic and real data. The main conclusion is that,
although the framework is general (in the sense that their
solvers aim to solving any pose problem) and very easy
to solve (requires few information on the used metric), the
sensitivity to noise is not affected (note that this depends on
the chosen residual formulation), while being considerably
faster.

5Check the author’s webpage.
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POSEAMM: A Unified Framework for Solving
Pose Problems using an Alternating Minimization Method

(Supplementary Material)

João Campos1, João R. Cardoso2, and Pedro Miraldo3

Abstract— This document contains the supplementary mate-
rial of the paper entitled POSEAMM: A Unified Framework
for Solving Pose Problems using an Alternating Minimization
Method, that was accepted in the 2019 IEEE Int’l Conf.
Robotics and Automation (ICRA). Here, we provide the aux-
iliary calculations that led to the objective functions and their
respective gradients (in terms of the rotation and translation
parameters). In addition, we include the prototypes of the
framework implemented in C++ in the OpenGV toolbox, and
show an example of its application as well. As an overview, in
Sec. VI, we will explain the calculations in Sec. III-A of the
main paper. In Sec. VII and VIII we present the calculations
for Secs. III-B and III-C in the main paper. In Sec. IX we
present the implementation of the objective functions.

VI. GENERAL RELATIVE POSE PROBLEM

In this section we explain with detail how the objective
function (Sec. VI-A) and their respective gradients (Sec. VI-
B) presented in Eq. 9 and 10 of the main paper have been
obtained.

A. Objective function F(R, t)

For the objective function, we considered the Generalized
Epipolar constraint [43]:

lT1 F l2 = 0, with F =

[
E R
R 0

]
, (15)

where l1 and l2 are the Plücker coordinates of two distinct
3D projection rays that intersect, in two distinct frame
coordinates (let us say 1 and 2). E and R are the essential [1]
and the rotation matrices that represent the transformation
between the frame coordinates considered. Applying the
Kronecker product (here denoted as ⊗) to (15) yields(

lT2 ⊗ lT1
)
f = 0, (16)

where f corresponds to F stacked column by column.
Considering that some elements of the matrix F are zero,
it is possible to verify that the entries in positions 22-24, 28-
30, and 34-36 of the vector f are zero. Thus, we can rewrite
(16) as:

aTv = 0 with v =

[
e
r

]
, (17)
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in which e and r represent the essential and rotation matrices
stacked. The vector v will have the same elements as f except
for the ones that are null. The vector a can be obtained by
eliminating the elements in positions 22-24, 28-30, and 34-
36 of the vector

(
lT2 ⊗ lT1

)
∈ R1×36, since they will multiply

by f ’s null elements, and by taking the elements 4-6, 10-12
and 16-18 in

(
lT2 ⊗ lT1

)
and summing them to the elements

19-21, 25-27 and 31-33, since they will be multiplying by the
first, second and third column of R, respectively. Now, each
correspondence between l1 and l2 has a vector ai associated.
Thus, the objective function can be written as

F(R, t) =

N∑
i=1

vT
(
aia

T
i

)
v ⇒

F(R, t) = vTMv,where M =

N∑
i=1

aia
T
i , (18)

yielding Eq. 9 of the paper.

B. Gradients for ∇g (R) and ∇h (t)

Here, we will give the full form of the rotation (here
denoted as ∇g (R)) and the translation (∇h (t)) gradients.

The essential matrix is given by E = t̂R, where t̂ is
the skew-symmetric matrix associated with the translation
vector. The explicit expression of v results from stacking
the elements of E:

E =

t2r3 − t3r2 t2r6 − t3r5 t2r9 − t3r8
t3r1 − t1r3 t3r4 − t1r6 t3r7 − t1r9
t1r2 − t2r1 t1r5 − t2r4 t1r8 − t2r7

 , (19)

followed by the stacking of the elements of R. The vector
v will depend on 12 distinct variables. Considering the
objective function as given in (18) , we have

F (R, t) =

18∑
i=1

18∑
j=1

viMijvj . (20)

Now, computing the derivative of F (R, t) with respect to
a variable λ representing any element of the rotation matrix
or the translation vector, and taking into account that MT =



M yields

dF (R, t)

dλ
=

18∑
i=1

18∑
j=1

(
dvi

dλ
Mijvj + viMij

dvj

dλ

)
=

dvT

dλ
Mv + vTM

dv

dλ
(21)

=
dvT

dλ
Mv +

dvT

dλ
MTv

= 2
dvT

dλ
Mv.

Consider the derivatives of v in order to the three elements
of the translation t:

dvT

dt1
=
[
0 −r3 r2 0 −r6 r5 0 −r9 r8 01×9

]
(22)

dvT

dt2
=
[
r3 0 −r1 r6 0 −r4 r9 0 −r7 01×9

]
(23)

dvT

dt3
=
[
−r2 r1 0 −r5 r4 0 −r8 r7 0 01×9

]
. (24)

Denoting the first, second and third columns of the rotation
matrix by r1, r2 and r3, respectively, we can assemble the
three previous equations as:

dvT

dt
=
[
r̂1 r̂2 r̂3 03×9

]
, (25)

where r̂i (i = 1, 2, 3) stands to the skew-symmetric matrix
associated to the vector ri. Inserting this result in (21) leads
to the gradient of the translation given in the paper:

∇h(t) = 2
dvT

dt
Mv. (26)

We proceed similarly to obtain the gradient of the rota-
tion:

dvT

dr1
=
[
0 t3 −t2 01×3 01×3 1 0 0 01×3 01×3

]
(27)

dvT

dr2
=
[
−t3 0 t1 01×3 01×3 0 1 0 01×3 01×3

]
(28)

dvT

dr3
=
[
t2 −t1 0 01×3 01×3 0 0 1 01×3 01×3

]
(29)

dvT

dr4
=
[
01×3 0 t3 −t2 01×3 01×3 1 0 0 01×3

]
(30)

dvT

dr5
=
[
01×3 −t3 0 t1 01×3 01×3 0 1 0 01×3

]
(31)

dvT

dr6
=
[
01×3 t2 −t1 0 01×3 01×3 0 0 1 01×3

]
(32)

dvT

dr7
=
[
01×3 01×3 0 t3 −t2 01×3 01×3 1 0 0

]
(33)

dvT

dr8
=
[
01×3 01×3 0 −t3 t1 01×3 01×3 0 1 0

]
(34)

dvT

dr9
=
[
01×3 01×3 0 t2 −t1 01×3 01×3 0 0 1

]
. (35)

These nine equations contain the derivative of the objective
function for each element of the rotation matrix. Writing

them in a compact form will lead to:

dvT

dr
=

 −t̂ 03×3 03×3 I3×3 03×3 03×3
03×3 −t̂ 03×3 03×3 I3×3 03×3
03×3 03×3 −t̂ 03×3 03×3 I3×3

 . (36)

Now, combining this result with (21) gives the gradient of
the translation:

∇g(R) = 2
dvT

dr
Mv. (37)

VII. OBJECTIVE FUNCTION FOR THE GENERAL
ABSOLUTE POSE

Here we address the general absolute pose (Sec. III-B
of the main paper), by considering the geometric distance
between 3D points and an inverse 3D projection ray as a
metric for the objective function.

A. Objective function F(R, t)

The objective function is based on the geometric distance
derived in [38]:

F(R, t) =

N∑
i=1

eTe, where e = (I−Vi) (Rxi + t− ci) ,

and Vi =
viv

T
i

vT
i vi

. (38)

The vector xi corresponds to the ith 3D point in the world
frame, ci corresponds to the ith camera’s position and vi

corresponds to the projection onto ray direction.
Despite not being necessary in our framework, it would be

advantageous, for efficiency purposes, to rewrite the above
expression in matricial form. For convenience, we define

wi = Rxi − ci and Qi = (I−Vi)
T

(I−Vi) , (39)

where Qi is a symmetric matrix. Replacing these expressions
in (38) we obtain

F(R, t) =

N∑
i=1

tTQit + tT
N∑
i=1

(−2Qiwi) +

N∑
i=1

wT
i Qiwi.

(40)
The dependence of the objective function on the trans-

lation is exhibited in the first term. A linear term in the
translation t and a crossed term in t and R is displayed in
the second term. The third term gives rise to a quadratic term
in R, a linear term in R and a constant term in the final
expression. Applying the Kronecker product to the second
term leads to the following:



tT
N∑
i=1

(−2Qiwi) = tT
N∑
i=1

−2Qi (Rxi − ci) (41)

= tT
N∑
i=1

−2QiRxi + tT
N∑
i=1

2Qici (42)

= tT

[
−2

N∑
i=1

(
xT
i ⊗Qi

)]
r + tT

N∑
i=1

2Qici

= tT

[
−2

N∑
i=1

(
xT
i ⊗Qi

)]
r +

[
N∑
i=1

2cTi Qi

]
t. (43)

Now, we obtain two more terms that will appear in the final
expression of the objective function. The final terms will be
obtained by expanding the last term in (40). Replacing Qi

by its value (39), we obtain:

N∑
i=1

wT
i Qiwi =

N∑
i=1

xT
i R

TQiRxi +

N∑
i=1

−2cTi QiRxi+

N∑
i=1

ciQici =

N∑
i=1

xT
i R

T (I−Vi)
T

(I−Vi)Rxi +

N∑
i=1

−2cTi QiRxi+

N∑
i=1

ciQici.

(44)

We note that, for a specific correspondence, the first
element of the sum in (44) can be seen as the scalar product
of a vector bi = (I−Vi)Rxi by itself. Applying the
Kronecker product to the vector b and to the last equation’s
second term in (44) leads to

bi =
[
xT
i ⊗ (I−Vi)

]
r and

N∑
i=1

−2cTi QiRxi =

[
N∑
i=1

−2xT
i ⊗

(
cTQi

)]
r.

(45)

Now, replacing (45) in (44), we obtain an expression for the
third term in (40):

N∑
i=1

wT
i Qiwi =

rT

[
N∑
i=1

[
xT
i ⊗ (I−Vi)

]T [
xT
i ⊗ (I−Vi)

]]
r+[

N∑
i=1

−2xT
i ⊗

(
cTQi

)]
r +

N∑
i=1

ciQici.

(46)

Inserting (43) and (46) in (40) gives rise to the following
expression for the objective function in a matrix form, that
can be easily used to calculate the gradients:

F(R, t) = rT

[
N∑
i=1

[
xT
i ⊗Qi

]T [
xT
i ⊗Qi

]]
︸ ︷︷ ︸

Mrr

r+

[
N∑
i=1

−2xT
i ⊗

(
cTQi

)]
︸ ︷︷ ︸

vT
r

r+

tT

[
−2

N∑
i=1

(
xT
i ⊗Qi

)]
︸ ︷︷ ︸

Mtr

r+

tT

[
N∑
i=1

Qi

]
︸ ︷︷ ︸

Mtt

t +

[
N∑
i=1

2cTi Qi

]
︸ ︷︷ ︸

vT
t

t +

N∑
i=1

ciQici︸ ︷︷ ︸
c

,

(47)

which corresponds to Eq. 11 of the main paper. Given that
|vi| = 1, Qi = I−Vi.

B. Gradients for ∇g (R) and ∇h (t)

The Euclidean gradients of ∇g (R) and ∇h (t) (Eqs. 12
and 13 of the main paper) can be computed directly from
(47), by applying well known results of matrix computations
[46]:

∇g(R) = 2Mrrr + vr + MT
trt and ∇h(t) = 2Mttt+

Mtrr + vt.
(48)

VIII. OBJECTIVE FUNCTION WITH THE UPNP RESIDUAL

In this section, we explain how the objective function in
the last application example (Sec. III-C of the main paper)
and its gradients have been obtained.

A. Objective function F(R, t)

To get an expression to the objective function, we proceed
similarly as in [21]. The starting point are the equation
already presented in (Sec. III-C):

αivi + ci = Rpi + t, i = 1, . . . , N. (49)

which can be written in the form
v1 0 · · · 0 −I
0 v2 · · · 0 −I
...

...
. . .

...
...

0 0 · · · vn −I


︸ ︷︷ ︸

A


α1

α2

...
αn

t


︸ ︷︷ ︸

x

=


R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R


︸ ︷︷ ︸

W


p1

p2

...
pn


︸ ︷︷ ︸

b

−


c1
c2
...
cn


︸ ︷︷ ︸

w

,

(50)



or, more compactly, as:

Ax = Wb−w ⇔ x =
(
ATA

)−1
AT (Wb−w) . (51)

As in [21], we write (51) as

x =

[
U
V

]
(Wb−w) . (52)

Note that the dimensions of the matrix
(
AAT

)−1
AT are

(N + 3)×3N , meaning that there are matrices UN×3N and
V3×3N such that (

AAT
)−1

AT =

[
U
V

]
(53)

and, as a consequence,
α1

α2

...
αn

 = U (Wb−w) and t = V (Wb−w) . (54)

Contrarily to [21], we are only interested in eliminating the
dependence on the depth’s (αi). Therefore, from the previous
expressions,

αi = uT
i (Wb−w) , (55)

where uT
i is the ith row of U. Since equation (55) does not

depend explicitly on the data nor on the parameter we are
interested in (R and t), we consider the 1×3 vector uij that
corresponds to the jth 3 element-vector of ui. By making
use of these vectors, (55) becomes:

αi =

N∑
j=1

uT
ij (Rpj − cj) ⇔ αi =

N∑
j=1

uT
ijRpj−

N∑
j=1

uT
ijcj .

(56)
From (49) and (56), and using Kronecker products, we

have:

ηi (R, t) = αivi + ci −Rpi − t

= vi

 N∑
j=1

uT
ijRpj

−
 N∑

j=1

uT
ijcj

vi+

ci −Rpi − t

= vi

 N∑
j=1

uT
ijRpj

−
 N∑

j=1

uT
ijcj

vi+

ci −
(
pT
i ⊗ I

)
r− t

=

 N∑
j=1

vi

(
pT
j ⊗ uT

ij

) r−

 N∑
j=1

uT
ijcj

vi+

ci −
(
pT
i ⊗ I

)
r− t

=

 N∑
j=1

vi

(
pT
j ⊗ uT

ij

)− (pT
i ⊗ I

) r−

 N∑
j=1

uT
ijcj

vi + ci − t.

By considering the objective function as being

F (R, t) =

N∑
i

ηTi (R, t) ηi (R, t) , (57)

and using the residuals in (57), we get the objective function
shown in Eq. 11 of the main paper, where:

Mrr =

N∑
i=1

 N∑
j=1

vi

(
pT
j ⊗ uT

ij

)− (pT
i ⊗ I

)T

 N∑
j=1

vi

(
pT
j ⊗ uT

ij

)− (pT
i ⊗ I

)
vr =

N∑
i=1

2

 N∑
j=1

vi

(
pT
j ⊗ uT

ij

)− (pT
i ⊗ I

)T

ci −
 N∑

j=1

uT
ijcj

vi


Mtr =

N∑
i=1

−2

 N∑
j=1

vi

(
pT
j ⊗ uT

ij

)− (pT
i ⊗ I

)
Mtt =

N∑
i=1

I

vt =

N∑
i=1

−2

ci −
 N∑

j=1

uT
ijcj

vi


c =

N∑
i=1

ci −
 N∑

j=1

uT
ijcj

vi

T

ci −
 N∑

j=1

uT
ijcj

vi

 ,

(58)

B. Gradients for ∇g (R) and ∇h (t)

As before, the computation of these euclidean gradients
∇g (R) and ∇h (t) are computed directly from (47):

∇g(R) = 2Mrrr+vr+MT
trt and ∇h(t) = 2Mttt+Mtrr+vt,

(59)
where Mrr, Mtt, Mtr, vr, vt, and c are presented in (58).

IX. USE OUR FRAMEWORK: AN EXAMPLE OF ITS
APPLICATIONS

A. Code Prototype

In this section we present the Pure Abstract Class in C++.
Whatever class is used to build the objective function, it must
provide an implementation for the functions below. These are
passed on to the AMM solver that will handle the problem.
#ifndef OBJECTIVEFUNCTIONINFO_H
#define OBJECTIVEFUNCTIONINFO_H

#include <Eigen/Dense>
#include <opengv/types.hpp>



class ObjectiveFunctionInfo{
public:

virtual double objective_function_value(
const opengv::rotation_t &

rotation,
const opengv::translation_t

& translation
) = 0;

virtual opengv::rotation_t rotation_gradient(
const opengv::rotation_t &

rotation,
const opengv::translation_t

& translation
) = 0;

virtual opengv::translation_t translation_gradient(
const opengv::rotation_t &

rotation,
const opengv::translation_t

& translation
) = 0;

};

#endif

}

B. Implementation of the objective and gradients functions

In this section we show the code where the matrices
Mrr, vr, Mtr, Mtt, vt and c is created for our algorithm
amm (gpnp). In the implementation the constant is not
considered. This is an example of how easy it is to solve a
problem using our framework.
GlobalPnPFunctionInfo::GlobalPnPFunctionInfo(

const opengv::absolute_pose::AbsoluteAdapterBase &
adapter

){

opengv::Indices indices(adapter.
getNumberCorrespondences());

int total_points = (int) indices.size();

Mt = Eigen::Matrix3d::Zero(3,3);
Mrt = Eigen::MatrixXd::Zero(3,9);
Mr = Eigen::MatrixXd::Zero(9,9);
vt = Eigen::VectorXd::Zero(3,1);
vr = Eigen::VectorXd::Zero(9,1);

Eigen::Matrix3d id = Eigen::Matrix3d::Identity(3,3);

Eigen::Matrix<double,3,1> vi;
Eigen::Matrix<double,3,1> xi;
Eigen::Matrix<double,3,1> ci;
Eigen::Matrix3d Qi;
Eigen::Matrix3d Vi;
Eigen::MatrixXd Mr_i = Eigen::MatrixXd::Zero(3,9);
Eigen::MatrixXd Mrt_i = Eigen::MatrixXd::Zero(3,9);
Eigen::Matrix3d I_V = Eigen::MatrixXd::Zero(3,3);
Eigen::MatrixXd vr_1 = Eigen::MatrixXd::Zero(1,3);
Eigen::MatrixXd vr_2 = Eigen::MatrixXd::Zero(1,9);
for( int i = 0; i < total_points; i++ )
{
vi = adapter.getCamRotation(indices[i]) * adapter.

getBearingVector(indices[i]);
xi = adapter.getPoint(indices[i]);
ci = adapter.getCamOffset(indices[i]);
Vi = vi * vi.transpose() / (vi.transpose() * vi);
Qi = (id - Vi).transpose() * (id - Vi);

I_V = id - Vi;
Mt = Mt + Qi;
vt = vt - (2 * Qi * ci);
//Constant = Constant + ci.transpose() * Qi * ci;

//Calculate Mr
Mr_i.block<3,3>(0,0) = xi(0,0) * I_V;
Mr_i.block<3,3>(0,3) = xi(1,0) * I_V;
Mr_i.block<3,3>(0,6) = xi(2,0) * I_V;

Mr = Mr + Mr_i.transpose() * Mr_i;

//Calculate Mrt
Mrt_i.block<3,3>(0,0) = xi(0,0) * Qi;
Mrt_i.block<3,3>(0,3) = xi(1,0) * Qi;
Mrt_i.block<3,3>(0,6) = xi(2,0) * Qi;

Mrt = Mrt + 2*Mrt_i;

//Calculate vr
vr_1 = ci.transpose() * Qi;
vr_2.block<1,3>(0,0) = -2 * xi(0,0) * vr_1;
vr_2.block<1,3>(0,3) = -2 * xi(1,0) * vr_1;
vr_2.block<1,3>(0,6) = -2 * xi(2,0) * vr_1;
vr = vr + vr_2.transpose();

}
}

The objective function value is implemented simply as:
double GlobalPnPFunctionInfo::objective_function_value(

const opengv::rotation_t & rotation, const opengv::
translation_t & translation

){

const double * p = &rotation(0);
Map<const Matrix<double,1,9> > r(p, 1, 9);
Eigen::MatrixXd e = (translation.transpose() * Mt *

translation)
+ (translation.transpose() * Mrt *

r.transpose())
+ (vt.transpose() * translation)
+ (r * Mr * r.transpose() )
+ (vr.transpose() * r.transpose());

return ( e(0,0));
}

The rotation gradient ∇g (R):
opengv::rotation_t GlobalPnPFunctionInfo::

rotation_gradient(
const opengv::rotation_t & rotation, const opengv::

translation_t & translation
){

const double * p = &rotation(0);
Map<const Matrix<double,1,9> > r(p, 1, 9);
Eigen::MatrixXd result = (2 * Mr * r.transpose()) +

( Mrt.transpose() *
translation ) + vr;

double * ptr = &result(0);
Map<Matrix<double, 3,3> > m(ptr, 3, 3);

return m;
}

The translation gradient ∇h (R):
opengv::translation_t GlobalPnPFunctionInfo::

translation_gradient(
const opengv::rotation_t & rotation, const opengv::

translation_t & translation
){

const double * p = &rotation(0);
Map<const Matrix<double,1,9> > r(p, 1, 9);

return ( (2 * Mt * translation) + ( Mrt * r.
transpose() ) + vt );

}
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